High-Temperature-Resistant Scale Inhibitor Polyaspartic Acid-Prolineamide for Inhibiting CaCO3 Scale in Geothermal Water and Speculation of Scale Inhibition Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis of PASP and PASP-Pro
2.3. Static Anti-Scaling Test of CaCO3
2.4. Analysis of Crystal Nucleation and Growth Processes
2.5. Formation and Characterization of Different CaCO3 Scales
3. Results and Discussion
3.1. FTIR, 1H NMR, and GPC Analysis of PASP-Pro
3.2. Inhibition Performance of PASP-Pro on the CaCO3 Scale
3.3. Thermal Stability of PASP-Pro
3.3.1. Effect of Bath Temperature and Bath Time
3.3.2. Effects of Heat Treatment Temperature
3.4. Scale Inhibition Mechanism
3.4.1. The influence of PASP-Pro on the Nucleation Process of CaCO3
3.4.2. The Influence of PASP-Pro on the Morphology of CaCO3 Scale
3.4.3. Possible Multi-Stage Scale Inhibition Mechanism of PASP-Based Scale Inhibitors
4. Conclusions
- The high-temperature scale inhibition performance and thermal stability of PASP-Pro are significantly better than that of PASP.
- Adding scale inhibitors significantly prolonged the induction period and nucleation period of CaCO3 nucleation, and more free ions can be stable in the solution. Unstable vaterite was found in the presence of scale inhibitors and CaCO3 crystals are no longer smooth and dense after adding PASP or PASP-Pro.
- The scale inhibition mechanism speculated in this paper: PASP-based scale inhibitors cover the nucleation sites of impurity in the CaCO3 solution and are introduced into the amorphous ionic liquid. Then, they hinder the growth of ACC through electrostatic repulsion and inhibit the dehydration and local ordering of ACC to achieve the effect of inhibiting CaCO3 scaling.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lund, J.W.; Boyd, T.L. Direct utilization of geothermal energy 2015 worldwide review. Geothermics 2016, 60, 66–93. [Google Scholar] [CrossRef]
- Soltani, M.; Kashkooli, F.M.; Souri, M.; Rafiei, B.; Jabarifar, M.; Gharali, K.; Nathwani, J.S. Environmental, economic, and social impacts of geothermal energy systems. Renew. Sustain. Energy Rev. 2021, 140, 110750–110762. [Google Scholar] [CrossRef]
- Nasruddin; Alhamid, M.I.; Daud, Y.; Surachman, A.; Sugiyono, A.; Aditya, H.B.; Mahlia, T.M.I. Potential of geothermal energy for electricity generation in Indonesia: A review. Renew. Sustain. Energy Rev. 2016, 53, 733–740. [Google Scholar] [CrossRef]
- Griebler, C.; Brielmann, H.; Haberer, C.M.; Kaschuba, S.; Kellermann, C.; Stumpp, C.; Hegler, F.; Kuntz, D.; Walker-Hertkorn, S.; Lueders, T. Potential impacts of geothermal energy use and storage of heat on groundwater quality, biodiversity, and ecosystem processes. Environ. Earth Sci. 2016, 75, 1391–1403. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Hu, B.; Dong, J. Numerical investigation of a novel approach to coupling compressed air energy storage in aquifers with geothermal energy. Appl. Energy 2020, 279, 115781–115799. [Google Scholar] [CrossRef]
- Guzovic, Z.; Majcen, B.; Cvetkovic, S. Possibilities of electricity generation in the Republic of Croatia from medium-temperature geothermal sources. Appl. Energy 2012, 98, 404–414. [Google Scholar] [CrossRef]
- Li, Y.M.; Pang, Z.H. Carbonate Calcium Scale Formation and Quantitative Assessment in Geothermal System. Adv. New Renew. Energy 2018, 4, 274–281. [Google Scholar]
- Cosmo, R.; Pereira, F.; Soares, E.J.; Ferreira, E.G. Addressing the root cause of calcite precipitation that leads to energy loss in geothermal systems. Geothermics 2022, 98, 102272–102284. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Yan, H.; Zhou, X.; Hou, C. Impact of Carbonate Scaling on the Efficiency of Used Geothermal Water Reinjection from Low-Middle Temperature Geothermal Fluid in Xianyang Porous Geothermal Field, NW China. AMR 2013, 614-615, 307–310. [Google Scholar] [CrossRef]
- Chaussemier, M.; Pourmohtasham, E.; Gelus, D.; Pécoul, N.; Perrot, H.; Lédion, J.; Cheap-Charpentier, H.; Horner, O. State of art of natural inhibitors of calcium carbonate scaling. A review article. Desalination 2015, 356, 47–55. [Google Scholar] [CrossRef]
- Hasson, D.; Shemer, H.; Sher, A. State of the Art of Friendly “Green” Scale Control Inhibitors: A Review Article. Ind. Eng. Chem. Res. 2011, 50, 7601–7607. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, B.; Zhao, L.; Cui, Y. Synthesis of polyaspartic acid/5-aminoorotic acid graft copolymer and evaluation of its scale inhibition and corrosion inhibition performance. Desalination 2013, 311, 156–161. [Google Scholar] [CrossRef]
- Shi, S.; Zhao, X.; Wang, Q.; Shan, H.; Xu, Y. Synthesis and evaluation of polyaspartic acid/furfurylamine graft copolymer as scale and corrosion inhibitor. RSC Adv. 2016, 6, 102406–102412. [Google Scholar]
- Shen, Z.; Xin, Z.; Zhang, P. Preparation of fluorescent polyaspartic acid and evaluation of its scale inhibition for CaCO3 and CaSO4. Polym. Adv. Technol. 2017, 28, 323–336. [Google Scholar] [CrossRef]
- Belcher, A.M.; Christensen, R.J.; Hansma, P.K.; Stucky, G.D.; Morse, D.; Wu, X.H. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 1996, 381, 56–58. [Google Scholar] [CrossRef]
- Aizenberg, J.; Tkachenko, A.; Weiner, S.; Addadi, L.; Hendler, G. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 2001, 412, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Albéric, M.; Bertinetti, L.; Zou, Z.; Fratzl, P.; Habraken, W.; Politi, Y. The Crystallization of Amorphous Calcium Carbonate is Kinetically Governed by Ion Impurities and Water. Adv. Sci. 2018, 26, 1701000–1701014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoreo, J.D.; Sommerdijk, N. Investigating materials formation with liquid-phase and cryogenic TEM. Nat. Rev. Mater. 2016, 1, 16035–16047. [Google Scholar] [CrossRef]
- Demichelis, R.; Raiteri, P.; Gale, J.D.; Quigley, D.; Gebauer, D. Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat. Commun. 2011, 2, 590–604. [Google Scholar] [CrossRef] [Green Version]
- Prus, M.; Szymanek, K.; Mills, J.; Lammers, L.N.; Piasecki, W.; Kedra-Krolik, K.; Zarzyck, P. Electrophoretic and potentiometric signatures of multistage CaCO3 nucleation. J. Colloid Interface Sci. 2019, 544, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Xu, H.; Han, J.; Wang, C.; Wu, Q.; Li, C. A green multifunctional anti-scaling inhibitor for crystallization control of Ca scale crystals. Chem. Eng. Technol. 2018, 42, 444–453. [Google Scholar] [CrossRef]
- Zhang, B.R.; Zhang, L.; Li, F.T.; Hu, W.; Hannam, P.M. Testing the formation of Ca-phosphonate precipitates and evaluating the anionic polymers as Ca-phosphonate precipitates and CaCO3 scale inhibitor in simulated cooling water. Corros. Sci. 2010, 52, 3883–3890. [Google Scholar] [CrossRef]
- Sheikhi, A.; Na, L.; Mejlse, S.L.; Bomal, E.; Kakkar, A. Rational design of molecularly engineered biomimetic threshold scale inhibitors. J. Mater. Chem. A 2018, 6, 24058–24065. [Google Scholar] [CrossRef]
- Chen, S.; Xu, X.; Hou, X.Y.; Wu, D.X.; Yin, J.H. Molecular weight effect on PAA antiscale performance in LT-MED desalination system: Static experiment and MD simulation. Desalination 2018, 445, 1–5. [Google Scholar]
- Chen, J.; Xu, L.; Han, J.; Su, M.; Wu, Q. Synthesis of modified polyaspartic acid and evaluation of its scale inhibition and dispersion capacity. Desalination 2015, 358, 42–48. [Google Scholar] [CrossRef]
- Huang, H.H.; Yao, Q.; Jiao, Q.; Liu, B.L.; Chen, H.L. Polyepoxysuccinic acid with hyper-branched structure as an environmentally friendly scale inhibitor and its scale inhibition mechanism. J. Saudi Chem. Soc. 2019, 23, 61–74. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, L.L.; Wang, L.N.; Xu, S.Y.; Cui, Y.C. Synthesis of polyaspartic acid–melamine grafted copolymer and evaluation of its scale inhibition performance and dispersion capacity for ferric oxide. Desalination 2012, 286, 285–289. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Lu, M.L.; Liu, J.; Chen, H.L.; Chen, Q.L.; Wang, B. Fluorescent-tagged hyper-branched polyester for inhibition of CaSO4 scale and the scale inhibition mechanism. Mater. Today Commun. 2020, 25, 101359. [Google Scholar] [CrossRef]
- Zhang, S.P.; Qu, H.J.; Yang, Z.; Fu, F.E.; Tian, Z.Q.; Yang, W.B. Scale inhibition performance and mechanism of sulfamic/amino acids modified polyaspartic acid against calcium sulfate. Desalination 2017, 419, 152–159. [Google Scholar] [CrossRef]
- Ross, R.J.; Low, K.; Shannon, J.E. Polyaspartate scale inhibitors—Biodegradable alternatives to polyacrylates. Mater. Perform. 1997, 38, 53–57. [Google Scholar]
- Rong, Y.U.; Ma, Z.X.; Zhou, X.; Su, L.L.; Tang, Z.; Li, Z.H. Study on Scale Inhibition Performance of AA-MA-HEMA Scale Inhibitor. Contemp. Chem. Ind. 2018, 47, 6–16. [Google Scholar]
- Jitreewas, P.; Saengvattanarat, S.; Tansiri, P.; Pranee, S.; Chuayprakong, S.; Khemtong, C.; Seeyangnok, S. Synthesis of PAA-PAMPS-PNaSS Terpolymers as Ultraviolet-Tagged Scale Inhibitor for Industrial Water Cooling System. Key Eng. Mater. 2017, 16, 757–786. [Google Scholar] [CrossRef]
- Rahman, F. Calcium sulfate precipitation studies with scale inhibitors for reverse osmosis desalination. Desalination 2013, 319, 79–84. [Google Scholar] [CrossRef]
- Mady, M.F.; Kelland, M.A. A Study on Various Readily Available Proteins as New Green Scale Inhibitors for Oilfield Scale Control. Energy Fuels 2017, 31, 5940–5947. [Google Scholar] [CrossRef]
Ring-Opening Reaction Time (h) | PSI Mw (g/mol) | PASP Mw (g/mol) | PASP-Pro Mw (g/mol) |
---|---|---|---|
1 | 15,661 | 8733 | 9468 |
7 | 5678 | 6846 | |
13 | 4106 | 4751 | |
25 | 2456 | 3012 | |
49 | 1190 | 1328 |
Relative Content (%) | Calcite | Aragonite | Vaterite |
---|---|---|---|
Control | 100% | 0.00% | 0.00% |
PASP | 34.32% | 0.21% | 65.47% |
PASP-Pro | 93.37% | 0.74% | 5.89% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Tan, X.; Qi, S. High-Temperature-Resistant Scale Inhibitor Polyaspartic Acid-Prolineamide for Inhibiting CaCO3 Scale in Geothermal Water and Speculation of Scale Inhibition Mechanism. Water 2023, 15, 1457. https://doi.org/10.3390/w15081457
Yan J, Tan X, Qi S. High-Temperature-Resistant Scale Inhibitor Polyaspartic Acid-Prolineamide for Inhibiting CaCO3 Scale in Geothermal Water and Speculation of Scale Inhibition Mechanism. Water. 2023; 15(8):1457. https://doi.org/10.3390/w15081457
Chicago/Turabian StyleYan, Jiawei, Xiao Tan, and Suitao Qi. 2023. "High-Temperature-Resistant Scale Inhibitor Polyaspartic Acid-Prolineamide for Inhibiting CaCO3 Scale in Geothermal Water and Speculation of Scale Inhibition Mechanism" Water 15, no. 8: 1457. https://doi.org/10.3390/w15081457
APA StyleYan, J., Tan, X., & Qi, S. (2023). High-Temperature-Resistant Scale Inhibitor Polyaspartic Acid-Prolineamide for Inhibiting CaCO3 Scale in Geothermal Water and Speculation of Scale Inhibition Mechanism. Water, 15(8), 1457. https://doi.org/10.3390/w15081457