Estimation of Spring Maize Evapotranspiration in Semi-Arid Regions of Northeast China Using Machine Learning: An Improved SVR Model Based on PSO and RF Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Data Source
2.2. Maize Crop Evapotranspiration Calculation
2.3. Support Vector Regression
2.4. Particle Swarm Optimization Algorithm
2.5. Random Forest
2.6. Back-Propagation Neural Network
2.7. Hybrid Model Building
2.8. Evaluation Criteria of Model Performance
3. Results
3.1. The Variables for Determining Crop Evapotranspiration
3.2. Performance Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, S. Towards water and food security in China. Chin. J. Eco-Agric. 2014, 22, 880–885. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Li, G.; Mo, Y.; Zhang, D.; Xu, X.; Wilkerson, C.J.; Hoogenboom, G. Evaluation of subsurface, mulched and non-mulched surface drip irrigation for maize production and economic benefits in northeast China. Irrig. Sci. 2021, 39, 159–171. [Google Scholar] [CrossRef]
- Zou, H.; Fan, J.; Zhang, F.; Xiang, Y.; Wu, L.; Yan, S. Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China. Agric. Water Manag. 2020, 230, 105986. [Google Scholar] [CrossRef]
- Tuo, Y.; Wang, Q.; Zhang, L.; Shen, F.; Wang, F.; Zheng, Y.; Wang, Z. Establishment of a crop evapotranspiration calculation model and its validation. J. Agron. Crop. Sci. 2022, 209, 251–260. [Google Scholar] [CrossRef]
- Saggi, M.K.; Jain, S. Application of fuzzy-genetic and regularization random forest (FG-RRF): Estimation of crop evapotranspiration (ET) for maize and wheat crops. Agric. Water Manag. 2020, 229, 105907. [Google Scholar] [CrossRef]
- Liu, X.; Fu, B. Drought impacts on crop yield: Progress, challenges and prospect. Acta Geogr. Sin. 2021, 76, 2632–2646. [Google Scholar]
- FAOSTAT. Food and Agricultural Organization of the United Nations: Major Food and Agricultural Commodities and Producers. 2020. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 18 August 2022).
- Hou, Y.; Kong, L.; Cai, H.; Liu, H.; Gao, Y.; Wang, Y.; Wang, L. The Accumulation and Distribution Characteristics on Dry Matter and Nutrients of High-Yielding Maize Under Drip Irrigation and Fertilization Conditions in Semi-Arid Region of Northeastern China. Sci. Agric. Sin. 2019, 52, 3559–3572. [Google Scholar]
- Yang, X.; Ming, B.; Tao, H.; Wang, P. Spatial distribution characteristics and impact on spring maize yield of drought in Northeast China. Chin. J. Eco-Agric. 2015, 23, 758–767. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Available online: https://www.fao.org/3/X0490E/x0490e00.htm (accessed on 18 August 2022).
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Kumar, R.; Jat, M.K.; Shankar, V. Methods to estimate irrigated reference crop evapotranspiration—A review. Water Sci. Technol. 2012, 66, 525–535. [Google Scholar] [CrossRef]
- Najafi, P.; Tabatabaei, S.H. Comparison of different Hargreaves-Samani methods for estimating potential evapotranspiration in arid and semi-arid regions of Iran. Res. Crops 2009, 10, 441–447. [Google Scholar]
- Ai, Z.; Yang, Y. Modification and Validation of Priestley-Taylor Model for Estimating Cotton Evapotranspiration under Plastic Mulch Condition. J. Hydrometeorol. 2016, 17, 1281–1293. [Google Scholar] [CrossRef]
- Al-Ghobari, H.M. Estimation of reference evapotranspiration for southern region of Saudi Arabia. Irrig. Sci. 2000, 19, 81–86. [Google Scholar] [CrossRef]
- Xu, Z.; Yi, L.I.; Liu, J. Application of stochastic model to simulation of reference crop evapotranspiration in grassland of arid region. J. Hydraul. Eng. 2008, 39, 1267–1272, 1278. [Google Scholar]
- Wang, W.; Peng, S.Z.; Luo, Y.F. Chaotic behavior analysis and prediction of reference crop evapotransporation. J. Hydraul. Eng. 2008, 39, 1030–1036. [Google Scholar]
- Pinos, J. Estimation methods to define reference evapotranspiration: A comparative perspective. Water Pract. Technol. 2022, 17, 940–948. [Google Scholar] [CrossRef]
- Yamaç, S.S. Artificial intelligence methods reliably predict crop evapotranspiration with different combinations of meteorological data for sugar beet in a semiarid area. Agric. Water Manag. 2021, 254, 106968. [Google Scholar] [CrossRef]
- Han, X.; Wei, Z.; Zhang, B.; Li, Y.; Du, T.; Chen, H. Crop evapotranspiration prediction by considering dynamic change of crop coefficient and the precipitation effect in back-propagation neural network model. J. Hydrol. 2021, 596, 126104. [Google Scholar] [CrossRef]
- Yin, Z.; Wen, X.; Feng, Q.; He, Z.; Zou, S.; Yang, L. Integrating genetic algorithm and support vector machine for modeling daily reference evapotranspiration in a semi-arid mountain area. Hydrol. Res. 2017, 48, 1177–1191. [Google Scholar] [CrossRef]
- Fan, J.; Yue, W.; Wu, L.; Zhang, F.; Cai, H.; Wang, X.; Lu, X.; Xiang, Y. Evaluation of SVM, ELM and four tree-based ensemble models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agric. For. Meteorol. 2018, 263, 225–241. [Google Scholar] [CrossRef]
- Xing, X.; Ma, X.; Yu, M.; Liu, Y. Estimating models for reference evapotranspiration with core meteorological parameters via path analysis. Hydrol. Res. 2017, 48, 340–354. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, X.; Zhou, H.; Wang, X.; Xing, X. Prediction model for daily reference crop evapotranspiration based on hybrid algorithm and principal components analysis in Southwest China. Comput. Electron. Agric. 2021, 190, 106424. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, B.; Mehdizadeh, S. Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agric. Water Manag. 2020, 237, 5–32. [Google Scholar] [CrossRef]
- Pinos, J.; Chacón, G.; Feyen, J. Comparative analysis of reference evapotranspiration models with application to the wet Andean páramo ecosystem in southern Ecuador. Meteorologica 2020, 45, 25–45. [Google Scholar]
- Petković, D.; Gocic, M.; Shamshirband, S.; Qasem, S.N.; Trajkovic, S. Particle swarm optimization-based radial basis function network for estimation of reference evapotranspiration. Theor. Appl. Climatol. 2016, 125, 555–563. [Google Scholar] [CrossRef]
- Wu, Z.; Cui, N.; Hu, X.; Gong, D.; Wang, Y.; Feng, Y.; Jiang, S.; Lv, M.; Han, L.; Xing, L.; et al. Optimization of extreme learning machine model with biological heuristic algorithms to estimate daily reference crop evapotranspiration in different climatic regions of China. J. Hydrol. 2021, 603, 127028. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, N.; Feng, Y.; Gong, D.; Hu, X. Comparison of BP, PSO-BP and statistical models for predicting daily global solar radiation in arid Northwest China. Comput. Electron. Agric. 2019, 164, 104905. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, A.; Rajput, S.; Bose, A.; Hu, X. An Investigation on Hybrid Particle Swarm Optimization Algorithms for Parameter Optimization of PV Cells. Electronics 2022, 11, 909. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, C.; Wu, Q.; Jian, S.; Li, Z.; Chen, Y.; Zhang, G.; Zhang, Z.; Wang, S. Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation. J. Hydrol. 2022, 608, 127553. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Chen, X.; Wu, C.; Cui, Z.; Niu, C. Predicting the evolution of sheet metal surface scratching by the technique of artificial intelligence. Int. J. Adv. Manuf. Technol. 2020, 112, 853–865. [Google Scholar] [CrossRef]
- Baydaroğlu, Ö.; Koçak, K. SVR-based prediction of evaporation combined with chaotic approach. J. Hydrol. 2014, 508, 356–363. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, G.; Gu, J.; Wang, S.; Ma, N.; Zhou, X.; Liu, Y.; Zhao, W. Effects of Water, Nitrogen and Potassium Interaction on Water Use Efficiency of Spring Maize Under Shallow-buried Drip Irrigation. J. Soil Water Conserv. 2022, 36, 316–324. [Google Scholar] [CrossRef]
- Chen, S.; He, C.; Huang, Z.; Xu, X.; Jiang, T.; He, Z.; Liu, J.; Su, B.; Feng, H.; Yu, Q.; et al. Using support vector machine to deal with the missing of solar radiation data in daily reference evapotranspiration estimation in China. Agric. For. Meteorol. 2022, 316, 108864. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Vapnik, V.N., Ed.; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.J.C.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. In Proceedings of the 10th Annual Conference on Neural Information Processing Systems (NIPS), Denver, CO, USA, 1996; pp. 155–161. [Google Scholar]
- Shrestha, N.K.; Shukla, S. Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment. Agric. For. Meteorol. 2015, 200, 172–184. [Google Scholar] [CrossRef]
- Zuo, R.; Carranza, E.J.M. Support vector machine: A tool for mapping mineral prospectivity. Comput. Geosci. 2011, 37, 1967–1975. [Google Scholar] [CrossRef]
- Abdollahi, S.; Pourghasemi, H.R.; Ghanbarian, G.A.; Safaeian, R. Prioritization of effective factors in the occurrence of land subsidence and its susceptibility mapping using an SVM model and their different kernel functions. Bull. Eng. Geol. Environ. 2019, 78, 4017–4034. [Google Scholar] [CrossRef]
- Pal, M.; Maxwell, A.E.; Warner, T.A. Kernel-based extreme learning machine for remote-sensing image classification. Remote Sens. Lett. 2013, 4, 853–862. [Google Scholar] [CrossRef]
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F. E1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. 2022. Available online: https://CRAN.R-project.org/package=e1071 (accessed on 24 August 2022).
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the 1995 IEEE International Conference on Neural Networks (ICNN 95), Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Gu, W.; Chai, B.; Teng, Y. Research on Support Vector Machine Based on Particle Swarm Optiminzation. Trans. Beijing Inst. Technol. 2014, 34, 705–709. [Google Scholar]
- Bendtsen, C. pso: Particle Swarm Optimization. 2022. Available online: https://CRAN.R-project.org/package=pso (accessed on 24 August 2022).
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Karimi, S.; Shiri, J.; Marti, P. Supplanting missing climatic inputs in classical and random forest models for estimating reference evapotranspiration in humid coastal areas of Iran. Comput. Electron. Agric. 2020, 176, 105633. [Google Scholar] [CrossRef]
- Heung, B.; Bulmer, C.E.; Schmidt, M.G. Predictive soil parent material mapping at a regional-scale: A Random Forest approach. Geoderma 2014, 214–215, 141–154. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Chhin, S.; Zhang, J.; Duan, A. Disentangling the effects of stand and climatic variables on forest productivity of Chinese fir plantations in subtropical China using a random forest algorithm. Agric. For. Meteorol. 2021, 304–305, 108412. [Google Scholar] [CrossRef]
- Archer, E. rfPermute: Estimate Permutation p-Values for Random Forest Importance Metrics. 2022. Available online: https://CRAN.R-project.org/package=rfPermute (accessed on 24 August 2022).
- Zhang, D.; Lin, J.; Peng, Q.; Wang, D.; Yang, T.; Sorooshian, S.; Liu, X.; Zhuang, J. Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm. J. Hydrol. 2018, 565, 720–736. [Google Scholar] [CrossRef] [Green Version]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Fritsch, S.; Guenther, F.; Wright, M.N. neuralnet: Training of Neural Networks. 2019. Available online: https://github.com/bips-hb/neuralnet (accessed on 24 August 2022).
- R Core Team. R: A Language and Environment for Statistical Computing. 2021. Available online: https://www.R-project.org/ (accessed on 20 August 2022).
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Ji, R.; Ban, X.; Zhang, S. Ascertainment of Crop Coefficients of Maize in Liaoning Area. Chin. Agric. Sci. Bull. 2004, 20, 246–248+268. [Google Scholar]
- Zhu, B.; Feng, Y.; Gong, D.; Jiang, S.; Zhao, L.; Cui, N. Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Comput. Electron. Agric. 2020, 173, 105430. [Google Scholar] [CrossRef]
- Jia, Y.; Su, Y.; Zhang, R.; Zhang, Z.; Lu, Y.; Shi, D.; Xu, C.; Huang, D. Optimization of an extreme learning machine model with the sparrow search algorithm to estimate spring maize evapotranspiration with film mulching in the semiarid regions of China. Comput. Electron. Agric. 2022, 201, 107298. [Google Scholar] [CrossRef]
- Wen, L.; Yuan, X. Forecasting CO2 emissions in Chinas commercial department, through BP neural network based on random forest and PSO. Sci. Total Environ. 2020, 718, 137194. [Google Scholar] [CrossRef]
Years | Variables | Max | Min | Average | Sd |
---|---|---|---|---|---|
2017 | 30.4 | 9.6 | 22.2 | 4.4 | |
40.0 | 14.9 | 28.6 | 4.4 | ||
26.2 | 0.0 | 16.0 | 5.9 | ||
n, h d−1 | 13.6 | 0.0 | 8.2 | 3.8 | |
RH, % | 92.0 | 18.0 | 59.2 | 17.0 | |
U, m s−1 | 6.6 | 1.1 | 2.9 | 1.2 | |
hP, hPa | 1001.8 | 979.0 | 989.0 | 4.4 | |
Precipitation, mm d−1 | 62.8 | 9.0 | 2.0 | 7.1 | |
2018 | 31.2 | 9.7 | 21.7 | 4.7 | |
38.1 | 15.6 | 27.7 | 4.4 | ||
27.6 | 1.7 | 16.2 | 6.1 | ||
n, h d−1 | 13.3 | 0.1 | 7.6 | 3.8 | |
RH, % | 94.0 | 18.0 | 62.6 | 17.0 | |
U, m s−1 | 6.4 | 0.9 | 3.2 | 1.2 | |
hP, hPa | 1004.4 | 977.3 | 989.6 | 5.5 | |
Precipitation, mm d−1 | 48.3 | 0.0 | 2.0 | 6.3 | |
2019 | 29.8 | 13.4 | 22.0 | 3.7 | |
38.4 | 19.3 | 28.0 | 3.7 | ||
26.1 | 3.1 | 16.6 | 4.9 | ||
n, h d−1 | 14.0 | 0.0 | 6.9 | 4.3 | |
RH, % | 96.0 | 26.0 | 69.0 | 16.6 | |
U, m s−1 | 6.4 | 1.2 | 2.8 | 1.2 | |
hP, hPa | 1004.2 | 975.8 | 987.6 | 5.9 | |
Precipitation, mm d−1 | 78.3 | 0.0 | 4.7 | 12.4 |
Training Period | Testing Period | ||
---|---|---|---|
Crop Growth Stages | 2017 | 2018 | 2019 |
Initial | 1 May–31 May (31 d) | 28 April–26 May (29 d) | 14 May–10 June (28 d) |
Crop development | 1 June–20 July (50 d) | 27 May–15 July (50 d) | 11 June–28 July (48 d) |
Mid-season | 21 July–1 September (43 d) | 16 July–30 August (46 d) | 29 July–7 September (41 d) |
Late-season | 2 September–27 September (26 d) | 31 August–4 October (35 d) | 8 September–28 September (21 d) |
total days (d) | 150 | 160 | 138 |
Input/Model | Training Periods | Testing Periods | ||||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE (mm d−1) | MAE (mm d−1) | NSE | R2 | RMSE (mm d−1) | MAE (mm d−1) | NSE | |
Kc, Tave, n, RH | ||||||||
RF–PSO–SVR | 0.970 | 0.396 | 0.329 | 0.949 | 0.957 | 0.282 | 0.231 | 0.956 |
SVR | 0.979 | 0.252 | 0.194 | 0.979 | 0.948 | 0.365 | 0.289 | 0.927 |
BPNN | 0.976 | 0.271 | 0.211 | 0.976 | 0.943 | 0.418 | 0.333 | 0.904 |
RF | 0.989 | 0.234 | 0.169 | 0.983 | 0.939 | 0.434 | 0.369 | 0.897 |
Kc, Tave, Tmax, n, RH | ||||||||
RF–PSO–SVR | 0.970 | 0.366 | 0.297 | 0.956 | 0.959 | 0.278 | 0.225 | 0.958 |
SVR | 0.985 | 0.216 | 0.165 | 0.985 | 0.957 | 0.320 | 0.263 | 0.944 |
BPNN | 0.984 | 0.221 | 0.169 | 0.984 | 0.960 | 0.341 | 0.277 | 0.936 |
RF | 0.988 | 0.238 | 0.177 | 0.982 | 0.915 | 0.508 | 0.426 | 0.858 |
Kc, Tave, Tmax, Tmin, n, RH | ||||||||
RF–PSO–SVR | 0.965 | 0.388 | 0.319 | 0.951 | 0.961 | 0.275 | 0.221 | 0.958 |
SVR | 0.986 | 0.210 | 0.162 | 0.986 | 0.948 | 0.340 | 0.281 | 0.936 |
BPNN | 0.986 | 0.209 | 0.158 | 0.986 | 0.955 | 0.341 | 0.279 | 0.936 |
RF | 0.988 | 0.206 | 0.152 | 0.982 | 0.918 | 0.486 | 0.409 | 0.870 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, W.; Yin, G.; Gu, J.; Ma, N. Estimation of Spring Maize Evapotranspiration in Semi-Arid Regions of Northeast China Using Machine Learning: An Improved SVR Model Based on PSO and RF Algorithms. Water 2023, 15, 1503. https://doi.org/10.3390/w15081503
Hou W, Yin G, Gu J, Ma N. Estimation of Spring Maize Evapotranspiration in Semi-Arid Regions of Northeast China Using Machine Learning: An Improved SVR Model Based on PSO and RF Algorithms. Water. 2023; 15(8):1503. https://doi.org/10.3390/w15081503
Chicago/Turabian StyleHou, Wenjie, Guanghua Yin, Jian Gu, and Ningning Ma. 2023. "Estimation of Spring Maize Evapotranspiration in Semi-Arid Regions of Northeast China Using Machine Learning: An Improved SVR Model Based on PSO and RF Algorithms" Water 15, no. 8: 1503. https://doi.org/10.3390/w15081503
APA StyleHou, W., Yin, G., Gu, J., & Ma, N. (2023). Estimation of Spring Maize Evapotranspiration in Semi-Arid Regions of Northeast China Using Machine Learning: An Improved SVR Model Based on PSO and RF Algorithms. Water, 15(8), 1503. https://doi.org/10.3390/w15081503