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Abstract: The processed discharges from Tangier Automotive City’s (TAC) Chrafate Wastewater
Treatment Plant (WWTP) contaminate the Jouamaa Hakama groundwater and the Ouljat Echatt river.
We aimed to study the unknown interactions between surface water (SW) and groundwater (GW).
A total of nine Jouamaa Hakama GW samples and eleven Ouljat Echatt SW samples were taken
and analyzed in 2021 and 2022 to determine 16 physical and chemical parameters (pH, tempera-
ture (T), electrical conductivity (EC), dissolved oxygen (DO), total hardness (TH), turbidity (TURB),
and total dissolved solids (TDS), cations: Na+, K+, Mg2+ and Ca2+, anions: Cl−, CO3

2−, HCO3
−,

NO3
−, and SO4

2−). For exploitation of the data, we used a methodology based on hydrochemical
modeling (HM), principal component analysis (PCA), Water Quality Index (WQI), Irrigation Water
Quality Index (IWQI), inverse distance weighted interpolation (IDW) using Geographic Information
Systems (GIS), and regression analysis (RA). We studied the interaction of the surface water of
the river (contaminated by discharges from the WWTP) with the shallow groundwater on a strip
of 100 m on either side of the river to understand the transverse and longitudinal dispersion of
this pollution The investigations indicated that the major ions found in GW and SW were charac-
terized in a different order in the anion list order Cl− > CO3

2− > NO3
− > HCO3

− > SO4
2− and

Cl− > SO4
2− > CO3

2− > NO3
− > HCO3

−, respectively, while the concentrations of cations showed
the same order for both: Na+ > Ca2+ > Mg2+ > K+. As a result, GW showed in the Piper diagram the
type of sodium chloride to magnesium carbonate, while SW belongs to the sodium chloride to magne-
sium sulfate type. The WQI showed that the river waters are all unsuitable for use (WQI > 100), while
the GW is of poor quality (WQI > 76). Moreover, the results of the GW–SW interaction along the river
revealed a significant relationship (R2 = 0.85), which means that strong circulation and the infiltration
of contaminated SW into shallow GW occur in this area. The approaches followed have been proven
effective in evaluating water quality for human and animal uses. These results can help decision-
makers in the region take suitable management measures to mitigate this environmental problem.
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1. Introduction

The irrational use of freshwater and water stress caused by climate changes have
added to pollution of water by various anthropogenic activities, leading to the degradation
of ecosystems and biodiversity essential for human needs [1–3]. Freshwater is a limited
and fragile asset, threatened by growing consumption and multiple forms of pollution. It is
also an essential non-renewable natural resource that must be preserved [3]. Most surface
water (SW), such as rivers, are connected to groundwater (GW) [4,5]. Indeed, the dynamics
of exchanges and river–aquifer interactions include the infiltration of solutes from river
waters which leads to the reconstitution and recharge of GW through these SW masses,
thus producing variations in the quality of GW [6].

Additionally, urban growth leads to large municipal landfills and wastewater con-
tamination of nearby waterways, especially GW and SW. This leads to questions about
the nature of these water resources, as GW contamination persists for a long time due to
the slow movement of water [7]. This is why it is important to ensure that the quality of
freshwater is secure for use by humans [8]. Morocco, like all the other countries in the
world, is affected by climate change and freshwater pollution. Thus, ongoing management
is required to safeguard water resources. It is critical to conduct quality monitoring of GW
and SW used for consumption in order to safeguard their quality [9]. Therefore, physico-
chemical [10,11], hydrochemical [12], and bacteriological [13] factors can be used to evaluate
the freshwater quality. However, analysis of GW and SW quality parameters are costly and
time-consuming. To improve freshwater quality, it is very important to interpret different
variations in freshwater quality [14] and to locate hidden sources of contamination [15–17].
For that purpose, to characterize the quality of SW, several researchers have used pertinent
methods and techniques, such as WQI, which is regarded as one of the most efficient
techniques for assessing water quality [18–20]. Moreover, fuzzy logic [21,22], machine
learning [23,24], and the projection pursuit approach [11,25,26] have been used to forecast
dam water quality [23], river water quality, and GW quality [11,25,26], and neural networks
have been utilized to analyze water quality [27,28]. Multivariate statistical approaches
can be used to assess large freshwater quality datasets with a minimum loss of informa-
tion [29,30], which is valuable for quickly characterization of the contamination [31,32].
Some researchers [33–36] have combined GIS techniques with multivariate statistical ap-
proaches to define freshwater quality; others have combined statistical techniques, GIS,
and WQI. Many scientists have investigated the properties of water hydrochemistry and
the main mechanisms of regulation of freshwater hydrochemistry [37–40]. The use of the
Piper diagram helps to determine the chemical parameters of GW [41] and SW [12]. Some
researchers used PCA to complement diagrams such as Wilcox, Riverside, Stiff, Schöeller
Berkaloff, Piper, and Durov plots [42–45]. Therefore, the integration of hydrochemical, PCA,
and GIS techniques [46] or the integration of hydrochemical, WQI, and PCA techniques
could help to study the origin, evolution, and interaction processes [47–49].

GW and SW are interconnected in a river basin [5], where they mix with longitudinal
and transverse flows [50]. These GW–SW interactions result in high biogeochemical
activity, chemical transformations, and GW contamination if the SW is polluted [51–53].
Understanding the interactions between SW and GW is of paramount importance for
the monitoring and control of water resources and the protection of ecosystems [54]. For
that, several methods were developed to study GW–SW interaction patterns [55–57]. As a
result, the combination of different approaches is recommended and highlighted in recent
studies [58,59], with the aim to protect water resources and understand the parameters and
processes influencing the GW–SW interaction [60,61].
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In Morocco, several studies have been carried out on seawater intrusion in GW [62–66],
while other studies have been carried out on assessment of GW quality and recharge
mechanisms [67], and prediction of the WQI for the GW with multi-layer perceptron
approaches [68]. However, few studies have been carried out on GW–SW interaction
models [69]. As a result, the goals of this work were to combine hydrochemical, WQI,
IWQI, PCA, and GIS-based (IDW) interpolation to describe the geographical interaction of
SW and GW hydrochemistry and to uncover spatial patterns. In our work, the GW and
SW quality was assessed on water samples from wells and rivers in the study area and on
16 parameters from 20 sampling sites in order to evaluate spatial variations in GW and SW.
This study seeks to assist water authorities and managers in establishing priorities, making
informed decisions to improve the quality of GW and SW.

This research is an exploratory study, the first in the area, in which we have tried to
investigate the interaction of the surface water of the river contaminated by discharges
from the wastewater treatment plants (WWTP) with the shallow groundwater on a strip of
100 m on either side of the river to understand the transverse and longitudinal dispersion of
this pollution. The Ouljat Echatt river is a concern for decision-makers, and implementing
this study is considered an innovation for the management of water quality in the region.
We can also apply it to other regions with similar conditions for maintaining the principles
of sustainable development.

2. Materials and Methods
2.1. Study Area

Tangier-Tetouan-Al Hoceima is in northwest of Morocco. It is one of the twelve regions
of the Kingdom of Morocco. Its capital is Tangier-Assilah. The region covers an area of
17,262 km2, representing 2.43% of the national territory. The Tangier-Tetouan-Al Hoceima
region retains its place among the leading growth regions, marking a growth rate higher
than the national average [70]. Far from the city of Tangier, about 17 km on the national
road number 2, is the study site. It includes the Ouljat Echatt river which passes next to the
municipality of Hakama, as well as GW on either side of the river downhill of the WWTP
discharges [10,11,22]. This WWTP treats effluents rejected by the industrial zone of Tangier
Automotive City (Figures 1 and 2).

2.2. Climate

The climate in the north of Morocco is of subhumid Mediterranean type; the winter
is humid and mild, and the summer is dry and hot [11]. Average rainfall in the Tangier-
Tetouan-Al Hoceima region is around 700 mm; the wettest year was 1963 with a height
of 1248 mm, while the driest year was 1973 with only 412 mm. Moreover, the importance
of occult precipitation, such as fog, mist, dew which softens the climate outside the wet
season, should be noted.

2.3. Geology and Hydrogeology

The research region belongs to the geological section of the Rif domain, with flysch
nappes in the exterior Rif, which is depicted in this region by the Tangier unit. This is the
flysch nappe substratum. The research area comprises flysch outcrops, extensive outcrops
of the predominantly clayey Tangier unit, which is part of the external Rif, and some mainly
alluvial quaternary formation strategies to alleviate this environmental issue [71].
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2.4. Sampling, Laboratory Analysis and Analytical Method

During the years 2021 and 2022, sampling was carried out in the research region
(Figures 1 and 2). There were nine GW samples and eleven SW samples collected, as
well as 16 physical and chemical parameters assessed. The samples were identified using
technical sampling sheets (date, time of sampling, number, and Lambert coordinates).
Table 1 presents the geographic coordinates of the sampling sites.

Table 1. Geographic coordinates of river and wells samples.

Points Long Lat

R1 −5.67463746◦ 35.66688479◦

R2 −5.67766835◦ 35.66541206◦

R3 −5.68093907◦ 35.66351440◦

R4 −5.68364274◦ 35.66088328◦

R5 −5.68626245◦ 35.65523154◦

R6 −5.68576545◦ 35.65334556◦

R7 −5.68819553◦ 35.65227545◦

R8 −5.68982623◦ 35.64715242◦

R9 −5.69294471◦ 35.64394728◦

R10 −5.69726585◦ 35.64224707◦

R11 −5.70137617◦ 35.63777176◦

P1 −5.68275827◦ 35.66043753◦

P2 −5.68265338◦ 35.66000167◦

P3 −5.68549656◦ 35.65540978◦

P4 −5.68530379◦ 35.65319523 ◦

P5 −5.68832221◦ 35.65258791◦

P6 −5.68988600◦ 35.64719612◦

P7 −5.69093475◦ 35.64789468◦

P8 −5.69290863◦ 35.64402414◦

P9 −5.69721983◦ 35.64247992◦

The stations for sampling were chosen with little variation. While the sample was
collected in temperatures ranging from 0 to 4 degrees Celsius were used for transportation
and storage [72]. Temperature, pH, DO, Turb, and EC analysis were measured in situ to
prevent any modification of the sample parameters. Table 2 presents parameters measured
for each sample and the used analytical methods [73].
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Table 2. List of the in situ and laboratory analysis.

Parameters Analytical Method Unit Maximum Allowable Values WHO Moroccan Standard [74,75]

pH pH meter — 6.5 < pH < 8.5 6.5 < pH < 9
T Thermometer ◦C T◦ < 25 T◦ < 30

EC Conductimeter µS/cm 2700 2700
DO Oximeter mg/L 5 < O2 < 8 5 < O2 < 8

TURB Turbidimetry NFU 5 5
Ca2+ Titrimetric technique mg/L 75 75

Mg2+ Complexometry with
E.D.T.A. (0.02 N) mg/L 50 50

Na+ Flame photometer mg/L 200 200
K+ photometer mg/L 50 50
Cl− Mohr’s method mg/L 250 300

HCO3
− Acido-basic titration

(HCl 0.05 N) mg/L 120 120

CO3
2− mg/L 100 100

NO3
2− Steam distillation mg/L 50 50

SO4
2− Nephelometric

method mg/L 250 200

TDS mg/L 500 500

TH mg/L 400 400

For the study of the GW–SW interaction, we exploited the data and adopted a method-
ology based on hydrochemical modeling, PCA, WQI, irrigation indices, GIS-based Inverse
Distance Weighted Interpolation, and regression analysis. Figure 3 shows the distances
between the wells and the river boundary.
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2.5. Water Quality Index (WQI)

Studies have used freshwater quality evaluation techniques [19,76], and the WQI is
a simple and efficient method [12,17,22,77–79]. The WQI explains water quality using a
number of indices that reflect water quality for users and consumers [80]. The WQI can be
used for GW (GWQI) [22] or for SW (SWQI) [12]. When developing a WQI, the importance
of different parameters affecting water quality depends on the intended water use [81].

The WQI has the advantage of minimizing the number of water parameters used in an
assessment and providing a single value. This value is a simplified and logical expression
that expresses the average quality of water at a specific time based on the analytical values
of physico-chemical parameters.

In this study, the estimates of the GWQI and SWQI were based on the suitability of
the samples for consumption and other household uses.

The WQI calculations involved the following steps. First, the sixteen analyzed pa-
rameters were weighted (wi) according to their importance in drinking water quality
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assessments. The parameters were weighted between 1 and 4 according to their importance
in drinking water assessments, such as knowledge of the hydrological framework of the
study area, while taking into account macronutrients [82].

The arithmetic weighted index (WQI) was used to calculate the results in this paper.
This approach assigns weight to chemical characteristics based on subjective criteria [83].
The WQI was calculated in five phases, as stated below [84]:

The relative weights (Wi) for each of the parameters were estimated (Equation (1)).

Wi =
wi

∑n
k=0 wi

(1)

The quality score was determined (Equation (2)):

Qi =
Ci
Si

× 100 (2)

The Qi was calculated according to Equation (3):

Qi =
(CpH − 8.5)
(6.5 − 8.5)

(3)

“SI” was calculated following Equation (4).

SI = Wi × Qi (4)

The WQI was calculated with Equation (5):

WQI = ∑n
k=1 Wi × Qi = ∑n

1 SI (5)

According to the calculated GWQI and SWQI value [85], the GW and SW quality is
shown in Table 3.

Table 3. The WQI categories [86].

Classes Classification

0 to 25 Excellent
26 to 50 Good
51 to 75 Poor

76 to 100 Very poor
>100 Unsuitable for drinking

2.6. Water for Irrigation Use (IWQI)

Water quality is thus an important element in the sustainable use of water for irriga-
tion, particularly in cases where salinity development is expected to be a problem in an
irrigated agricultural area. The hydrochemical characteristics of the main GW and SW
variables are used in this evaluation to determine the suitability for irrigation [87]. The next
paragraph provides a number of calculations that may assist in establishing the suitability
of irrigation water.

Equation (6) was used to calculate the sodium adsorption rate SAR [87], which is
defined as the salt risk associated with calcium and magnesium concentrations [88].

SAR =
Na+√

Ca2++Mg2+

2

(6)

RSC =
[(

HCO3
− + CO3

−)− (Ca2+ + Mg2+
)]

(7)
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Na% =

(
Na+ + K+

)
∗ 100(

Ca2+ + Mg2+ + Na+ + K+
) (8)

MH =

(
Mg2+ ∗ 100

)
(

Ca2+ + Mg2+
) (9)

PI =

(
Na+ +

√
HCO3

−
)
∗ 100(

Ca2+ + Mg2+ + Na+
) (10)

KI =
Na+

Ca2+ + Mg2+ (11)

PS = Cl− +
1
2

SO4
2− (12)

RSBC = HCO3
− − Ca2+ (13)

Equation (7) was used to calculate the RSC, which plays an important part of irrigation
water. In addition, there is another approach, which is widely used to understand the effects
of excess calcium and magnesium on soil [89]. The risk of magnesium (MH) (Equation (9)),
and the percentage of sodium (%Na) (Equation (8)), are important parameters that can
be used to evaluate the quality of GW and its appropriateness for irrigation purposes.
A well-known classification was developed by Wilcox [90], which has been documented
and used in the literature for a long time. The GW and SW were classified into five
classes of Equations (8) and (9) [91]. PI is an index for the permeability of water in soil
(Equation (10)) [92].

Sodium, when compared to Ca2+ and Mg2+, KI > 1 indicates an excess of salt, whereas a
KI < 2 indicates a shortfall in water (Equation (11)) [88]. Salinity potential (PS) (Equation (12))
refers to the quantity of salt that builds up in the soil, which is constantly dissolved in
irrigation water, increasing salinity as determined by the formula below [88]. Since most
natural waters do not have substantial levels of carbonate ions and bicarbonate ions do not
precipitate magnesium ions, the alkalinity hazard was measured by an indicator known as
residual sodium bicarbonate (RSBC) and calculated using (Equation (13), Table 4) [89].

Table 4. Calculating irrigation quality parameters and classification of water.

Parameters Classification References

SAR Excellent, Good, Permissible, Doubtful [93]
RSC Good, Medium, Bad [94]
Na% Excellent, Good, Permissible, Doubtful, Unsuitable [90]

PI Excellent, Good, Unsuitable [95]
KI Permissible, Non- Permissible [96]
PS Excellent, Good, [95]

RSBC Excellent, Good, [97]
MH Suitable, Unsuitable, [98]

2.7. Multivariate Statistical Analysis (MSA) and the Geological Information System (GIS)

Our work examined 16 physical-chemical parameters from 9 wells and 11 source sites
from the Ouljat Echatt river, including: pH, T, EC, DO, TH, TURB, TDS, cations: K+, Na+,
Ca2+, Mg2+, and anions: Cl−, HCO3

−, CO3
2−, NO3

−, SO4
2−, which are used for PCA [99].

We used the program Arc GIS 10.6.1 for data input, analysis, and mapping. This
method originated in mining and geological engineering based on locations weighted only
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by distance [100,101]. The value obtained from the known location was used to estimate
the value of a variable at some new locations.

The IDW approach was implemented using ArcGIS 10.6’s Spatial Analyst Extension.
The experimental results from the laboratory study of water samples collected from well
sites and along the river were combined into an Excel file, which was then translated into
a shapefile. The overage of the data found from the measured sites for each parameter
was applied in the numerical calculation of each interpolated cell, and the river network
was used for the mask. On the output raster, the cells corresponding to the Ouljat Echatt
watershed region became the values of the first input raster. Water quality classifications
were based on the geographic distribution of pollutants, with a map legend based on
each parameter’s data range. IDW interpolation is a technique that is largely used in the
mapping of variables. It is an exact and convex interpolation method that fits only the
continuous model of spatial variation. This method is based on locations weighted only by
distance. The value obtained from the known location was used to estimate the value of a
variable at some new locations.

3. Results and Discussion
3.1. Hydrochemical Data Correlation

Understanding freshwater hydrochemical characteristics is crucial for the preservation
of the water resources in this work, and the chemical elements of freshwaters are considered
valuable information on the suitability of various uses. We sought to assess the quality of
GW–SW based on the distribution of cations and anions in GW–SW downstream of treated
wastewater discharges from the TAC industrial zone. The hydrochemical characteristics
of the GW of the Jouamaa Hakama site and Ouljat Echatt River water showed variable
hydrochemical characteristics.

The pH of GW values was between 7.79 and 6.91, while the waters of the Ouljat Echatt
River had a pH between 7.31 and 6.9. The average pH of GW was 7.38, which is higher
than that of SW (pH = 7.10). The EC values of the GW were between 806 µS/cm and
1337 µS/cm, with a mean value of 1768 µS/cm, while SW values were between 878 µS/cm
and 1205 µS/cm with an average of 1089.36 µS/cm. EC values of surface and groundwater
were higher than the WHO limit of 1000 µS/cm in some samples.

The TSD values of GW were between 515.84 mg/L and 1131.52 mg/L with an average
of 855.68 mg/L, while SW values were between 561.92 mg/L and 771.2 mg/L with an
average of 697.19 mg/L (Table 4). The Cl− values of GW and river water averaged around
205.1 and 153.5 mg/L, respectively. GW and river water NO3

− values averaged around 26
and 28.9 mg/L, respectively. GW and river water SO4

2− values averaged around 82.3 and
71.8 mg/L, respectively (Table 5).

GW HCO3
− concentration values were between 7.6 and 30.5 mg/L with an average

of 13.6, while the concentration at SW were between 7.6 and 15.3 with an average of 8.3.
GW CO3

2− values were between 26.3 and 93.8 with an average of 62.1 while SW values
were between 37.5 and 78.8 with an average of 64.1 (Tables 5 and 6). GW Ca2+ values were
between 16 and 80 with an average of 50.2 mg/L while SW values were between 32 and 52
with an average of 41.8 mg/L. GW Mg2+ values were between 24 and 50.4 with an average
of 36.3 mg/L while SW values were between 10.8 and 21.6 with an average of 16.3 mg/L.
The GW Na+ values were between 55.5 and 135.5 with the average of 100.2 mg/L while
the SW values were between 71.2 and 135.5 and the average was 112.4 mg/L. GW K+

values were between 0.4 and 5.1 and with a mean of 2.3 mg/L while SW values were
between 7.5 and 12.5 and with a mean of 10.1 mg/L (Tables 5 and 6). The orders of
major cations and anions in GW were Cl− > CO3

2− > NO3
− > HCO3

− > SO4
2− for anions

and Na+ > Mg2+ > Ca2+ > K+ for cations. At the same time, the orders in the water of
the Ouljat Echatt River were Cl− > SO4

2− > CO3
2− > NO3

− > HCO3
− for anions and

Na+ > Ca2+ > Mg2+ > K+ for cations.
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Table 5. The physicochemical measurement results of 20 sampling river.

Sampling T EC TDS pH DO
(mg/L)

Ca2+

(mg/L)
Mg2+

(mg/L)
Na+

(mg/L)
K+

(mg/L)
Cl−

(mg/L)
HCO3−

(mg/L)
CO32−

(mg/L)
NO3−

(mg/L)
SO42−

(mg/L) TURB TH

R1 17.00 1157.0 740.5 7.08 8.30 36.0 16.8 135.5 12.48 153.3 7.63 67.50 18.00 113.09 30.50 159.07
R2 17.40 1205.0 771.2 7.17 6.82 44.0 16.8 126.6 11.80 152.3 7.63 78.75 18.00 96.31 45.20 179.05
R3 20.10 1142.0 730.9 7.31 7.01 44.0 19.2 119.7 10.73 149.1 7.63 71.25 24.00 101.66 30.20 188.93
R4 19.00 1072.0 686.1 6.91 7.00 44.0 16.8 114.7 9.75 148.1 7.63 56.25 36.00 96.38 21.50 179.05
R5 18.60 1161.0 743.0 7.04 6.76 44.0 18.0 71.2 9.46 149.5 7.63 67.50 36.00 0.00 22.40 183.99
R6 19.10 1188.0 760.3 7.09 6.11 52.0 15.6 128.6 10.34 151.2 7.63 56.25 30.00 140.88 19.00 194.08
R7 20.30 1182.0 756.5 6.97 6.5 48.0 21.6 129.6 10.24 163.8 7.63 63.75 30.00 127.94 19.20 208.80
R8 19.80 1061.0 679.0 7.08 6.4 40.0 10.8 117.7 10.73 160.0 7.63 71.25 30.00 34.66 20.10 144.35
R9 20.10 1053.0 673.9 7.12 6.7 40.0 12.0 123.6 10.92 144.6 7.63 67.50 30.00 79.20 17.60 149.30

R10 20.50 884.0 565.8 7.09 6.2 32.0 18.0 87.0 7.70 152.6 7.63 67.50 30.00 0.00 17.80 154.03
R11 20.70 878.0 561.9 7.20 7.4 36.0 13.2 82.1 7.51 164.5 15.25 37.50 36.00 0.00 16.90 144.25

Average 19.33 1089.36 697.19 7.10 6.8 41.8 16.3 112.4 10.1 153.5 8.3 64.1 28.9 71.8 23.67 171.4
Max 20.70 1205.0 771.2 7.31 8.3 52.0 21.6 135.5 12.5 164.5 15.3 78.8 36.0 140.9 45.20 208.8
Min 17.00 878.0 561.9 6.91 6.1 32.0 10.8 71.2 7.5 144.6 7.6 37.5 18.0 0.0 16.90 144.2

Table 6. The physicochemical measurement results of 20 sampling wells.

Sampling T EC TDS pH DO
(mg/L)

Ca2+

(mg/L)
Mg2+

(mg/L)
Na+

(mg/L)
K+

(mg/L)
Cl−

(mg/L)
HCO3−

(mg/L)
CO32−

(mg/L)
NO3−

(mg/L)
SO42−

(mg/L) TURB TH

P1 16.20 806.0 515.8 7.39 7.6 32.0 24.0 55.5 0.68 152.3 7.63 48.75 24.00 0.00 4.30 178.736
P2 16.80 1262.0 807.7 6.91 6.3 32.0 36.0 98.9 0.39 231.0 7.63 37.50 36.00 16.08 4.10 228.152
P3 17.30 824.0 527.4 6.92 6.5 16.0 24.0 72.2 2.15 189.4 7.63 26.25 24.00 0.00 3.40 138.784
P4 16.90 1509.0 965.8 7.70 7.5 44.0 28.8 146.4 2.24 389.2 7.63 33.75 30.00 0.00 2.90 228.4664
P5 17.20 1198.0 766.7 7.29 7.0 60.0 31.2 65.3 1.66 174.7 15.25 78.75 30.00 5.54 3.10 278.3016
P6 18.50 1768.0 1131.5 7.39 6.8 80.0 44.4 191.9 4.49 171.9 22.88 78.75 36.00 367.06 3.30 382.5992
P7 17.10 1355.0 867.2 7.79 6.3 56.0 50.4 117.7 2.24 197.1 15.25 75.00 18.00 167.74 5.40 347.3792
P8 18.20 1688.0 1080.3 7.57 6.7 60.0 50.4 64.3 5.07 169.4 30.50 93.75 12.00 70.08 5.80 357.3672
P9 18.10 1623.0 1038.7 7.44 7.6 72.0 37.2 90.0 1.56 170.8 7.63 86.25 24.00 113.90 5.90 332.9736

Average 17.37 1337.0 855.7 7.38 6.9 50.2 36.3 100.2 2.3 205.1 13.6 62.1 26.0 82.3 4.24 274.8
Max 18.50 1768.0 1131.5 7.79 7.6 80.0 50.4 191.9 5.1 389.2 30.5 93.8 36.0 367.1 5.90 382.6
Min 16.20 806.0 515.8 6.91 6.3 16.0 24.0 55.5 0.4 152.3 7.6 26.3 12.0 0.0 2.90 138.8
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3.2. Hydrochemical Modeling
3.2.1. Hydrochemical Facies Using Piper Diagram

Piper’s diagram helped to understand the geochemical evolution of GW sample
and SW and its relationship with dissolved ions [102]. To better interpret the chemical
composition of the GW sample [103–106] and the SW [12,107,108], anions were plotted on
the right triangle while cations were plotted on the left [109]. The geochemical evolution of
water in general (and GW in particular) can be assessed by determining chemical facies
using Piper’s trilinear diagram (1944) [110]. In the present study, Piper trilinear diagrams
were plotted using scientific software called “Diagrammes”.

Figure 4 shows that all samples fall in zone D (sodium-potassium cation facies type)
with no magnesium or calcium types found on the cation side and zone G (chloride facies
type) with no bicarbonate and sulfate types found on the anions side. Thus, the chemical
composition of GW samples in the study area is dominated by strong acids (Cl−) and
alkalis (Na+, K+). According to the diamond diagram, all the samples were found in zone
I (chloride, calcium sulfate, and magnesium) and II (sodium and potassium chloride).
Essentially, the majority of the samples were characterized by the dominance of (Na+, K+),
Cl−, and SO4

2−, and the Piper diagram revealed two types of water. As a result, the GW
present facies of the sodium chloride to magnesium carbonate type, while SW are of the
sodium chloride to magnesium sulfate type.
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Piper’s diagram suggests that 77.77% of the GW samples (7 GW samples) belong
to Ca2+-Mg2+-Cl−-SO4

2− (field I), demonstrating the dominance of alkaline earths over
alkali (Ca2+ + Mg2+ > Na+ + K+) and strong acidic anions over weak acidic anions (i.e.,
Cl− + SO4

2− > HCO3
−), while all SW samples belong to Na+, K+, Cl− or Na+ and SO4

2−

which are plotted in File II, while 13 samples fell in zone D, indicating the dominance of
sodium types (11 SW and P3, P6 in GW samples) [111].
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3.2.2. Water Samples Schöeller Berkaloff Diagram and Schöeller Berkaloff Diagram for
Average Parameters

The chemical composition of the GW from the Jouamaa Hakama site and the SW
from the Ouljat Echatt river sampled has been represented on the Schöeller Berkaloff dia-
gram [105,112] (Figure 5). The Schöeller Berkaloff diagram for the mean of the parameters
reveals that the GW and SW parameters have the same pace and that the parameters
progress proportionally in the same direction, except for Mg2+ which progresses inversely
proportional between GW and SW [113]. The average anion concentrations (SO4

2−, Cl−,
and HCO3

−) have been plotted on the right side of the figure while the average cation
concentrations (Ca2+, Mg2+, Na+, and K+) were plotted on the left side of the Figure 5. The
Schöeller Berkaloff diagram reveals that the Ca2+ concentrations exceeded the concentra-
tions of the other cations while the Cl− concentrations exceeded the concentrations of the
other anions. The major ions in relative abundance are in the order Ca2+ > Mg2+ > Na+ > K+

for cations and Cl− > HCO3
− > SO4

2− for anions.
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3.3. Groundwater Quality Index (GWQI) and Surface Water Quality Index (SWQI)

The assessment of SW/GW quality was provided using the WQI, which presents a
comprehensive picture of the water quality [114], because it categorizes water based on
pollution levels into four groups [115].

Figure 6 shows that the WQI ranged from 55.60 to 208.22, indicating that the overall
water quality of the river samples represented a value greater than 100 (unsuitable quality)
(Table 7).
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Table 7. Classification GW and SW samples based on WQI.

Samples River WQI Score Classification Samples Wells WQI Score Classification

R1 165.497266 Unsuitable P1 59.6085173 Poor
R2 208.221093 Unsuitable P2 74.295544 Poor
R3 160.598102 Unsuitable P3 55.5992429 Poor
R4 134.61429 Unsuitable P4 78.246694 Very poor
R5 133.754536 Unsuitable P5 67.5059323 Poor
R6 132.447409 Unsuitable P6 102.009686 Unsuitable
R7 130.996801 Unsuitable P7 87.2619479 Very poor
R8 124.981967 Unsuitable P8 88.2725732 Very poor
R9 120.361114 Unsuitable P9 90.8769462 Very poor

R10 111.714051 Unsuitable
R11 112.648884 Unsuitable

Whereas all the river samples in R1, R3, R4, R5, R6, R7, R9, R10 and, R11 fell into the
unsuitable quality category, the same was observed for P6. The highest value of 208.22 was
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recorded in the sample (R2), falling in class 4, which represents very poor water quality
and requires special attention before use due to high levels of Na+, K+, and CO3

2−.
The WQI indicated that 88.89% of the GW samples were poor for drinking (Figure 6).

Compared to previous studies of WQI, we discovered similar results for surface water with
new study in the north of Morocco [12], which reported that the WQI values of the Oued
Laou River ranged between 9.01 and 149.27, indicating that the overall water quality of the
studied river was graded from excellent to very poor. while in Tumkur Taluk, Karnataka
State, India [116], the results indicated that the WQI of GW for these samples ranged from
89.21 to 660.56.

3.4. Irrigation Groundwater Water Quality (IGWQI) and Irrigation Water Quality of Surface
Water (ISWQI)

The EC values indicated by salinity damage are essential to evaluating the irrigation
water [90]. Based on SAR values for the study area, most of the samples fell in the high
or very high salinity (EC) category, and thus, most of the GW and SW can be classified as
“doubtful” for irrigation, ranging from values of 750 to 2250 µS/cm. This is consistent with
Richards’ value, which indicated a doubtful water quality for irrigation according to the
EC value (Table 8).

Table 8. Water quality parameters for irrigation in study area water samples.

Samples SAR RSC Na% PI KI PS RSBC MH

R1 6..59 −0.83 66.00 68.69 1.84 5.56 −1.68 43.75
R2 5.80 −0.85 61.73 64.34 1.53 5.35 −2.08 38.89
R3 5.34 −1.30 59.04 61.72 1.37 5.32 −2.08 42.11
R4 5.26 −1.60 59.27 62.20 1.39 5.23 −2.08 38.89
R5 3.22 −1.33 47.43 50.76 0.84 4.27 −2.08 40.54
R6 5.66 −1.90 60.02 62.63 1.43 5.79 −2.48 33.33
R7 5.50 −1.95 58.40 60.88 1.34 6.01 −2.28 42.86
R8 6.01 −0.40 65.03 68.24 1.76 4.93 −1.88 31.03
R9 6.21 −0.63 65.34 68.40 1.79 4.96 −1.88 33.33

R10 4.30 −0.73 56.22 60.10 1.22 4.36 −1.48 48.39
R11 4.19 −1.40 56.47 62.90 1.23 4.70 −1.55 37.93
P1 2.54 −1.85 40.30 46.00 0.67 4.35 −1.48 55.56
P2 4.01 −3.23 48.37 52.29 0.93 6.77 −1.48 65.22
P3 3.75 −1.80 53.29 58.81 1.12 5.41 −0.68 71.43
P4 5.93 −3.35 58.26 61.27 1.38 11.12 −2.08 52.17
P5 2.40 −2.73 33.97 39.56 0.51 5.05 −2.75 46.43
P6 6.01 −4.70 52.34 55.82 1.08 8.73 −3.63 48.05
P7 3.87 −4.25 42.50 46.36 0.73 7.38 −2.55 60.00
P8 2.08 −3.58 28.89 35.04 0.39 5.57 −2.50 58.33
P9 3.02 −3.70 37.11 40.20 0.58 6.07 −3.48 46.27

SAR is used to categorize SW and GW into four groups: “Excellent” (SAR < 10);
“Good” (10 < SAR <18); “Suspicious” (18 < SAR < 26); and “Unsuitable” (SAR > 26). Water
sample SAR varied from 2.08 to 6.59 (Table 8). As a result, according to a USSL diagram, the
categorization of irrigation water quality is in the form of EC against SAR values. EC is used
as the salinity risk index and SAR gives the sodium risk for irrigation water. According
to the Richards classification [93], the plot revealed that about 100% of the SW and GW
samples fell into the C3-S1 category, which shows that the SW in the investigated area had
a medium salinity and low sodium content (Figure 7). The SW in the study area was within
a low salinity field (<2250 µS/cm), thus the water is highly appropriate for irrigation and
the SAR class (S1). These findings are in alignment with the Wilcox diagram in Figure 8.
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According to Table 8, the Na% in irrigation water samples ranged from 28.89% to 66%,
with an average of 52.50%. As a result, the Wilcox plot for percent of sodium and total
concentration displayed in Figure 8 indicates that 50% of the water samples (7 GW and
3 SW samples) were in good condition, while 50% were “eligible” with excessive content
(2 GW and 8 SW samples).

The magnesium hazard (MH) parameter was proposed by Paliwal et al. [98]. The MH
values varied from 31.03 to 71.43%, but only 33.33% of the water samples had a value of
less than 50 for well samples. Fully 100% of SW was considered suitable for irrigation.
However, 66.77% of GW had a MH greater than 50.

Sodium calculated against Ca2+ and Mg2+ was considered by the Kelley index (KI) [96].
Kelly’s ratio (KI > 1) indicates an excess level of sodium in water that is unsuitable for
irrigation, while KI less than 1 is suitable for irrigation uses. According to Kelly’s ratio,
the samples varied from 0.39 to 1.84 meq/L, which means the majority of samples were
non-permissible (65%), and just 35% were suitable for irrigation purposes. The GW in six
samples and one sample of SW (R5) was deemed adequate for irrigation [117].

The PI, developed by Doneen et al. [95], can better reflect the effects of irrigation,
(Table 8). It spanned from 35.04% to 68.40%. Nearly 100% of the samples (SW and GW)
fell under the Class II category, indicating that the water was moderately too good for
irrigation purposes.

From the results, the RSC values ranged from −4.70 to −0.40 meq/L (Table 8). These
values are lower than 1.25 meq/L, which corresponds to the “safe/good” category accord-
ing to the classification.

The residual sodium bicarbonate index (RSBC) is used to determine the risk of alkalin-
ity and was proposed by Gupta et al. who classified RSBC into two categories and found
that RSBC values above 10.0 meq/L affected plant growth in several ways, while RSBC
values below 5 meq/L were considered satisfactory [97]. In this study, the findings indicate
that RSBC values varied from −3.63 to −0.68 meq/L (Table 7), indicating that all samples
had RSBC values well below the acceptable level and could be safely used for irrigation.

One of the classifications used to assess the suitability of water for irrigation is potential
salinity (PS), which is the concentration of Cl− added to half the concentration of SO4

2−.
Among the samples examined, the potential salinity varied between 4.27 meq/L and
11.12 meq/L (Table 8). This indicates that 11.11% of the wells (P1) and 45.45% of the surface
waters (R5, R8, R9, R10, and R11) are classified as “good” while 54.55% and 88.89% of the
surface and well samples are classified as “unsuitable” for irrigation (Table 8) [95].

3.5. Multivariate Statistical Analysis
3.5.1. Statistical Analysis (PCA)

Table 9 explains 83.58% of the data’s overall variance. The F1–F2 combination repre-
sents more than 64.91% of the data (Figure 9). The first component (F1) represented 41.73%
of the total variation, with significant positive loadings of EC, TDS, Ca2+, Mg2+, and TH
and moderate loadings of pH and HCO3

−. This component indicates that EC in SW is
influenced by the amounts of TDS, Ca2+, and Mg2+. This component’s substantial Ca2+

loading may explain why Ca2+ predominates in SW samples over Mg2+. This component
is generally associated with anthropogenic contamination. The presence of Mg2+ ions in
the research area suggests that they were formed as a result of interactions between the
dolomitic limestone and water.
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Table 9. Correlation between the physical and chemical parameters.

Variables T EC TDS pH DO Ca Mg Na K Cl HCO3 CO3 NO3 SO4 TH

T 1

EC −0.224 1

TDS −0.224 1.000 1

pH −0.327 0.566 0.566 1

DO −0.721 −0.069 −0.069 0.198 1

Ca 0.001 0.834 0.834 0.520 −0.236 1

Mg −0.476 0.729 0.729 0.652 0.327 0.578 1

Na 0.136 0.427 0.427 0.083 −0.176 0.360 0.002 1

K 0.605 −0.242 −0.242 −0.450 −0.596 −0.133 −0.690 0.344 1

Cl −0.406 0.335 0.335 0.435 0.254 −0.029 0.297 0.217 −0.484 1

HCO3 −0.043 0.567 0.567 0.495 −0.078 0.553 0.685 −0.026 −0.258 −0.030 1

CO3 0.132 0.519 0.519 0.318 −0.387 0.703 0.322 0.091 0.236 −0.451 0.435 1

NO3 0.367 −0.185 −0.185 −0.450 −0.172 −0.046 −0.332 0.163 0.011 0.085 −0.259 −0.419 1

SO4 0.071 0.593 0.593 0.217 −0.101 0.694 0.382 0.747 0.144 −0.194 0.366 0.453 −0.044 1

TH −0.310 0.867 0.867 0.670 0.102 0.847 0.924 0.171 −0.512 0.180 0.706 0.541 −0.238 0.575 1
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The presence of CO3
2− and HCO3

− in this component suggests that SW alkalinity is
related to bicarbonate ions, which is the result of a natural disintegration process of the
calcareous sedimentary rocks and anthropogenic. The HCO3

− has a moderate loading on
the F1 factor, indicating that it was formed through weathering, carbonate dissolution, and



Water 2023, 15, 1752 19 of 31

bacterial decomposition of organic pollution, among other processes [12]. Stations R4, R5,
R8, R9, R10, R11, P6, P7, P8, and P9 also had the greatest impact on the F1 score.

With moderate positive loadings of T, CO3
2−, K+, SO4

2−, and TURB, the second
component (F2) explains 23.179% of the overall variance, although SO4

2− is primarily
derived from soluble inorganic nitrogen and inorganic salts. Additionally, this important T
value is due to the depth of the wells. Stations P1, P2, P3, R3, R6, and R7 had the greatest
influence on the F2 score. F3 accounts for 11.041% of total variability and is distinguished by
significant positive Na+ and Cl− loading. The presence of Na+ in this component suggests
that the primary ions at the research site regulate surface water mineralization. This is what
we noticed in station P4, which accounted for the majority of factor F3.

The fourth component (F4) indicates that NO3
− with a moderate load caused 7.628%

of the total variance, which is mostly associated with the use of fertilizers and wastewater,
while the significant positive loading of DO for this component could indicate a fluctuation
of nitrates in surface waters. Stations R1, R2, and P5 accounted for the majority of F4
scores. The positive charge for factors 1 and 2 is more important than for 3 and 4. This
indicates that they are the result of rock–water interaction in the GW–SW interaction and
that anthropogenic activities can have a considerable impact.

3.5.2. Pearson’s Coefficient of Correlation (r)

Based on the analysis of the Pearson correlation matrix in Table 9, the significant
correlation coefficient between EC and TDS suggests that water conductivity depends
on TDS, while EC and TDS had positive correlations with Ca2+, Mg2+, pH, Cl−, HCO3

−,
CO3

2−, TH, and SO4
2− which gives information about salinity and mineralization of GW

and SW [118,119].
A moderate correlation (r > 0.5) was observed between Ca2+ and Mg2+, indicating

that water TH is defined as the combined concentration of calcium and magnesium ions in
water samples. SW was high in Na+, NO3

−, Cl− and SO4
2−. pH is moderately correlated

with EC, TDS, TH, HCO3
−, NO3

−, and Cl− (but negatively correlated with K+ (r = −0.450),
indicating that pH affects the release or dissolution of K+, Na+, NO3

−, and Cl− in solution.
There was also a significant positive correlation (r = 0.703) between Ca2+ and (HCO3

−

and CO3
2−), indicating the geogenic origin of GW contamination. Furthermore, there is

a strong correlation between Ca2+ and SO4
2−, indicating that common sources are the

primary source of GW pollution, especially in our area which is close to industrial activities.
There was a strong positive correlation among Mg2+, Ca2+, and TH; on the other hand, a
negative correlation was observed between Mg2+ and K+. This implies that these cations
possibly originate from the same source.

In addition, a strong correlation was observed between Na+ and SO4
2−. The associa-

tion of HCO3
− and Mg2+, as well as an additional source of CO3

2− most likely resulting
from the dissolution of calcite. It is thought that dolomite enriches GW with Mg2+, HCO3

−,
and CO3

2−. The authors of [120,121] discovered comparable results regarding the correla-
tion between SO4

2− and K+. The pH showed a positive and significant correlation with
Ca2+ (r = 0.509), Mg2+ (r = 0.498), and HCO3

− (r = 0.529). These correlation results indicated
mixed sources of either geogenic or anthropogenic origin.

3.6. Distribution of the Main Ion Concentrations according to the Distance from the River

The interaction between SW and GW samples was compared using linear regression
of the samples from the wells and the river two by two along the segment of the river down-
stream of the WWTP, which gave a significant coefficient of determination, R2 = 85.6%.
(Figure 10). Logarithmic regression was also established based on the observation of hydro-
chemical parameters to investigate the interactions between SW and GW by comparing the
concentration of each parameter moving away from the riverbed towards the wells in a
band of 100 m on either side of the river, which showed different R2 values ranging from
50% to 83% along the river (Figure 11).
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Figure 10. Spatial variations of major ion concentrations in river water.
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According to the logarithmic regression analysis, we can conclude that the wells near
the river showed higher R2 values (P6–P8) than those at a big distance (P3, P4). The IDW
expressed as a transverse and longitudinal gradient and the higher logarithmic regression
coefficients (R2 > 0.70) of Mg2+, K+, NO3

−, and HCO3
− indicate that SW and GW interact,

which enables us to deduce clear information about the types of variables that impact the
interaction (the distance between the river and well).

3.7. Interpretation for GW–SW Interactions with Hydrochemical Data

According to Figure 12, the hydrochemical parameters are positively correlated with
a strong significance (R2 = 0.85), which explains the interaction between the GW of the
Jouamaa Hakama site and the SW of the Ouljat Echatt River. In addition, interpolation
(IDW) of the different parameters analyzed in this study shows a cross-gradient (transverse
gradient) between GW and SW (Figure 13), which explains the GW–SW connection along
the 100 m strip on both sides of the river downstream WWTP discharges. We can note that
the intensity and significant concentrations of the parameters are high in the wells that are
near the river (Figure 11).
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The similarity in the concentration of the majority of freshwater hydrochemical pa-
rameters in the river basin demonstrated the hydrological connectivity between GW and
SW on the strip at a distance of 100 m left and right of the river. According to WQI, the GW
in the GW–SW connection band was evaluated as having poor to very poor qualities in
all wells. We report that the well number 6 closest to the river is of unsuitable quality for
consumption. Additionally, the WQI of the different sampling points of the river is all of
unsuitable quality.

4. Conclusions

Water stress, pollution by various anthropogenic activities, and climate change are
current issues. These changes affect the quality of the water, which has negative effects
on human health and the environment. In Morocco, a large number of people use the
inland water for drinking and other purposes in both urban and rural areas. For that
reason, this study aims to assess and identify the interaction between SW and GW to assess
the sources of surface water pollution from the downstream discharges from the WWTP
treated effluents from the TAC industrial zone in northern Morocco and determine the
interference of polluted SW with shallow aquifer waters. This situation will require control
and permanent monitoring because it is a major hydric resource management problem.

Freshwater hydrochemistry was examined to identify interactions between the Ouljat
Echatt River SW and GW of the Jouamaa Hakama site. Spatial analysis of hydrochemical
data of well water (9 well water samples) and Ouljat Echatt river water (11 SW samples)
was done using hydrochemical methods, WQI and IWQI, multivariate statistics, and GIS-
based Inverse Distance Weighted Interpolation. A total of 16 physicochemical parameters
were analyzed, and an assessment of the surface water adequacy of irrigation was carried
out. This study examined freshwater hydrochemistry to identify interactions between the
Ouljat Echatt River SW and GW of the Jouamaa Hakama site. The work was carried out
downstream of the discharges from the WWTP treated effluents from the TAC industrial
zone in northern Morocco. Spatial analysis of hydrochemical data of well water (nine well
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water samples) and Ouljat Echatt river water (eleven SW samples) was undertaken using a
methodology based on hydrochemical modeling (HM) and PCA, WQI, irrigation indices,
GIS-based Inverse Distance Weighted Interpolation, and regression analysis.

The results indicated that the major ions found in GW and SW were characterized
in a different order in the anion list order Cl− > CO3

2− > NO3
− > HCO3

− > SO4
2− and

Cl− > SO4
2− > CO3

2− > NO3
− > HCO3

−, respectively, while the concentrations of cations
showed the same order for both: Na+ > Ca2+ > Mg2+ > K+. As a result, GW showed in the
Piper diagram as the sodium chloride to magnesium carbonate type, while SW belonged to
the sodium chloride to magnesium sulfate type.

According to the WQI calculated, the total well samples were rated as poor and very
poor. In addition, the calculated SWQI was rated as unsuitable for the total river samples.
The hydrochemical and statistical results suggest that there is an interaction between SW
and GW along the river segment downstream from the industrial area. We report that well
number 6, near the river, is unsafe for human consumption. Furthermore, the WQI of the
river’s many sample stations is all of poor quality. Based on the results of hydrochemical
parameters, we found a positive correlation with a strong significance (R2 = 0.85) that
explains the interaction between the GW of the Jouamaa Hakama site and the SW of the
Ouljat Echatt River. In addition, interpolation (IDW) of the different parameters analyzed
in this study shows a transverse gradient between GW and SW, which explains the GW–SW
connection along the 100 m strip on both sides of the river. We can also remark that the
intensity and significant concentrations of the parameters are high in the wells that are
near the river. According to the logarithmic regression analysis, we can conclude that the
wells near the river showed higher R2 values (P6–P8) than those at a big distance (P3, P4).
The IDW expressed as a transverse and longitudinal gradient and the higher logarithmic
regression coefficients (R2 > 0.70) of Mg2+, K+, NO3

−, and HCO3
− indicate that SW and

GW interact, which enables us to deduce clear information about the types of variables that
impact the interaction (the distance between the river and well).

Through these results, the use of emerging techniques and mathematical models
makes it possible to characterize the quality of land waters and shows the importance of
an approach combining hydrochemical data interpreted by multivariate statistics and GIS
techniques for the assessment of GW–SW interaction in downstream treated discharges
from the TAC industrial zone in northern Morocco. Accordingly, policymakers and water
managers in Morocco can use the results derived from a new coupled framework to achieve
sustainable GW and SW management, prevent anthropogenic activities nationwide, and
consolidate bases of sustainable development. This technique is intended to provide an
accurate representation of the interaction between SW and GW; this is why it is highly
recommended that it be applied to other studies with similar areas to monitor the state
of water resources in Morocco. Other investigations, such as heavy metal analysis and
bacteriological analysis, are required to fully understand the interaction of GW and SW
as well as the influence of surface water on groundwater, which can be confirmed by
repeat sampling.

If no measures are taken to limit river degradation, the pollution will eventually be
diffused into the underground waters beyond the 100 m band studied. Basically, to prevent
the contamination of groundwater by polluted surface water, it is necessary to use the
process of bioremediation, which involves using plants to extract the contamination from
surface water in the rhizosphere by using their roots. Additionally, digging wells farther
from the river at a distance greater than 100 m can another solution, as well as using
chlorine for water treatment and biological filters such as reeds.
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