Effect of Rock Film Mulching on Preferential Flow at Rock–Soil Interfaces in Rocky Karst Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Method of Rock Film Mulching
2.3. Dye Tracer Test
2.4. Soil Water Content Measurement
2.5. Data Analysis
3. Results
3.1. Soil Water Flow Paths
3.2. Change in Soil Water Content
3.3. Change in Dye Coverage
4. Discussion
4.1. Change in Soil Water Flow Paths
4.2. Application of Rock Film Mulching
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drew, D.P. Accelerated soil erosion in a karst area: The Burren, western Ireland. J. Hydrol. 1983, 61, 113–124. [Google Scholar] [CrossRef]
- Wang, S.J.; Li, R.L.; Sun, C.X.; Zhang, D.F.; Li, F.Q.; Zhou, D.Q.; Xiong, K.N.; Zhou, Z.F. How types of carbonate rock assemblages constrain the distribution of karst rocky desertified land in Guizhou Province, PR China: Phenomena and mechanisms. Land Degrad. Dev. 2004, 15, 123–131. [Google Scholar] [CrossRef]
- Bakalowicz, M. Karst groundwater: A challenge for new resources. Hydrogeol. J. 2005, 13, 148–160. [Google Scholar] [CrossRef]
- Calvo-Cases, A.; Boix-Fayos, C.; Imeson, A. Runoff generation, sediment movement and soil water behaviour on calcareous (limestone) slopes of some Mediterranean environments in SE Spain. Geomorphology 2003, 50, 269–291. [Google Scholar] [CrossRef]
- Herman, E.K.; Toran, L.; White, W.B. Clastic sediment transport and storage in fluviokarst aquifers: An essential component of karst hydrogeology. Carbonates Evaporites 2012, 27, 211–241. [Google Scholar] [CrossRef]
- Collon, P.; Bernasconi, D.; Vuilleumier, C.; Renard, P. Statistical metrics for the characterization of karst network geometry and topology. Geomorphology 2017, 283, 122–142. [Google Scholar] [CrossRef]
- Poesen, J.; Lavee, H. Rock fragments in top soils: Significance and processes. Catena 1994, 23, 1–28. [Google Scholar] [CrossRef]
- Williams, P.W. The role of the epikarst in karst and cave hydrogeology: A review. Int. J. Speleol. 2008, 37, 1–10. [Google Scholar] [CrossRef]
- Jomaa, S.; Barry, D.A.; Heng, B.C.P.; Brovelli, A.; Sander, G.C.; Parlange, J.Y. Influence of rock fragment coverage on soil erosion and hydrological response: Laboratory flume experiments and modeling. Water Resour. Res. 2012, 48, 213–223. [Google Scholar] [CrossRef]
- Luo, L.; Wu, Y.Y.; Li, H.T.; Xing, D.K.; Zhou, Y.; Xia, A.T. Drought Induced Dynamic Traits of Soil Water and Inorganic Carbon in Different Karst Habitats. Water 2022, 14, 3837. [Google Scholar] [CrossRef]
- Tu, N.; Dai, Q.; Yan, Y.; Peng, X.; Meng, W.; Cen, L. Effects of moss overlay on soil patch infiltration and runoff in karst rocky desertification slope land. Water 2022, 14, 3429. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, Q.; Ding, P.; Li, K.; Yi, X.; He, J.; Peng, X.; Yan, Y.; Zhao, M.; Yang, Y. Rapid response of runoff carrying nitrogen loss to extreme rainfall in gentle slope farmland in the karst area of SW China. Water 2022, 14, 3341. [Google Scholar] [CrossRef]
- Rieke-Zapp, D.; Poesen, J.; Nearing, M.A. Effects of rock fragments incorporated in the soil matrix on concentrated flow hydraulics and erosion. Earth Surf. Process. Landf. 2010, 32, 1063–1076. [Google Scholar] [CrossRef]
- Zhao, Z.M.; Shen, Y.X.; Shan, Z.J.; Yu, Y.; Zhao, G.J. Infiltration patterns and ecological function of outcrop runoff in epikarst areas of southern China. Vadose Zone J. 2018, 17, 1–10. [Google Scholar] [CrossRef]
- Zhao, Z.M.; Shen, Y.X.; Jiang, R.H.; Wang, Q.H. Rock outcrops change infiltrability and water flow behavior in a karst soil. Vadose Zone J. 2020, 19, e20002. [Google Scholar] [CrossRef]
- Sohrt, J.; Ries, F.; Sauter, M.; Lange, J. Significance of preferential flow at the rock soil interface in a semi-arid karst environment. Catena 2014, 123, 1–10. [Google Scholar] [CrossRef]
- Gao, R.X.; Dai, Q.H.; Gan, Y.X.; Yan, Y.J.; Peng, X.D. The mechanisms of nutrient output through water flow from sloping farmland with slight rocky desertification in a karst region. Environ. Res. Lett. 2020, 15, 094085. [Google Scholar] [CrossRef]
- Fu, T.G.; Chen, H.S.; Zhang, W.; Nie, Y.P.; Gao, P.; Wang, K.L. Spatial variability of surface soil saturated hydraulic conductivity in a small karst catchment of southwest China. Environ. Earth Sci. 2015, 74, 2381–2391. [Google Scholar] [CrossRef]
- Morin, J.; Keren, R.; Benjamini, Y.; Ben-Hur, M.; Shainberg, I. Water infiltration as affected by soil crust and moisture profile. Soil Sci. 1989, 148, 53–59. [Google Scholar] [CrossRef]
- Laine-Kaulio, H.; Backnäs, S.; Koivusalo, H.; Laurén, A. Dye tracer visualization of flow patterns and pathways in glacial sandy till at a boreal forest hillslope. Geoderma 2015, 259, 23–34. [Google Scholar] [CrossRef]
- Alakukku, L.; Nuutinen, V.; Ketoja, E.; Koivusalo, H.; Paasonen-Kivekäs, M. Soil macroporosity in relation to subsurface drain location on a sloping clay field in humid climatic conditions. Soil Tillage Res. 2010, 106, 275–284. [Google Scholar] [CrossRef]
- Jiang, X.J.; Liu, W.J.; Wang, E.H.; Zhou, T.Z.; Xin, P. Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China. Soil Tillage Res. 2017, 166, 100–107. [Google Scholar] [CrossRef]
- Kodešová, R.; Němeček, K.; Kodeš, V.; Žigová, A. Using dye tracer for visualization of preferential flow at macro-and microscales. Vadose Zone J. 2012, 11, 12–22. [Google Scholar] [CrossRef]
- Jiang, X.J.; Chen, C.F.; Zhu, X.A.; Zakari, S.; Singh, A.K.; Zhang, W.J.; Zeng, H.H.; Yuan, Z.Q.; He, C.G.; Yu, S.H.; et al. Use of dye infiltration experiments and hydrus-3d to interpret preferential flow in soil in a rubber-based agroforestry systems in xishuangbanna, China. Catena 2019, 178, 120–131. [Google Scholar] [CrossRef]
- Van Schaik, N. Spatial variability of infiltration patterns related to site characteristics in a semi-arid watershed. Catena 2009, 78, 36–47. [Google Scholar] [CrossRef]
- Wilcox, B.P.; Taucer, P.I.; Munster, C.L.; Owens, M.K.; Mohanty, B.P.; Sorenson, J.R.; Bazan, R. Subsurface storm flow is important in semiarid karst shrublands. Geophys. Res. Lett. 2008, 35, 1–6. [Google Scholar] [CrossRef]
- Jarvis, N.; Koestel, J.; Larsbo, M. Understanding preferential flow in the vadose zone: Recent advances and future prospects. Vadose Zone J. 2016, 15, 1–11. [Google Scholar] [CrossRef]
- Dai, Q.H.; Peng, X.D.; Yang, Z.; Zhao, L.S. Runoff and erosion processes on bare slopes in the karst rocky desertification area. Catena 2017, 152, 218–226. [Google Scholar] [CrossRef]
- Lange, J.; Greenbaum, N.; Husary, S.; Ghanem, M.; Leibundgut, C.; Schick, A.P. Runoff generation from successive simulated rainfalls on a rocky, semi-arid Mediterranean hillslope. Hydrol. Process. 2003, 17, 279–296. [Google Scholar] [CrossRef]
- Liu, T.T.; Peng, X.D.; Dai, Q.H.; Xu, S.B. Role of the preferential flow at rock–soil interface in the water leaking process in near–surface fissures filled with soils in the karst rock desertification area. Appl. Water Sci. 2022, 12, 208. [Google Scholar] [CrossRef]
- Ries, F.; Lange, J.; Schmidt, S.; Puhlmann, H.; Sauter, M. Recharge estimation and soil moisture dynamics in a Mediterranean, semi-arid karst region. Hydrol. Earth Syst. Sci. 2015, 19, 1439–1456. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Niu, J.; Li, H.; Xiao, R.; Zheng, H.; Bech, J. Rock fragments and soil hydrological processes: Significance and progress. Catena 2016, 147, 153–166. [Google Scholar] [CrossRef]
- Qi, W.; Zhang, Z.Y.; Wang, C.; Chen, Y.; Zhang, Z.M. Crack closure and flow regimes in cracked clay loam subjected to different irrigation methods. Geoderma 2020, 358, 113978. [Google Scholar] [CrossRef]
- Göransson, H.; Edwards, P.J.; Perreijn, K.; Smittenberg, R.H.; Olde Venterink, H. Rocks create nitrogen hotspots and N:P heterogeneity by funnelling rain. Biogeochemistry 2014, 121, 329–338. [Google Scholar] [CrossRef]
- Shen, Y.X.; Zhao, Z.M.; Bi, S.C.; Zhao, G.J.; Liu, J. Rock outcrop and its ecological function in terrestrial ecosystem. Adv. Earth Sci. 2018, 33, 343–349. (In Chinese) [Google Scholar]
- Wang, D.J.; Shen, Y.X.; Huang, J.; Li, Y.H. Rock outcrops redistribute water to nearby soil patches in karst landscapes. Environ. Sci. Pollut. Res. 2016, 23, 8610–8616. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.X.; Wang, D.J.; Chen, Q.Q.; Tang, Y.Y.; Chen, F.J. Large heterogeneity of water and nutrient supply derived from runoff of nearby rock outcrops in karst ecosystems in SW China. Catena 2019, 172, 125–131. [Google Scholar] [CrossRef]
- Allaire, S.E.; Roulier, S.; Cessna, A.J. Quantifying preferential flow in soils: A review of different techniques. J. Hydrol. 2009, 378, 179–204. [Google Scholar] [CrossRef]
- Zhu, X.A.; Chen, C.F.; Wu, J.E.; Yang, J.B.; Zhang, W.J.; Zou, X.; Liu, W.J.; Jiang, X.J. Can intercrops improve soil water infiltrability and preferential flow in rubberbased agroforestry system? Soil Tillage Res. 2019, 191, 327–339. [Google Scholar] [CrossRef]
- Jačka, L.; Walmsley, A.; Kovář, M.; Frouz, J. Effects of different tree species on infiltration and preferential flow in soils developing at a clayey spoil heap. Geoderma 2021, 403, 115372. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Dayal, D.; Bandyopadhyay, K.K.; Mohanty, M. Evaluation of straw and polythene mulch for enhancing productivity of irrigated summer groundnut. Field Crop. Res. 2006, 99, 76–86. [Google Scholar] [CrossRef]
- Witty, J.H.; Graham, R.C.; Hubbert, K.R.; Doolittle, J.A.; Wald, J.A. Contributions of water supply from the weathered bedrock zone to forest soil quality. Geoderma 2003, 114, 389–400. [Google Scholar] [CrossRef]
- Cook, H.F.; Valdes, G.S.; Lee, H.C. Mulch effects on rainfall interception, soil physical characteristics and temperature under Zea mays L. Soil Tillage Res. 2006, 91, 227–235. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Y.; Liu, Y.; Wen, X.; Liao, Y. Coupling effects of plastic film mulching and urea types on water use efficiency and grain yield of maize in the Loess Plateau, China. Soil Tillage Res. 2016, 157, 1–10. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Jordán, A.; Tarolli, P.; Keesstra, S.; Novara, A.; Cerdà, A. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Sci. Total Environ. 2016, 547, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.N.; Novakowski, K.S. Numerical Analysis of Midwinter Infiltration along the Soil-Rock Interface: A Pathway for Enhanced Bedrock Recharge. Adv. Water Resour. 2022, 166, 104261. [Google Scholar] [CrossRef]
- Zhao, H.; Xiong, Y.C.; Li, F.M.; Wang, R.Y.; Qiang, S.C.; Yao, T.F.; Mo, F. Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem. Agric. Water Manag. 2012, 104, 68–78. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, R.Y.; Ma, B.L.; Xiong, Y.C.; Qiang, S.C.; Wang, C.L.; Liu, C.A.; Li, F.M. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem. Field Crop. Res. 2014, 161, 137–148. [Google Scholar] [CrossRef]
- Zhou, L.M.; Li, F.M.; Jin, S.L.; Song, Y. How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crop. Res. 2009, 113, 41–47. [Google Scholar] [CrossRef]
Number | RFM | NRFM | Soil Particle Contents (%) | Vegetation Composition | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Perimeter (m) | Height (cm) | Soil Water Content (%vol.) | Perimeter (m) | Height (cm) | Soil Water Content (%vol.) | Sand | Silt | Clay | ||
1 | 2.3 | 83.0 | 18.6 | 2.5 | 77.0 | 22.3 | Humus horizon (0–10 cm) | Zea may, Pyracantha fortuneana, Rubus biflorus, Ageratina adenophora, Bidens pilosa, Urtica fissa, Cirsium japonicum, Setaria viridis, Eleusine indica, Oplismenus compositus | ||
2 | 2.7 | 72.0 | 17.3 | 2.1 | 79.0 | 20.1 | 26.4 | 62.2 | 11.4 | |
3 | 3.2 | 64.0 | 22.5 | 2.9 | 83.0 | 24.2 | Eluvial horizon (10–30 cm) | |||
4 | 3.5 | 82.0 | 24.1 | 3.9 | 65.0 | 20.7 | 12.6 | 54.3 | 33.1 | |
5 | 2.9 | 77.0 | 16.9 | 3.1 | 69.0 | 18.9 | Illuvial horizon (30–100 cm) | |||
6 | 2.6 | 73.0 | 21.2 | 2.3 | 88.0 | 19.1 | 8.9 | 32.3 | 58.8 | |
Mean | 2.9 | 75.3 | 20.1 | 2.8 | 76.8 | 20.9 |
Number | Dye Depth (cm) | Dye Width (cm) | Preferential Flow Index (%) | Soil Water Content (%vol.) | ||||
---|---|---|---|---|---|---|---|---|
NRFM | RFM | NRFM | RFM | NRFM | RFM | NRFM | RFM | |
1 | 49.6 | 19.3 | 14.8 | 27.4 | 36.3 | 5.3 | 37.9 | 51.3 |
2 | 50.2 | 22.4 | 13.2 | 26.3 | 37.9 | 5.9 | 31.1 | 48.7 |
3 | 38.8 | 13.8 | 22.4 | 41.3 | 27.8 | 3.7 | 25.5 | 44.2 |
4 | 53.5 | 18.2 | 11.9 | 29.8 | 42.3 | 5.1 | 32.6 | 58.9 |
5 | 41.9 | 16.7 | 20.2 | 32.5 | 30.7 | 4.5 | 27.1 | 54.1 |
6 | 43.1 | 14.9 | 17.3 | 36.7 | 31.5 | 4.1 | 34.4 | 61.2 |
Mean ± SD | 46.2 ± 5.7 a | 17.6 ± 3.1 b | 16.6 ± 4.1 b | 32.3 ± 5.8 a | 34.4 ± 5.4 a | 4.8 ± 0.8 b | 31.4 ± 4.6 b | 53.1 ± 6.4 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Wang, Q. Effect of Rock Film Mulching on Preferential Flow at Rock–Soil Interfaces in Rocky Karst Areas. Water 2023, 15, 1775. https://doi.org/10.3390/w15091775
Zhao Z, Wang Q. Effect of Rock Film Mulching on Preferential Flow at Rock–Soil Interfaces in Rocky Karst Areas. Water. 2023; 15(9):1775. https://doi.org/10.3390/w15091775
Chicago/Turabian StyleZhao, Zhimeng, and Qinghe Wang. 2023. "Effect of Rock Film Mulching on Preferential Flow at Rock–Soil Interfaces in Rocky Karst Areas" Water 15, no. 9: 1775. https://doi.org/10.3390/w15091775
APA StyleZhao, Z., & Wang, Q. (2023). Effect of Rock Film Mulching on Preferential Flow at Rock–Soil Interfaces in Rocky Karst Areas. Water, 15(9), 1775. https://doi.org/10.3390/w15091775