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Abstract: Accurate estimation of crop evapotranspiration (ETc) is crucial for effective irrigation and
water management. To achieve this, support vector regression (SVR) was applied to estimate the
daily ETc of spring maize. Random forest (RF) as a data pre-processing technique was utilized
to determine the optimal input variables for the SVR model. Particle swarm optimization (PSO)
was employed to optimize the SVR model. This study used data obtained from field experiments
conducted between 2017 and 2019, including crop coefficient and daily meteorological data. The
performance of the innovative hybrid RF–SVR–PSO model was evaluated against a standalone SVR
model, a back-propagation neural network (BPNN) model and a RF model, using different input
meteorological variables. The ETc values were calculated using the Penman–Monteith equation,
which is recommended by the FAO, and used as a reference for the models’ estimated values. The
results showed that the hybrid RF–SVR–PSO model performed better than all three standalone
models for ETc estimation of spring maize. The Nash–Sutcliffe efficiency coefficient (NSE), root mean
square error (RMSE), mean absolute error (MAE) and coefficient of determination (R2) ranges were
0.956–0.958, 0.275–0.282 mm d−1, 0.221–0.231 mm d−1 and 0.957–0.961, respectively. It is proved
that the hybrid RF–SVR–PSO model is appropriate for estimation of daily spring maize ETc in
semi-arid regions.

Keywords: spring maize; crop evapotranspiration; support vector regression; particle swarm
optimization; random forest

1. Introduction

In recent years, the issue of food security has become increasingly important because
of the growing population and the need to maintain sustainable development [1]. Global
climate change has resulted in frequent droughts and water shortages, posing a serious
threat to food security [2]. In semi-arid regions where rainfall is unevenly distributed and
droughts are frequent, water scarcity is particularly severe. Rational irrigation is a viable
solution for dealing with drought and reducing water shortages in agriculture [3,4]. Crop
evapotranspiration (ETc), which mainly consists of soil surface evaporation and vegetation
transpiration, is an integral part of the farmland water balance and hydrological cycle.
As a critical indicator in the determination of irrigation regimes, determining crop water
requirements is of utmost importance. Therefore, research on ETc is crucial for improving
agricultural water productivity, conserving irrigation water resources and ensuring food
security [5,6].

As a major food crop over the world, maize (Zea mays L.) plays a vital role in ensuring
food security [7]. China has the largest maize acreage in the world, with more than
41.29 Mha planted and over 260 Mt produced [8]. The western part of Northeast China is

Water 2023, 15, 1503. https://doi.org/10.3390/w15081503 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15081503
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-5501-183X
https://doi.org/10.3390/w15081503
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15081503?type=check_update&version=1


Water 2023, 15, 1503 2 of 19

a typical semi-arid agricultural area, and is also one of the key areas for planting spring
maize in China [9]. Nevertheless, spring maize is highly sensitive to water stress and its
yield can be severely impacted by drought and water deficit [10]. Thus, it is of paramount
importance to precisely estimate ETc and optimize irrigation water utilization to guarantee
the quality and yield of spring maize.

To calculate ETc, the crop coefficient (Kc) is used in conjunction with reference crop
evapotranspiration (ET0) [11]. However, determining ETc is challenging due to its de-
pendence on various meteorological variables, soil conditions and crop growth indica-
tors [12,13]. Several empirical models have been developed over the years to estimate daily
ET0, which can be broadly categorized as temperature-based—such as the Hargreaves–
Samani model [14], radiation-based—such as the Priestley–Taylor (P–T) model and Jensen–
Haise (H–S) model [15,16], and the principles of energy balance and water vapor diffusion-
based Penman–Monteith (PM) equation [11]. Among these empirical models, the PM
equation has a wider range of applications and higher estimation accuracy and is recom-
mended by the Food and Agricultural Organization (FAO) for daily ET0 estimation in
various regions [10,17–19]. However, its use is restricted in areas where complete meteo-
rological data are unavailable. Although the P–T and H–S models based on temperature
or radiation data can be useful, their estimation accuracy is suboptimal. As a result, it is
essential to develop an ETc estimation model that requires minimal meteorological data
input while still achieving high estimation accuracy.

Recently, with advancements in computer technology and artificial intelligence, ma-
chine learning models have been widely used in ETc estimation owing to their ability to
model complex nonlinear relationships. For example, Saggi and Jain [6] developed an en-
semble model consisting of a regularization random forest and hybrid fuzzy–genetic model
to estimate ETc for maize and wheat, with the results demonstrating superior performance
of the ensemble model. In another study by Yamaç [20], the performance of four machine
learning models, namely support vector machine (SVM), k-nearest neighbor, random forest
(RF) and adaptive boosting models, was compared for sugar beet evapotranspiration esti-
mation under different weather data input conditions. The results demonstrated that the
SVM model outperformed the other three models in various conditions. Han, et al. [21] ap-
plied the back-propagation neural network (BPNN) model for the ETc of wheat, maize and
soybean prediction. The BPNN model was verified using eddy correlation measurement of
ETc, and the results of the BPNN model were found to be satisfactory.

The selection of meteorological input data in these studies was usually determined
empirically or by statistical analysis [20,22–25]. However, the performance of machine
learning models is highly dependent on the input variables. As a novel machine learning
algorithm, RF not only performs regression and classification, but also can be used for
variable selection by examining the importance scores assigned to each input variable [26].
The RF algorithm builds a collection of decision trees and aggregates their predictions to
improve accuracy and reduce overfitting. By ranking the features based on their importance,
RF can help identify the most relevant features for a given task, which can be useful for
reducing the dimensionality of the data and improving model performance. Mohammadi
and Mehdizadeh [27] compared the accuracy of SVM models that were built with four
different data pre-processing methods, including RF, relief, Pearson’s correlation and
principal component analysis, in a simulation study of daily ET0. The results showed
that the prediction accuracy of the model established with meteorological input variables
determined by the RF method is higher than that of the other three methods. In another
study, Pinos, et al. [28] used the RF method to determine the most important variables of
ET0 as input to the artificial neural network (ANN) model and found that selecting the
input variables on the basis of quantification not only reduced the complexity of the model,
but also improved its accuracy.

Moreover, the selection of hyperparameters in machine learning models has a sig-
nificant impact on their accuracy and efficiency. Hyperparameters are settings that are
manually adjusted in a machine learning model before it starts learning from data. For
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example, one hyperparameter called the “learning rate” determines how quickly the model
should adjust its settings during training. Another hyperparameter called the “regu-
larization coefficient” determines how much importance should be given to preventing
overfitting. By tuning these hyperparameters, researchers can make their models work
better and more effectively. Traditional methods for hyperparameter selection, such as the
gradient descent algorithm and grid search algorithm, can be complex and may easily result
in local convergence. In recent years, bio-inspired algorithms have gained popularity in the
optimization of machine learning models due to their exceptional computational efficiency
and ability to find global optimal solutions. Petković, et al. [29] utilized the radial basis
function neural network model, which is a type of ANN model, to predict daily ET0 and
optimized the model using particle swarm optimization (PSO). Their results demonstrated
that the optimized model outperformed the standalone SVM model in terms of prediction
accuracy. Wu, et al. [30] optimized the extreme learning machine (ELM) model for estimat-
ing daily ET0 in various climatic regions of China, using three bio-inspired optimization
algorithms, including genetic algorithm (GA), PSO and artificial bee colony (ABC) algo-
rithms. The results demonstrated the effectiveness of bio-inspired heuristic optimization
algorithms, particularly the PSO algorithm, in optimizing machine learning models for
hydrological applications. In another study, Zhang, et al. [31] used the PSO algorithm to
optimize a BPNN model for the prediction of total daily solar radiation and found that
the accuracy of the model was significantly enhanced. We also found several other studies
that used PSO to optimize machine learning models for other applications, such as flood
forecasting, water quality modeling and materials science and engineering [32–34]. These
studies further highlight the potential of PSO as a powerful optimization technique for
improving the performance of machine learning models in various applications.

A classical machine learning model, support vector regression (SVR), has been im-
plemented in meteorological hydrology owing to its outstanding computational speed
and accurate regression prediction for complex high-dimensional data. However, the
performance of the radial basis function (RBF) kernel-based SVR model is limited by the
optimal choice of input variables and hyperparameters, including regularization coefficient
(C) and radial basis function (RBF) parameters, which are represented by γ and ε. [35].
Thus, developing an improved SVR model is crucial to obtain optimal results [29]. PSO is a
well-established algorithm for model optimization, while RF has been proven effective in
selecting the most relevant input variables for machine learning models in various fields.
As such, based on spring maize ETc calculated by the FAO method using complete meteo-
rological data and empirical values of Kc, we established a hybrid RF–SVR–PSO model and
compared it with a standalone SVR model, RF model and BPNN model in order to verify
the optimization effect of PSO and RF and the estimation accuracy of the hybrid model. The
main purposes of this study were to: (1) apply a hybrid RF–SVR–PSO model to estimate
the daily ETc of spring maize, (2) compare the estimation performance of the hybrid model
with the standalone SVR, BPNN and RF models under the input parameters determined by
the RF method, (3) recommend the optimal ETc estimation model and meteorological input
variables for spring maize in the semi-arid region of Northeast China.

2. Materials and Methods
2.1. Experimental Site and Data Source

The field experiment data were collected in Fumeng County of Northeast China
from the spring maize growing seasons between 2017 and 2019. This area, located at
40◦41′–42◦56′ N, 121◦01′–122◦56′ E, is known for being a vital producer of spring maize.
Throughout the spring maize growth period, the average temperature was 20.2 °C, with
169 days of accumulated temperature above 10 °C, and the sunshine time in the growth
period was 1295.8 h (accounting for 45.2% of the total annual sunshine time). This region
is typically semi-arid, experiencing frequent droughts and intense evaporation averaging
over 1900 mm per year. Table 1 illustrates the daily meteorological data for the experimental
site during the spring maize growth stages in 2017–2019.
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Table 1. Daily meteorological data for the experimental site during the spring maize growth periods
from 2017 to 2019.

Years Variables Max Min Average Sd

2017 Tave, °C 30.4 9.6 22.2 4.4
Tmax, °C 40.0 14.9 28.6 4.4
Tmin, °C 26.2 0.0 16.0 5.9
n, h d−1 13.6 0.0 8.2 3.8
RH, % 92.0 18.0 59.2 17.0

U, m s−1 6.6 1.1 2.9 1.2
hP, hPa 1001.8 979.0 989.0 4.4

Precipitation, mm d−1 62.8 9.0 2.0 7.1
2018 Tave, °C 31.2 9.7 21.7 4.7

Tmax, °C 38.1 15.6 27.7 4.4
Tmin, °C 27.6 1.7 16.2 6.1
n, h d−1 13.3 0.1 7.6 3.8
RH, % 94.0 18.0 62.6 17.0

U, m s−1 6.4 0.9 3.2 1.2
hP, hPa 1004.4 977.3 989.6 5.5

Precipitation, mm d−1 48.3 0.0 2.0 6.3
2019 Tave, °C 29.8 13.4 22.0 3.7

Tmax, °C 38.4 19.3 28.0 3.7
Tmin, °C 26.1 3.1 16.6 4.9
n, h d−1 14.0 0.0 6.9 4.3
RH, % 96.0 26.0 69.0 16.6

U, m s−1 6.4 1.2 2.8 1.2
hP, hPa 1004.2 975.8 987.6 5.9

Precipitation, mm d−1 78.3 0.0 4.7 12.4
Note: Max, Min, Average and Sd mean the maximum, minimum, mean and standard deviation of each daily
meteorological variable.

The daily meteorological data are sourced from the National Meteorological Informa-
tion Center of the China Meteorological Administration (https://data.cma.cn (accessed
on 22 August 2022)). The daily meteorological data included average, minimum and
maximum temperature (Tave, Tmin and Tmax, °C), precipitation (mm), wind speed at 2 m
height (U, m s−1), daily duration of sunshine (n, h), average relative humidity (RH, %) and
average vapor pressure (hP, hPa). The Fumeng County meteorological station is a national
ecological and agricultural meteorological observation station. The ground observation is
responsible for 24 h monitoring and automatic uploading of station meteorological data at
10 min intervals to participate in global sharing.

The maize varieties were “Yufeng 303” and “Zhengdan 958”, which were used alter-
nately between years. The maize was planted using both wide and narrow rows, with row
widths of 60 cm and 40 cm, respectively. The planting density was 60 thousand plants
ha−1, and shallowly buried drip irrigation tape was used for sowing via an integrated
machine. The irrigation method employed was shallow buried drip irrigation, with the
embedded drip irrigation tape only laid in the center of the narrow row, approximately
3–5 cm beneath the surface. For further information on the field experiment, please refer to
Wang, et al. [36].

2.2. Maize Crop Evapotranspiration Calculation

The daily ET0 was calculated by the FAO56 Penman–Monteith equation [11]

ET0 =
0.408∆(Rn − G) + γ 900

T + 273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where ET0 is the reference evapotranspiration (mm/d), Rn is the net radiation (MJ m−2 d−1),
G is the soil heat flux density (MJ m−2 d−1), γ is the psychrometric constant, T is the mean

https://data.cma.cn
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air temperature (°C), u2 is the daily wind speed at 2 m height (m s−1), es is the saturation va-
por pressure (kPa), ea is the actual vapor pressure (kPa) and ∆ is the slope of the saturation
vapor pressure–temperature curve (kPa °C−1).

In this study, the computation period was 24 h, the surface was covered by vegetation
and the amount of heat transferred through the soil surface was generally small compared to
Rn. Therefore, the soil heat flux was considered negligible according to the recommendation
of FAO56 [11]. However, it is important to note that under certain conditions, such as
those of bare surfaces or shorter computation periods, the soil heat flux can become more
significant and should be measured or estimated using appropriate methods. According to
the Ångström–Prescott (A–P) formula (Equation (2)), the daily solar radiation (Rs) can be
estimated using extraterrestrial radiation (Ra), the actual daily duration of sunshine (n) and
the maximum possible duration of sunshine (N) [11,37].

Rs

Ra
= a + b

n
N

(2)

N = 24×ωs/π (3)

Ra = (24× 60/π)Gscdr(ωs sin ϕ sin δ + cos ϕ cos δ sin ωs) (4)

dr = 1 + 0.033 cos(2π × J/365) (5)

δ = 0.409 sin(2π × J/365− 1.39) (6)

ωs = arccos(− tan ϕ tan δ) (7)

where a and b are regression constants with FAO56-recommended values of 0.25 and 0.5;
ωs is the sunset hour angle (rad); Gsc is the solar constant with a value of 0.0820 MJ m−2; J
is the day of the year; dr is the inverse relative earth–sun distance; δ is the solar declination
(rad); ϕ is the latitude (rad) [30].

The spring maize ETc was calculated by multiplying ET0 and Kc:

ETc = KcET0 (8)

where ET0 is the reference evapotranspiration (mm d−1) calculated by Equation (1) and Kc
is the crop coefficient.

During the growing seasons of spring maize from 2017 to 2019, the growing stages
were separated into sowing to jointing, jointing to tasseling, tasseling to filling, and filling
to maturity stages, according to the phenological characteristics of spring maize, corre-
sponding to initial, crop development, mid-season, and late-season stages respectively [11].
The meteorological data and crop coefficient values collected during spring maize growing
stages from 2017 to 2018 were used to train the machine learning model, while meteorolog-
ical data and crop coefficient values collected during spring maize growing stages from
2019 were used to test the machine learning model (Table 2). The spring maize Kc values of
initial, mid-season and late-season stages suggested by FAO56 are 0.3, 1.2 and 0.6. The Kc
values of mid-season and late-season stages were adjusted due to the actual conditions of
the experimental site according to the following equations:

Kc−mid = Kc−mid−FAO56 + [0.04(u2 − 2)− 0.004(RHmin − 45)](
h
3
)

0.3
(9)

Kc−end = Kc−end−FAO56 + [0.04(u2 − 2)− 0.004(RHmin − 45)](
h
3
)

0.3
(10)
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where Kc−mid−FAO56 = 1.2 and Kc−end−FAO56 = 0.6 are the mid- and late-season crop coeffi-
cients for spring maize, h is the mean height of the spring maize during the growth stage,
RHmin is the mean value for daily minimum relative humidity (%) during the growth stage,
and u2 is the daily average wind speed (m s−1) at 2 m above ground during the growth
stage from the experiment site [11].

Table 2. The stages of spring maize growing seasons between 2017 and 2019.

Training Period Testing Period

Crop Growth Stages 2017 2018 2019

Initial 1 May–31 May (31 d) 28 April–26 May (29 d) 14 May–10 June (28 d)
Crop development 1 June–20 July (50 d) 27 May–15 July (50 d) 11 June–28 July (48 d)

Mid-season 21 July–1 September (43 d) 16 July–30 August (46 d) 29 July–7 September (41 d)
Late-season 2 September–27 September (26 d) 31 August–4 October (35 d) 8 September–28 September (21 d)

total days (d) 150 160 138

2.3. Support Vector Regression

The support vector machine algorithm proposed by Vapnik [38] is a powerful su-
pervised machine learning model based on mathematical–statistical theory. Building on
Vapnik’s concept, Drucker, et al. [39] further developed the support vector regression (SVR)
technique for solving the regression problem. The SVR model has an advantage in that it is
based on a series of kernel functions that are independent of the dimension of the input
space, allowing for effective modeling of nonlinear relationships in higher-dimensional
feature space [23]. As a result, the SVR model has been widely used in various fields,
including hydrology, agriculture and meteorology, for prediction and estimation. As men-
tioned before, the regression ability of the SVR model depends on the kernel function;
therefore, the choice of the kernel is crucial to the construction of the SVR model, and the
performance of different kernels varies. Some previous studies [40–43] have shown that
the RBF (radial basis function) kernel outperforms other kernels, and it was, thus, used in
this study. The SVR model’s hyperparameters, including C, γ and ε, play a critical role in
determining the trade-off between the model’s accuracy and complexity, ultimately affect-
ing its performance. In this study, the R package “e1071” [44], an open-source software
package, was used to construct the SVR model for the estimation of the spring maize daily
ETc. The details about the mathematical–statistical theory of the SVR model can be found
in the Supplementary Material.

2.4. Particle Swarm Optimization Algorithm

The particle swarm optimization (PSO) algorithm is a stochastic heuristic optimiza-
tion algorithm that simulates the foraging behavior of bird populations, developed by
Kennedy, et al. [45], and is applied to solving function optimization problems. The PSO
algorithm has excellent global search and optimization abilities, and has been widely used
in the parameter optimization of various machine learning models [46]. The PSO algorithm
forms a swarm of particles, where each particle represents a potential solution in the solu-
tion space of the optimization problem [30]. A fitness function is defined to evaluate the
fitness value of each particle, and the PSO algorithm constantly changes the flight direction
and velocity of each particle; then, the algorithm constantly iterates to obtain the optimal
value of the fitness function to search for the optimal solution to the actual problem. In this
study, the PSO algorithm is implemented by using the R package “pso” [47] to optimize
the SVR model. More detailed information about the computation procedure of the PSO
algorithm can be found in the Supplementary Material.

The PSO algorithm can be summarized in the following steps:
Step 1: Define the fitness function and population size n, and randomly initialize the

velocity and position of each particle;
Step 2: Evaluate the fitness value of each particle using the fitness function;
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Step 3: Update the personal best position for each particle based on its own best
fitness value;

Step 4: Update the global best position for all particles;
Step 5: Update the velocity and position for each particle using the personal best and

global best velocity and position;
Step 6: Judge whether the maximum number of iterations has been reached, or if the

fitness value meets the requirements. If so, terminate the iteration and output the result.
Otherwise, return to Step 2.

2.5. Random Forest

The RF model was utilized both to determine the input variables for all machine
learning models and as a standalone regression model to estimate the daily ETc of spring
maize. The random forest (RF) method is a widely used tree-based machine learning
algorithm for constructing classification and regression models [26]. It is an extended
variant of Bagging [48], which employs decision trees as basic learners and introduces
random attribute selection into the training process. The RF model has been applied to
the estimation of ET0 in many studies [23,27,49]. In addition, the RF method possesses
exceptional capability in determining the importance of variables [28]. To ascertain the
importance of input variables, all meteorological variables and crop coefficient values
from the training period were employed as the input training data to construct each
tree. In the tree generation, a random bootstrap sampling of each point of input training
data was conducted, resulting in approximately 37% of the input training data being
excluded from tree generation and classified as out-of-bag (OOB) observations [50]. The RF
model determined the importance of each input variable by measuring the mean decrease
in prediction accuracy when samples of a variable in the OOB dataset were randomly
permuted [51]. In this study, the RF was constructed using the R package “rfPermute” [52].

2.6. Back-Propagation Neural Network

The back-propagation neural network (BPNN) is a multilayer feedforward neural
network that uses the error back-propagation training method to train itself. The algorithm
used for training is known as the BP algorithm, and employs gradient descent techniques
to adjust the connection weights and thresholds of each layer in order to minimize the dif-
ference between the actual and desired output values of the network [53]. Hornik, et al. [54]
proved that the BP neural network is capable of simulating continuous functions of arbi-
trary complexity with just one hidden layer containing enough neurons. In light of this,
R package “neuralnet” [55] was utilized in this study to develop a standalone BP neural
network model for estimating the daily ETc of spring maize, and its estimation accuracy
was compared with the hybrid model.

2.7. Hybrid Model Building

The hybrid model combines random forest, support vector regression and particle
swarm optimization algorithms. The hybrid model consists of three parts, the first part
involves data selection and pre-processing, in which variable importance is ranked using
the random forest method. Subsequently, input data for the SVR model are selected based
on variable importance. To enhance computational efficiency, convergence accuracy and
estimation precision, it was necessary to normalize the input variables of the model due to
their different dimensions. This was achieved by normalizing the variables according to
Equation (11).

X′ =
X− Xmin

Xmax − Xmin
(11)

where Xmin and Xmax are the minimum and maximum of all input variable values; X is the
measured values of all the input variables; X′ is the normalized values of measured values.

The second part involves the model simulation, which begins with initialization
of the hyperparameters of the SVR model, including regulation coefficient (C) and RBF
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parameters γ and ε. Additionally, the optimization accuracy requirement is defined, after
which the model estimates ETc and computes the corresponding error.

If the desired target is not achieved, the model proceeds to the third part, which
involves optimizing the hyperparameters of the SVR model using the PSO algorithm. The
SVR hyperparameters with the highest fitness are returned, thereby achieving the objective
of optimizing the SVR model and improving the accuracy of ETc estimation. R version
4.1.1 [56] was used to build and implement crop evapotranspiration estimation models,
and the structure of the hybrid RF–SVR–PSO model is illustrated in Figure 1.
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RMSE =
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n

∣∣∣∣ (13)

R2 =

[
∑n

i=1
(
Oi −Oi

)(
Pi − Pi

)]2
∑n

i=1
(
Oi −Oi

)2
∑n

i=1
(

Pi − Pi
)2 (14)

NSE = 1− ∑n
i=1(Oi − Pi)

2

∑n
i=1
(
Oi −Oi

)2 (15)
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where n is the sample number, Oi denotes the observed values and Pi denotes the estimated
values. Oi and Pi are the mean values of the observed and estimated values.

3. Results
3.1. The Variables for Determining Crop Evapotranspiration

To identify the principal variables affecting ETc, we fitted the model using all nine
variables, including eight meteorological variables and Kc, based on RF analysis. The rank-
ing of importance of the variables showed that Kc had the greatest impact on ETc, reaching
95.23%, followed by n, Tave, RH, Tmax, Tmin, U, hP and Precipitation (Figure 2). This result
shows that the most important factors affecting ETc, in addition to crop coefficients, are
sunshine hours, temperature, and relative humidity, which is similar to what was found
in the study conducted by Pinos, Chacón and Feyen [28]. Therefore, we added Kc to all
machine learning models. We then added the three, four and five variables with the highest
importance outside of Kc as input variables to the machine learning model.

Water 2023, 15, x FOR PEER REVIEW 10 of 22 
 

 

 
Figure 2. Plot of variable importance ranking, where variable importance is expressed as the per-
centage increase in mean squared error (%IncMSE). Each value represents the increase in prediction 
error of the same model after a variable is omitted. 

The stages of the spring maize growing seasons from 2017 to 2019 are shown in Table 
2. The growth stages of spring maize were 150 d in 2017, 160 d in 2018 and 138 d in 2019. 
The lengths of the four major growth stages (initial stage, crop development stage, mid-
season stage and late-season stage) were 31, 50, 43 and 26 d in 2017; 29, 50, 46 and 35 d in 
2018; and 28, 48, 41 and 21 d in 2019. The values of 𝐾ିௗ and 𝐾ିௗ needed to be cali-
brated by the actual crop height 𝑅𝐻 and 𝑢ଶ in mid- and late-season crop growth con-
ditions and climatic conditions. The mid- and late-season crop growth stages’ heights 
were the 3-year average heights of 2.3 m and 2.8 m, respectively. The calibrated 𝐾ିௗ 
and 𝐾ିௗ values according to Equations 9 and 10 were 1.19 and 0.6 in 2017; 1.22 and 
0.65 in 2018; and 1.14 and 0.63 in 2019, close to the maize crop coefficients recommended 
by Ji, et al. [58]. 

3.2. Performance Assessment 
Table 3 presents the performance metrics of the four machine learning models, in-

cluding the hybrid RF–SVR–PSO model and the three standalone models, evaluated for 
different input variable combinations determined by the RF method during both training 
and testing periods. During the training and testing periods, all machine learning models 
were able to produce accurate estimates of spring maize daily ETc with NSE, RMSE, MAE 
and R2 ranging from 0.858–0.986, 0.206–0.508 mm d−1, 0.152–0.426 mm d−1 and 0.915–0.989, 
respectively. 

Comparing the performance indexes of the three standalone machine learning mod-
els in the test period, the SVR model outperforms the BPNN and RF models in terms of 
RMSE, MAE and NSE, with the R2 being slightly smaller than that of the BPNN model for 
four and five input variables, but significantly higher than that of the RF model. The RF 
model performed the poorest, with R2, RMSE, MAE and NSE ranging from 0.915–0.939, 
0.434–0.508 mm d−1, 0.369–0.409 mm d−1 and 0.858–0.897, respectively. The SVR model 
performed best when the input variables were Kc, Tave, Tmin, n and RH, with R2, RMSE, 
MAE and NSE values of 0.957, 0.320 mm d−1, 0.263 mm d−1 and 0.944. 

Figure 2. Plot of variable importance ranking, where variable importance is expressed as the percent-
age increase in mean squared error (%IncMSE). Each value represents the increase in prediction error
of the same model after a variable is omitted.

The stages of the spring maize growing seasons from 2017 to 2019 are shown in Table 2.
The growth stages of spring maize were 150 d in 2017, 160 d in 2018 and 138 d in 2019. The
lengths of the four major growth stages (initial stage, crop development stage, mid-season
stage and late-season stage) were 31, 50, 43 and 26 d in 2017; 29, 50, 46 and 35 d in 2018;
and 28, 48, 41 and 21 d in 2019. The values of Kc−mid and Kc−end needed to be calibrated
by the actual crop height RHmin and u2 in mid- and late-season crop growth conditions
and climatic conditions. The mid- and late-season crop growth stages’ heights were the
3-year average heights of 2.3 m and 2.8 m, respectively. The calibrated Kc−mid and Kc−end
values according to Equations 9 and 10 were 1.19 and 0.6 in 2017; 1.22 and 0.65 in 2018; and
1.14 and 0.63 in 2019, close to the maize crop coefficients recommended by Ji, et al. [58].

3.2. Performance Assessment

Table 3 presents the performance metrics of the four machine learning models, in-
cluding the hybrid RF–SVR–PSO model and the three standalone models, evaluated for
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different input variable combinations determined by the RF method during both training
and testing periods. During the training and testing periods, all machine learning models
were able to produce accurate estimates of spring maize daily ETc with NSE, RMSE, MAE
and R2 ranging from 0.858–0.986, 0.206–0.508 mm d−1, 0.152–0.426 mm d−1 and 0.915–0.989,
respectively.

Table 3. Statistical performance of hybrid RF–SVR–PSO model, standalone SVR model, BPNN model
and RF model with three different variables input for training and testing periods.

Input/Model

Training Periods Testing Periods

R2 RMSE
(mm d−1)

MAE
(mm d−1) NSE R2 RMSE

(mm d−1)
MAE

(mm d−1) NSE

Kc, Tave, n, RH
RF–PSO–SVR 0.970 0.396 0.329 0.949 0.957 0.282 0.231 0.956

SVR 0.979 0.252 0.194 0.979 0.948 0.365 0.289 0.927
BPNN 0.976 0.271 0.211 0.976 0.943 0.418 0.333 0.904

RF 0.989 0.234 0.169 0.983 0.939 0.434 0.369 0.897
Kc, Tave, Tmax, n, RH

RF–PSO–SVR 0.970 0.366 0.297 0.956 0.959 0.278 0.225 0.958
SVR 0.985 0.216 0.165 0.985 0.957 0.320 0.263 0.944

BPNN 0.984 0.221 0.169 0.984 0.960 0.341 0.277 0.936
RF 0.988 0.238 0.177 0.982 0.915 0.508 0.426 0.858

Kc, Tave, Tmax, Tmin, n, RH
RF–PSO–SVR 0.965 0.388 0.319 0.951 0.961 0.275 0.221 0.958

SVR 0.986 0.210 0.162 0.986 0.948 0.340 0.281 0.936
BPNN 0.986 0.209 0.158 0.986 0.955 0.341 0.279 0.936

RF 0.988 0.206 0.152 0.982 0.918 0.486 0.409 0.870

Comparing the performance indexes of the three standalone machine learning models
in the test period, the SVR model outperforms the BPNN and RF models in terms of
RMSE, MAE and NSE, with the R2 being slightly smaller than that of the BPNN model for
four and five input variables, but significantly higher than that of the RF model. The RF
model performed the poorest, with R2, RMSE, MAE and NSE ranging from 0.915–0.939,
0.434–0.508 mm d−1, 0.369–0.409 mm d−1 and 0.858–0.897, respectively. The SVR model
performed best when the input variables were Kc, Tave, Tmin, n and RH, with R2, RMSE,
MAE and NSE values of 0.957, 0.320 mm d−1, 0.263 mm d−1 and 0.944.

Considering the need for optimization, we used the PSO algorithm to optimize the
SVR model and enhance the accuracy of the models and subsequently established the
RF–SVR–PSO hybrid model accordingly. For the hybrid model, we set the parameters of
the PSO algorithm as follows: maximum number of iterations: 50, swarm size: 20, toler-
ance error: 0.01, inertia weights: 0.8, learning factor: 1.2. The initial particle velocity and
position were randomly assigned values between intervals [0.01,0.01,0.1] and [0.1,0.5,8],
representing the values of hyperparameters γ, ε and C of SVR model, respectively. Table 3
presents the performance metric values of the hybrid model for estimating spring maize
evapotranspiration during the test period. The hybrid RF–SVR–PSO model provided better
estimates of spring maize daily ETc for all three combinations of input variables com-
pared to the standalone SVR model, with R2, RMSE, MAE and NSE values of 0.957–0.961,
0.275–0.282 mm d−1, 0.221–0.231 mm d−1 and 0.956–0.958, respectively. As the number of
input variables increased, the model performance and the accuracy of estimated ETc values
was only slightly improved.

For the test period, taking the ETc values using the PM–FAO equation as the target
values, estimated ETc values of the RF–PSO–SVR model, SVR model, BPNN model and
RF model under different combinations of input variables were compared in the form of
scatter and hydrograph plots, as shown in Figures 3–8. The scatter plots clearly depict that
the scatter distribution of the hybrid RF–SVR–PSO model are more evenly concentrated on
the ideal line (i.e., 1:1 line) than the other three standalone models, and the fit of the hybrid
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RF–SVR–PSO model improves slightly as the number of input variables increase. It was
also evident from the scatter plot that the trend lines for the three independent models were
generally above or below the ideal line (i.e., 1:1 line), with varying degrees of overestimation
or underestimation of the ETc estimates compared to the FAO–PM calculations. Compared
with the calculated value of FAO–PM, ETc estimates of the three standalone models are
overestimated or underestimated to vary degrees. Further, the accuracy of the standalone
models decreased when the input variables were Kc, Tave, Tmax, Tmin, n and RH. As shown
in the hydrograph plots, the hybrid RF–PSO–SVR model outperformed the standalone
models, both in capturing the peaks and in terms of the overall individual values estimated.
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4. Discussion

In this study, was found that, taking RMSE, MAE and NSE as the performance evalua-
tion indexes of the model, the daily ETc estimation accuracy of the standalone SVR model
was higher than that of the standalone BPNN and RF models. The study demonstrated
the superiority of the SVR model in handling the complex nonlinear relationship between
ETc and meteorological variables, and its high accuracy and computational efficiency in
estimating ETc [22,27,37].

The performance of machine learning models can be improved using bio-inspired
optimization algorithms. Many studies have shown that optimization algorithms can effec-
tively enhance the performance of machine learning models. For instance, Zhu, et al. [59]
proposed a hybrid PSO–ELM model to estimate daily ET0, which showed a 13% lower
RMSE than the standalone ELM model. Jia, et al. [60] used the sparrow search algorithm
(SSA) to optimize the ELM model, resulting in a significant improvement in the model’s
performance. Wen and Yuan [61] optimized the BPNN model for CO2 emissions forecasting
using the PSO algorithm, and the results indicated a positive effect on optimization. Given
the simplicity of the PSO algorithm and its good optimization results, this study utilized
the PSO algorithm to determine and optimize the hyperparameters (C, γ and ε) of the SVR
model, resulting in the development of a hybrid RF–SVR–PSO model for spring maize
daily ETc estimation. The RMSE and MAE of the hybrid RF–SVR–PSO model computed
with three different meteorological input variables decreased by 13.2% to 22.8% and 14.6%
to 21.2%, and NSE improved by 1.5% to 3.1% compared to the standalone SVR model
(testing period). While it may seem that all machine learning models perform well, the
PSO algorithm led to substantial improvements in the accuracy of ETc estimates compared
to the standalone machine learning models. Specifically, the PSO algorithm significantly
reduced the overestimation and underestimation of ETc estimates by standalone machine
learning models, which is critical for guiding actual maize production practices. Spring
maize is particularly sensitive to water stress, and when the model underestimates ETc, the
recommended irrigation amount may be lower than the amount of water required for maize
production, resulting in reduced maize yields and affecting food security. Conversely, if
the model overestimates ETc, the recommended irrigation amount may be higher than the
amount of water required for maize production, resulting in wasted water and reduced
water productivity.

The choice of appropriate meteorological input variables for ML models plays a crucial
role in the accuracy of estimating spring maize daily ETc [25]. The selection of suitable
inputs for the ML models can effectively improve the accuracy of the results. This study
used the RF method as a data pre-processing method to determine the importance of the
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meteorological input variables and to identify suitable inputs for the ML model. The RF
method ranked the importance of estimating spring maize daily ETc variables in the study
area. By taking the top four, five and six variables of highest importance as the input
of the ML models, we determined the optimal input of the model. With an increase in
the number of input meteorological variables, the accuracy of the hybrid RF–SVR–PSO
model in estimating the spring maize daily ETc was only slightly improved. Although the
accuracy of the hybrid RF–SVR–PSO model improved only slightly with an increase in
the number of input variables, considering the computational efficiency and estimation
accuracy, the input variables Kc, n, Tave and RH were determined as the best combination
for the hybrid RF–SVR–PSO model, with R2, RMSE, MAE and NSE values of 0.957, 0.282,
0.231 and 0.956, respectively.

The results of the proposed hybrid RF–SVR–PSO model’s performance indices for
estimating ETc were compared with those of other approaches and are presented in Table 4
for the testing period. Jia et al. [60] proposed a hybrid SSA–ELM model using Tmax,
Tmin, n, maize leaf area index (GLAI) and plant height (h) as the input variables to esti-
mate the spring maize ETc, and obtained RMSE, MAE and R2 values of 0.433 mm d−1,
0.342 mm day−1 and 0.895, respectively. In a study conducted by Yamaç [20], RMSE, MAE
and R2 values were reported for the adaptive boosting (AB) and SVM models using Kc,
Tmax, Tmin, RH and U as the input variables as 0.954 mm day−1, 0.688 mm day−1 and 0.856,
and 0.699 mm day−1, 0.557 mm day−1 and 0.923, respectively. Thus, it can be seen that the
hybrid RF–SVR–PSO has a high accuracy for spring maize ETc estimation. Furthermore,
the hybrid model can be used in semi-arid regions as an alternative to the widely used
FAO56-recommended approach, the PM equation, to obtain satisfactory ETc estimation.
However, as a machine learning model, the hybrid RF–SVR–PSO operates as a black box,
and its parameters must be re-determined for use in different locations with varying meteo-
rological conditions. Additionally, in areas where eddy covariance or lysimeter data are
obtainable, utilizing such measurement data as the reference could avoid the “double bias”
caused by using FAO–PM approach as a reference.

Table 4. Performance indices for ETc estimation using the hybrid model and different approaches.

Model Input

Performance Indicator

ReferenceRMSE
(mm day−1)

MAE
(mm day−1) R2

RF–SVR–PSO Kc, Tave, n, RH 0.282 0.231 0.957
SSA–ELM Tmax, Tmin, n, GLAI, h 0.433 0.342 0.895 Jia et al. [60]

AB Kc, Tmax, Tmin, RH, U 0.954 0.688 0.856 Yamaç [20]
SVM Kc, Tmax, Tmin, RH, U 0.699 0.557 0.923 Yamaç [20]

The proposed novel hybrid RF–SVR–PSO model can provide systematic support for
spring maize ETc estimation and irrigation management in semi-arid regions. In this study,
the training and testing datasets were divided only by a simple hold-out method, which
may result in a reduced generalization ability. Therefore, in the forthcoming study, the
hybrid RF–SVR–PSO model can be combined with the K-fold cross-validation method to
improve the estimation accuracy, generalization and robustness of the model.

5. Conclusions

In the hybrid model proposed in this paper, the RF model was used to rank the
importance of variables, and determine the input variables of the hybrid model, and the PSO
algorithm was used to enhance the estimation performance of crop daily evapotranspiration
of the SVR model. The performance of the hybrid RF–SVR–PSO model was compared with
three standalone models (including the SVR model, BPNN model and RF model) using
four evaluation indicators, namely R2, RMSE, MAE and NSE. The results demonstrated
that, using the same input variables, the estimation accuracy of the spring maize daily ETc
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of RF–SVR–PSO model was better than that of the standalone models. The RF–SVR–PSO
model with Kc, Tave, n and RH as the input variables can be utilized to estimate spring
maize daily ETc and provide a precise and accurate basis for agricultural water resource
management and decision making. This conclusion can promote the development of water-
saving agriculture and efficient utilization of agricultural water in arid and semi-arid areas
of Northeast China, and it is also valuable for regions with different climatic conditions.
In future studies, the model will be used in regions with different climatic conditions to
improve its effectiveness at different stations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15081503/s1. Detailed mathematical theoretical derivation of
the SVR model and the PSO algorithm can be found in the supplementary material.
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