Sodium Alginate-Based Composite Films for Effective Removal of Congo Red and Coralene Dark Red 2B Dyes: Kinetic, Isotherm and Thermodynamic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Alg and Cs Film Solutions and Formation of Alg/Cs Films
2.2.1. Preparation of Alg Film
2.2.2. Preparation of Cs Film
2.2.3. Preparation of the Alg/Cs Films
2.3. Characterization Techniques
2.3.1. Fourier-Transform Infrared Spectrometry (FTIR)
2.3.2. Scanning Electron Microscopy (SEM)
2.3.3. Differential Scanning Calorimetry (DSC)/Thermal Gravimetric Analysis (TGA)
2.3.4. Surface Zeta Potential
2.3.5. Point of Zero Charge pHpzc
2.4. Swelling Study
2.5. Preparation and Analysis of the CR and DR Dyes
2.6. Adsorption Experiments
2.7. Different Models and Equations Used in Data Analysis
3. Results and Discussion
3.1. Characterization of Alg/Cs Biofilms
3.1.1. FTIR Spectra
3.1.2. SEM Analysis of the Alg/Cs Biofilms
3.1.3. DSC (Differential Scanning Calorimetry)/ATG (Thermal Gravimetric Analysis)
3.2. Swelling Behavior of Alg/Cs Biofilms
3.3. Adsorption Tests
3.3.1. Effect of Contact Time
3.3.2. Effect of pH
3.3.3. Effect of Initial Concentration
3.3.4. Effect of Thickness
3.3.5. Adsorption Isotherms and Kinetic Studies
3.3.6. Effect of Temperature and Thermodynamic Study
3.4. Adsorption Mechanism
3.5. Correlation between the Swelling Behavior and Adsorption Process at Different pH
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mia, R.; Selim, M.D.; Shamim, A.M.; Chowdhury, M.; Sultana, S.; Armin, M.; Hossain, M.; Akter, R.; Dey, S.; Naznin, H. Review on various types of pollution problem in textile dyeing & printing industries of Bangladesh and recommandation for mitigation. J. Text. Eng. Fash. Technol. 2019, 5, 62–65. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, J.; Zhou, Y.; Liu, Y. Recent advances for dyes removal using novel adsorbents: A review. Environ. Pollut. 2019, 252, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Samsami, S.; Mohamadizaniani, M.; Sarrafzadeh, M.-H.; Rene, E.R.; Firoozbahr, M. Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Process. Saf. Environ. Prot. 2020, 143, 138–163. [Google Scholar] [CrossRef]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Bharathi, K.S.; Ramesh, S.T. Removal of dyes using agricultural waste as low-cost adsorbents: A review. Appl. Water Sci. 2013, 3, 773–790. [Google Scholar] [CrossRef]
- Deng, L.; Shi, Z.; Peng, X.; Zhou, S. Magnetic calcinated cobalt ferrite/magnesium aluminum hydrotalcite composite for enhanced adsorption of methyl orange. J. Alloys Compd. 2016, 688, 101–112. [Google Scholar] [CrossRef]
- Nazir, M.A.; Najam, T.; Zarin, K.; Shahzad, K.; Javed, M.S.; Jamshaid, M.; Bashir, M.A.; Shah, S.S.A.; Rehman, A.U. Enhanced adsorption removal of methyl orange from water by porous bimetallic Ni/Co MOF composite: A systematic study of adsorption kinetics. Int. J. Environ. Anal. Chem. 2021, 1–16. [Google Scholar] [CrossRef]
- Nazir, M.A.; Najam, T.; Shahzad, K.; Wattoo, M.A.; Hussain, T.; Tufail, M.K.; Shah, S.S.A.; Rehman, A.U. Heterointerface engineering of water stable ZIF-8@ ZIF-67: Adsorption of rhodamine B from water. Surf. Interfaces 2022, 34, 102324. [Google Scholar] [CrossRef]
- Haounati, R.; Alakhras, F.; Ouachtak, H.; Saleh, T.A.; Al-Mazaideh, G.; Alhajri, E.; Jada, A.; Hafid, N.; Addi, A.A. Synthesized of Zeolite@Ag2O Nanocomposite as Superb Stability Photocatalysis Toward Hazardous Rhodamine B Dye from Water. Arab. J. Sci. Eng. 2023, 48, 169–179. [Google Scholar] [CrossRef]
- Ouachtak, H.; El Guerdaoui, A.; El Haouti, R.; Haounati, R.; Ighnih, H.; Toubi, Y.; Alakhras, F.; Rehman, R.; Hafid, N.; Addi, A.A.; et al. Combined molecular dynamics simulations and experimental studies of the removal of cationic dyes on the eco-friendly adsorbent of activated carbon decorated montmorillonite Mt@AC. RSC Adv. 2023, 13, 5027–5044. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Gupta, B.; Srivastava, S.K.; Gupta, A.K. Recent advances on the removal of dyes from wastewater using various adsorbents: A critical review. Mater. Adv. 2021, 2, 4497–4531. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Banu, H.A.T.; Meenakshi, S. Synthesis and characterization of metal loaded chitosan-alginate biopolymeric hybrid beads for the efficient removal of phosphate and nitrate ions from aqueous solution. Int. J. Biol. Macromol. 2019, 130, 407–418. [Google Scholar] [CrossRef]
- de Moraes, M.A.; Cocenza, D.S.; Vasconcellos, F.D.C.; Fraceto, L.; Beppu, M.M. Chitosan and alginate biopolymer membranes for remediation of contaminated water with herbicides. J. Environ. Manag. 2013, 131, 222–227. [Google Scholar] [CrossRef]
- Javadian, H.; Ruiz, M.; Saleh, T.A.; Sastre, A.M. Ca-alginate/carboxymethyl chitosan/Ni0.2Zn0.2Fe2.6O4 magnetic bionanocomposite: Synthesis, characterization and application for single adsorption of Nd+3, Tb+3, and Dy+3 rare earth elements from aqueous media. J. Mol. Liq. 2020, 306, 112760. [Google Scholar] [CrossRef]
- da Costa, T.B.; da Silva, M.G.C.; Vieira, M.G.A. Crosslinked alginate/sericin particles for bioadsorption of ytterbium: Equilibrium, thermodynamic and regeneration studies. Int. J. Biol. Macromol. 2020, 165, 1911–1923. [Google Scholar] [CrossRef]
- Bhuvaneshwari, S.; Sruthi, D.; Sivasubramanian, V. Development and characterization of chitosan film. Int. J. Eng. Res. Appl. 2011, 1, 8. [Google Scholar]
- Zhao, X.; Wang, X.; Lou, T. Preparation of fibrous chitosan/sodium alginate composite foams for the adsorption of cationic and anionic dyes. J. Hazard. Mater. 2020, 403, 124054. [Google Scholar] [CrossRef]
- Singh, A.; Goyal, V.; Singh, J.; Rawat, M. Structural, morphological, optical and photocatalytic properties of green synthesized TiO2 NPs. Curr. Res. Green Sustain. Chem. 2020, 3, 100033. [Google Scholar] [CrossRef]
- Córdoba, L.J.P.; Sobral, P.J. Physical and antioxidant properties of films based on gelatin, gelatin-chitosan or gelatin-sodium caseinate blends loaded with nanoemulsified active compounds. J. Food Eng. 2017, 213, 47–53. [Google Scholar] [CrossRef]
- Nordine, N.; El Bahri, Z.; Sehil, H.; Fertout, R.I.; Rais, Z.; Bengharez, Z. Lead removal kinetics from synthetic effluents using Algerian pine, beech and fir sawdust’s: Optimization and adsorption mechanism. Appl. Water Sci. 2016, 6, 349–358. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption kinetic models: Physical meanings, applications, and solving methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Li, K.; Zhu, J.; Guan, G.; Wu, H. Preparation of chitosan-sodium alginate films through layer-by-layer assembly and ferulic acid crosslinking: Film properties, characterization, and formation mechanism. Int. J. Biol. Macromol. 2019, 122, 485–492. [Google Scholar] [CrossRef]
- Boudouaia, N.; Bengharez, Z.; Jellali, S. Preparation and characterization of chitosan extracted from shrimp shells waste and chitosan film: Application for Eriochrome black T removal from aqueous solutions. Appl. Water Sci. 2019, 9, 91. [Google Scholar] [CrossRef]
- Gazori, T.; Khoshayand, M.R.; Azizi, E.; Yazdizade, P.; Nomani, A.; Haririan, I. Evaluation of Alginate/Chitosan nanoparticles as antisense delivery vector: Formulation, optimization and in vitro characterization. Carbohydr. Polym. 2009, 77, 599–606. [Google Scholar] [CrossRef]
- Hoang, T.; Ramadass, K.; Loc, T.T.; Mai, T.T.; Giang, L.D.; Thang, V.V.; Tuan, T.M.; Chinh, N.T. Novel Drug Delivery System Based on Ginsenoside Rb1 Loaded to Chitosan/Alginate Nanocomposite Films. J. Nanosci. Nanotechnol. 2019, 19, 3293–3300. [Google Scholar] [CrossRef]
- Elanchezhiyan, S.S.D.; Sivasurian, N.; Meenakshi, S. Efficacy of La3+entrapped chito- san bio-polymeric matrix for the recovery of oil from oil-in-water emulsion. J. Appl. Polym. Sci. 2016, 133, 43218–43231. [Google Scholar] [CrossRef]
- Bibi, A.; Rehman, S.-U.; Faiz, R.; Akhtar, T.; Nawaz, M.; Bibi, S. Effect of surfactants on swelling capacity and kinetics of alginate-chitosan/CNTs hydrogel. Mater. Res. Express 2019, 6, 085065. [Google Scholar] [CrossRef]
- Li, C.; Xu, L.; Zhai, M.; Peng, J.; Li, J. Overshooting effect of poly(dimethylaminoethyl methacrylate) hydrogels. J. Appl. Polym. Sci. 2011, 120, 2027–2033. [Google Scholar] [CrossRef]
- Yin, Y.; Ji, X.; Dong, H.; Ying, Y.; Zheng, H. Study of the swelling dynamics with overshooting effect of hydrogels based on sodium alginate-g-acrylic acid. Carbohydr. Polym. 2008, 71, 682–689. [Google Scholar] [CrossRef]
- Alsamman, M.T.; Sánchez, J. Chitosan- and Alginate-Based Hydrogels for the Adsorption of Anionic and Cationic Dyes from Water. Polymers 2022, 14, 1498. [Google Scholar] [CrossRef]
- Chen, T.; Liu, H.; Gao, J.; Hu, G.; Zhao, Y.; Tang, X.; Han, X. Efficient Removal of Methylene Blue by Bio-Based Sodium Alginate/Lignin Composite Hydrogel Beads. Polymers 2022, 14, 2917. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.A.; Ragab, A.H.; Habila, M.A.; Alomar, T.S.; Aljuhani, E.H. Equilibrium and Kinetic Study of Anionic and Cationic Pollutants Remediation by Limestone–Chitosan–Alginate Nanocomposite from Aqueous Solution. Molecules 2021, 26, 2586. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, H.N.; Mahmood, Z.; Kausar, A.; Yakout, S.M.; Shair, O.H.; Iqbal, M. Biocomposites of polypyrrole, polyaniline and sodium alginate with cellulosic biomass: Adsorption-desorption, kinetics and thermodynamic studies for the removal of 2,4-dichlorophenol. Int. J. Biol. Macromol. 2020, 153, 146–157. [Google Scholar] [CrossRef]
- Omraei, M.; Esfandian, H.; Katal, R.; Ghorbani, M. Study of the removal of Zn(II) from aqueous solution using polypyrrole nanocomposite. Desalination 2011, 271, 248–256. [Google Scholar] [CrossRef]
- Ahmed, M.; Khafagy, R.M.; Bishay, S.T.; Saleh, N. Effective dye removal and water purification using the electric and magnetic Zn0.5Co0.5Al0.5Fe1.46La0.04O4/polymer core–shell nanocomposites. J. Alloys Compd. 2013, 578, 121–131. [Google Scholar] [CrossRef]
- Saikia, M.D.; Dutta, N. Adsorption affinity of certain biomolecules onto polymeric resins: Effect of solute chemical nature. React. Funct. Polym. 2008, 68, 33–38. [Google Scholar] [CrossRef]
- Korzhikov-Vlakh, V.; Krylova, M.; Sinitsyna, E.; Ivankova, E.; Averianov, I.; Tennikova, T.B. Hydrogel Layers on the Surface of Polyester-Based Materials for Improvement of Their Biointeractions and Controlled Release of Proteins. Polymers 2016, 8, 418. [Google Scholar] [CrossRef]
- Shaban, M.; Abukhadra, M.R.; Khan, A.A.P.; Jibali, B.M. Removal of Congo red, methylene blue and Cr(VI) ions from water using natural serpentine. J. Taiwan Inst. Chem. Eng. 2018, 82, 102–116. [Google Scholar] [CrossRef]
- Kataria, N.; Garg, V. Removal of Congo red and Brilliant green dyes from aqueous solution using flower shaped ZnO nanoparticles. J. Environ. Chem. Eng. 2017, 5, 5420–5428. [Google Scholar] [CrossRef]
- Radoor, S.; Karayil, J.; Parameswaranpillai, J.; Siengchin, S. Removal of anionic dye Congo red from aqueous environment using polyvinyl alcohol/sodium alginate/ZSM-5 zeolite membrane. Sci. Rep. 2020, 10, 15452. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Li, R.; Miao, P.; Gao, J.; Hu, G.; Zhao, Y.; Chen, T. Design, Synthesis and Adsorption Evaluation of Bio-Based Lignin/Chitosan Beads for Congo Red Removal. Materials 2022, 15, 2310. [Google Scholar] [CrossRef] [PubMed]
- Munagapati, V.S.; Kim, D.-S. Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite. Ecotoxicol. Environ. Saf. 2017, 141, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Zhu, H.-Y.; Fu, Y.-Q.; Jiang, S.-T.; Zong, E.-M.; Zhu, J.-Q.; Zhu, Y.-Y.; Chen, L.-F. Colloidal CdS sensitized nano-ZnO/chitosan hydrogel with fast and efficient photocatalytic removal of congo red under solar light irradiation. Int. J. Biol. Macromol. 2021, 174, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, M.; Sadaf, S.; Bhatti, H.N.; Rehmat, S.; Kausar, A.; Alissa, S.A.; Iqbal, M. Sodium alginate and polypyrrole composites with algal dead biomass for the adsorption of Congo red dye: Kinetics, thermodynamics and desorption studies. Surf. Interfaces 2021, 25, 101183. [Google Scholar] [CrossRef]
- Al-Harby, N.F.; Albahly, E.F.; Mohamed, N.A. Kinetics, Isotherm and Thermodynamic Studies for Efficient Adsorption of Congo Red Dye from Aqueous Solution onto Novel Cyanoguanidine-Modified Chitosan Adsorbent. Polymers 2021, 13, 4446. [Google Scholar] [CrossRef]
- Xu, G.; Zhu, Y.; Wang, X.; Wang, S.; Cheng, T.; Ping, R.; Cao, J.; Lv, K. Novel chitosan and Laponite based nanocomposite for fast removal of Cd(II), methylene blue and Congo red from aqueous solution. E Polym. 2019, 19, 244–256. [Google Scholar] [CrossRef]
- Shi, C.; Lv, C.; Wu, L.; Hou, X. Porous chitosan/hydroxyapatite composite membrane for dyes static and dynamic removal from aqueous solution. J. Hazard. Mater. 2017, 338, 241–249. [Google Scholar] [CrossRef]
- Saraydın, D.; Işıkver, Y.; Karadağ, E. A Study on the Correlation Between Adsorption and Swelling for Poly(Hydroxamic Acid) Hydrogels-Triarylmethane Dyes Systems. J. Polym. Environ. 2018, 26, 3924–3936. [Google Scholar] [CrossRef]
- Hu, X.-S.; Liang, R.; Sun, G. Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution. J. Mater. Chem. A 2018, 6, 17612–17624. [Google Scholar] [CrossRef]
Models | Type of the Model | Equations | |
---|---|---|---|
Kinetic models | Pseudo-first-order | [22] | |
Pseudo-second-order | [22] | ||
Isotherm models | Langmuir | [22] | |
Freundlish | [22] | ||
Thermodynamic study | Van’t Hoff equation | [13] |
CR | DR | ||||||||
---|---|---|---|---|---|---|---|---|---|
Biofilms | M2 | M3 | M4 | M5 | M2 | M3 | M4 | M5 | |
Pseudo-first-order | qe (exp) (mg/g) | 494.27 | 627.49 | 842.36 | 745.74 | 222.30 | 236.18 | 249.78 | 315.52 |
qe (cal) | 536.86 | 489.29 | 500.16 | 546.39 | 453.95 | 462.10 | 290.58 | 424.05 | |
k1 (min−1) | 0.15 | 0.04 | 0.03 | 0.05 | 0.032 | 0.035 | 0.036 | 0.025 | |
R2 | 0.968 | 0.812 | 0.909 | 0.933 | 0.944 | 0.815 | 0.702 | 0.751 | |
Pseudo-second-order | qe (cal) | 500 | 625 | 833.33 | 769.23 | 222.22 | 238.09 | 250 | 312.5 |
k2 (g/mg·min) (10−4) | 5.1 | 3.1 | 2.3 | 17 | 50.5 | 20.6 | 160.2 | 26.4 | |
R2 | 0.999 | 0.997 | 0.999 | 0.998 | 0.999 | 0.999 | 0.999 | 0.999 | |
Langmuir isotherm | qm (mg/g) | 357.14 | 416.66 | 555.55 | 625 | 357.14 | 270.27 | 434.78 | 370.37 |
KL | 0.24 | 0.15 | 0.12 | 179.77 | 0.04 | 0.12 | 5813.95 | 207.90 | |
R2 | 0.989 | 0.983 | 0.947 | 0.994 | 0.998 | 0.983 | 0.999 | 0.996 | |
Freundlich isotherm | KF | 3.83 | 5 | 4.62 | 13.02 | 7.81 | 7.09 | 13.24 | 8.39 |
1/n | 0.55 | 0.44 | 0.53 | 0.09 | 0.24 | 0.22 | 0.02 | 0.21 | |
n | 1.79 | 2.27 | 1.87 | 10.05 | 4.02 | 4.54 | 37.03 | 4.56 | |
R2 | 0.909 | 0.963 | 0.942 | 0.926 | 0.756 | 0.515 | 0.757 | 0.811 |
Adsorption Capacity (mg g −1) | |||
---|---|---|---|
CR | DR | Ref. | |
PVA/SA/ZSM-5 zeolite membrane | 5.33 | NA | [41] |
Lignin/chitosan beads | 173 | NA | [42] |
Calcium alginate beads/nano-geothite | 181.1 | NA | [43] |
Nano-ZnO/chitosan | 120 | NA | [44] |
Titanium dioxide nanoparticles(TiO2NPs) | NA | 92.17% * | [19] |
Sodium alginate and polypyrrole composites with algal dead biomass | 77.27 | NA | [45] |
Novel cyanognanidine-modified chitosan CCs | 666.67 | NA | [46] |
Chitosane and laponite based nanocomposites | 390.3 | NA | [47] |
Alg/Cs film M4 | 555.55 | 434.78 | This work |
Alg/Cs film M5 | 625 | 370.37 | This work |
CR | DR | ||||||
---|---|---|---|---|---|---|---|
T (K) | (J·mol−1·k−1) | (kJ·mol−1) | (kJ·mol−1) | (J·mol−1·k−1) | (kJ·mol−1) | (kJ·mol−1) | |
M2 | 283 | 0.07 | 2.66 | −18.24 | 0.14 | −24.56 | −66.21 |
293 | −18.98 | −67.68 | |||||
313 | −20.46 | −70.62 | |||||
M3 | 283 | 0.12 | −15.82 | −51.19 | 0.19 | −38.82 | −94.68 |
293 | −52.44 | −96.66 | |||||
313 | −54.94 | −100.61 | |||||
M4 | 283 | 0.05 | 2.871 | −13.41 | 0.19 | −38.55 | −93.92 |
293 | −13.99 | −95.87 | |||||
313 | −15.14 | −99.79 | |||||
M5 | 283 | 0.16 | −29.04 | −75.69 | 0.18 | −35.74 | −87.78 |
293 | −77.33 | −89.62 | |||||
313 | −80.63 | −93.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokeddem, A.; Benykhlef, S.; Bendaoudi, A.A.; Boudouaia, N.; Mahmoudi, H.; Bengharez, Z.; Topel, S.D.; Topel, Ö. Sodium Alginate-Based Composite Films for Effective Removal of Congo Red and Coralene Dark Red 2B Dyes: Kinetic, Isotherm and Thermodynamic Analysis. Water 2023, 15, 1709. https://doi.org/10.3390/w15091709
Mokeddem A, Benykhlef S, Bendaoudi AA, Boudouaia N, Mahmoudi H, Bengharez Z, Topel SD, Topel Ö. Sodium Alginate-Based Composite Films for Effective Removal of Congo Red and Coralene Dark Red 2B Dyes: Kinetic, Isotherm and Thermodynamic Analysis. Water. 2023; 15(9):1709. https://doi.org/10.3390/w15091709
Chicago/Turabian StyleMokeddem, Amina, Samir Benykhlef, Amine Ahmed Bendaoudi, Nacer Boudouaia, Hacene Mahmoudi, Zohra Bengharez, Seda Demirel Topel, and Önder Topel. 2023. "Sodium Alginate-Based Composite Films for Effective Removal of Congo Red and Coralene Dark Red 2B Dyes: Kinetic, Isotherm and Thermodynamic Analysis" Water 15, no. 9: 1709. https://doi.org/10.3390/w15091709
APA StyleMokeddem, A., Benykhlef, S., Bendaoudi, A. A., Boudouaia, N., Mahmoudi, H., Bengharez, Z., Topel, S. D., & Topel, Ö. (2023). Sodium Alginate-Based Composite Films for Effective Removal of Congo Red and Coralene Dark Red 2B Dyes: Kinetic, Isotherm and Thermodynamic Analysis. Water, 15(9), 1709. https://doi.org/10.3390/w15091709