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Abstract: With the increasing demands for higher treatment efficiency, better effluent quality, and
energy conservation in Urban Wastewater Treatment Plants (WWTPs), research has already been
conducted to construct an optimized control system for Anaerobic-Anoxic-Oxic (AAO) process using
a data-driven approach. However, existing data-driven optimization control systems for AAO mainly
focus on improving effluent water quality and reducing energy consumption, therefore they lack
consideration for the stability of bioreactors. Meanwhile, safety in the optimization control process is
still missing, resulting in a lack of reliability in practical applications. In this study, long short-term
memory based model-predictive control (LSTM-MPC) with safety verificationis developed for the
real-time control of AAO. It is used to optimize the control of aeration volume, internal recirculation,
and sludge internal recycle processes for both saving energy and maintaining the stability of the
bioreactor operation. To ensure the safety of the control process, this study proposes three rationality
verification methods based on historical operation experience. These methods are validated through
data from a real-world WWTP in eastern China. The results show that the prediction model of
LSTM-MPC is capable of accurately predicting the water quality variables of the AAO system, with
mean square error (MSE) close to 2.64 and Nash–Sutcliffe model efficiency coefficient (NSE) of 0.99
on the validation dataset. The combination of LSTM-MPC and rationality verification achieves a
stable control trajectory with a 7% reduction in oxygen usage compared to a conventional controller,
demonstrating its efficacy as a safe and reliable control strategy for WWTPs.

Keywords: model predictive control; wastewater treatment plants; deep learning; artificial
neural network

1. Introduction

Discharge of wastewater has been steadily increasing over the years in China due to
urbanization and population growth. There is still a disparity between China’s modern
Integrated Water Resources Management (IWRM) and that of some developed countries [1].
In China, the conventional activated sludge process has been utilized as a crucial treatment
to treat over 80% of the wastewater in Wastewater Treatment Plants (WWTPs) [2]. However,
due to the time delay between the monitoring of the biological process and control actions,
WWTPs are difficult to attain precise control, resulting in over-aeration and improper
dosing which lead to higher energy consumption and overall treatment costs. The average
energy consumption of wastewater treatment in China is 0.29 kW-h/m3 [3], indicating
substantial potential for energy conservation [4].

Research has demonstrated that applying model predictive control (MPC) in WWTPs
can lead to refined control, resulting in energy or material savings under the same influent
conditions [5]. MPC [6] is a class of control algorithms that uses explicit process models
to predict the future response of a system and has been widely applied in various indus-
tries. MPC uses process models to predict the future dynamic behavior of a system and
combines recursive optimization and feedback emendation strategies to improve system
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performance within constraints [7,8]. A considerable number of studies have applied MPC
and mechanism models, e.g., the activated sludge models (ASMs) [9], to design control
strategies for WWTPs. For instance, Holenda et al. [10] effectively controlled dissolved
oxygen in the activated sludge process using MPC combined with the activated sludge
model No. 1 (ASM1) model. Liu et al. [11] demonstrated the effectiveness of ASM1-based
MPC in controlling ammonia nitrogen in WWTPs.

However, MPC requires a detailed model whose modeling process is complex due
to the nonlinear and time-varying nature of the bioreaction system and the influence of
environmental factors [12]. Despite ASMs being quite refined models for MPCs, they have
limitations in accuracy, cumbersome modeling, and computational time. Also, incomplete
modeling of certain processes, such as phosphorus removal, further restricts ASM-based
MPCs’ potential in controlling variable prediction or optimal control [13]. Currently, ASM-
based MPCs are not widely used in full-flow WWTP bioreactors [14]. Instead, some studies
have utilized linear models in place of ASMs to reduce the computational time [15–17].

For the prediction models in MPC, data-driven and artificial intelligence (AI) models
have garnered significant attention in the wastewater treatment industry due to the ad-
vent of information technology [18–21]. Compared to traditional mechanistic models that
are characterized by fixed numerous parameters, data-driven models possess powerful
fitting ability and adaptability that enable them to effectively learn non-linear and com-
plex biological treatment systems. The simulation models of biological reaction tanks in
wastewater treatment plants using artificial intelligence mainly include traditional machine
learning models [20], simple artificial neural network models (ANN) [18,19,21], and deep
neural network models (DNN) [22,23], etc. These aforementioned studies have shown
that the prediction results of neural network models are consistent with the measured
values. Moreover, the long short-term memory (LSTM) model has been found to exhibit
higher prediction accuracy compared to other simple neural networks [24–26]. In recent
years, MPC based on the deep neural network has been developed for WWTP [27–29].
Pisa et al. [25] used LSTM in conjunction with model predictive control (MPC) to regulate
sulfur emissions from wastewater treatment plants. Literature tends to focus on benchmark
simulation model 1 (BSM1) simulation studies or univariate regression tasks using LSTM
as a predictive model.

The aforementioned MPC methods overcome the disadvantages of mechanism models
in MPC and are capable of effectively utilizing monitoring data from wastewater treatment
plants (WWTPs) to model and optimize complex biochemical processes. However, current
research on data-driven MPC still have limitations in actual systems and operational
challenges still exist.

(1) Existing MPC for WWTP focus on enhancing the effluent quality and reducing
energy consumption. For the biological reaction process of Anaerobic-Anoxic-Oxic (AAO),
the stability of the dynamic state, e.g., mixed liquor suspended solids (MLSS) and dissolved
oxygen in bioreactors, during the operation still lacks further consideration.

(2) Machine learning-based MPC is perceived as a black-box model, whose outputs
may not be readily interpretable and reliable, therefore, its decisions may not be trusted
by WWTP operators. Moreover, the model’s predictive performance is highly dependent
on training data, and it is often difficult to guarantee the safety of the output in case of
learning failure. The systematic analysis and solution to the improvement of the control
strategy’s safety of data-driven MPC in WWTPs still need further investigation.

To overcome these limitations, an LSTM-based model predictive control method
(LSTM-MPC) and its corresponding rationality verification were developed in this study
for the biochemical reaction of a real combined sewer system (CSS) WWTP. First, the
stability of bioreactor state variables and energy consumption were taken as the objectives
of the optimal control. Then, to address concerns about the safety of the black-box control
model, three rationality verification methods were designed based on historical monitoring
dataset to constrain the output of the control term, providing a reliable MPC model in
practical operation.
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2. Data and Case Description
2.1. Wastewater Treatment Plant (WWTP) Description

The WWTP is located in Shanghai, China with a treatment capacity of 10 × 104 m3/d.
It adopts the traditional AAO process and the effluent meets the Class A Discharge standard
of pollutants for municipal wastewater treatment plants (GB, 18918-2002).

As shown in Figure 1, AAO uses microorganisms to consume organic pollutants in the
water through anaerobic, anoxic, oxic treatment processes and internal and external reflux,
while removing inorganic pollutants such as ammonia and phosphorus from the water [30].
The blowers provide sufficient oxygen for the microorganisms in the aeration section of the
biochemical reaction tank to treat organic matters, while aeration at the bottom of the tank
keeps the activated sludge from depositing and mixing with the effluent.

Water 2023, 15, x FOR PEER REVIEW 3 of 19 
 

 

To overcome these limitations, an LSTM-based model predictive control method 
(LSTM-MPC) and its corresponding rationality verification were developed in this study 
for the biochemical reaction of a real combined sewer system (CSS) WWTP. First, the 
stability of bioreactor state variables and energy consumption were taken as the objectives 
of the optimal control. Then, to address concerns about the safety of the black-box control 
model, three rationality verification methods were designed based on historical 
monitoring dataset to constrain the output of the control term, providing a reliable MPC 
model in practical operation.  

2. Data and Case Description 
2.1. Wastewater treatment plant (WWTP) description 

The WWTP is located in Shanghai, China with a treatment capacity of 10 × 104 m3/d. 
It adopts the traditional AAO process and the effluent meets the Class A Discharge 
standard of pollutants for municipal wastewater treatment plants (GB, 18918–2002). 

As shown in Figure 1, AAO uses microorganisms to consume organic pollutants in 
the water through anaerobic, anoxic, oxic treatment processes and internal and external 
reflux, while removing inorganic pollutants such as ammonia and phosphorus from the 
water [30]. The blowers provide sufficient oxygen for the microorganisms in the aeration 
section of the biochemical reaction tank to treat organic matters, while aeration at the 
bottom of the tank keeps the activated sludge from depositing and mixing with the 
effluent. 

 

 
 

Figure 1. Flow chart of bioreactors of the wastewater treatment plant 

2.2. dataset and preprocessing 
 

We collected water quality data of the bioreactors in the WWTP from 2019 to 2021 
using the online monitoring system, which has 5 min frequency of sampling. Due to 
sampling error and missing time stamp of the original data, we used the data from 
2019.06.13 to 2019.09.25 for modeling in this paper. 

The dataset consisted of three parts: The influent data, bioreactor tank data(state 
data), and control data. The influent data includes influent flow rate (Qin), inflow water 
quality (COD, NH4+-N, TP, TN, SS, pH), and environmental temperature (T). The bioreactor 
tank data includes dissolved oxygen (DO), oxidation-reduction potential (ORP), ammonia 
nitrogen (NH4+-N), nitrate nitrogen (NO3-), and concentration of mixed liquor suspended 
solids (MLSS) in bioreactor tanks. The control data includes aeration volumes, internal 
recirculation flow rate (Qr), and sludge internal recycle flow rate (Qsr). The abnormal 
values of these data were examined by PauTa Criterion (Eq.1) and deleted. Furthermore, 
to reduce the effect of a small amount of anomalous data and supplement missing values, 
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2.2. Dataset and Preprocessing

We collected water quality data of the bioreactors in the WWTP from 2019 to 2021
using the online monitoring system, which has 5 min frequency of sampling. Due to
sampling error and missing time stamp of the original data, we used the data from 13 June
2019 to 25 September 2019 for modeling in this paper.

The dataset consisted of three parts: The influent data, bioreactor tank data (state
data), and control data. The influent data includes influent flow rate (Qin), inflow water
quality (COD, NH4

+-N, TP, TN, SS, pH), and environmental temperature (T). The bioreactor
tank data includes dissolved oxygen (DO), oxidation-reduction potential (ORP), ammonia
nitrogen (NH4

+-N), nitrate nitrogen (NO3
−), and concentration of mixed liquor suspended

solids (MLSS) in bioreactor tanks. The control data includes aeration volumes, internal
recirculation flow rate (Qr), and sludge internal recycle flow rate (Qsr). The abnormal values
of these data were examined by PauTa Criterion (Equation (1)) and deleted. Furthermore, to
reduce the effect of a small amount of anomalous data and supplement missing values, this
study used time-averaged interpolation (Equation (2), where the time span step N = 500)
for data preprocessing.
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N

N
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2
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These preprocessing methods eliminate outliers in the dataset and supplement missing
values by interpolation to avoid the impact of abnormal values. The ranges, mean values,
and quartiles of the processed data are listed in Table 1.
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Table 1. Cleaned dataset from January 2019 to June 2021.

Data Parameters Maximum Minimum Average Q1 Q2 Q3

Qin (m3/s) 2.759 2.462 2.623 2.578 2.622 2.667
Inflow COD (mg/L) 390.199 101.889 233.743 207.158 227.656 265.799

Inflow NH4
+-N (mg/L) 30.433 9.516 17.877 14.397 17.533 20.668

Inflow TP (mg/L) 3.365 1.150 2.241 1.897 2.285 2.565
Inflow TN (mg/L) 32.979 10.799 23.370 20.817 23.888 26.766
Inflow SS (mg/L) 529.006 17.948 188.958 93.172 178.071 275.043

Inflow PH 7.113 6.052 6.524 6.453 6.535 6.647
Inflow Temperature (◦C) 30.747 22.063 25.302 23.223 25.268 26.485

Anaerobic ORP −449.244 −490.661 −471.992 −475.004 −473.615 −469.433
Anoxic ORP 38.548 −139.841 −57.301 −115.423 −83.833 11.299

Anaerobic MLSS (g/L) 5.046 1.575 3.631 3.395 3.672 4.057
Anoxic MLSS (g/L) 4.822 2.772 3.672 3.486 3.616 3.814

Oxic MLSS (g/L) 5.837 0.867 3.675 2.049 4.059 4.570
DO1 (mg/L) 2.632 0.074 0.733 0.438 0.636 0.979
DO2 (mg/L) 4.882 0.033 0.857 0.250 0.656 1.066
DO3 (mg/L) 5.830 0.665 3.043 1.469 3.134 4.415
DO4 (mg/L) 7.297 1.052 4.173 3.139 4.351 5.309

Oxic NO3 (mg/L) 14.970 5.742 9.582 8.300 9.067 10.342
Aeration volume 1 (m3/min) 39.829 21.505 29.376 26.379 27.790 31.180
Aeration volume 2 (m3/min) 50.482 28.771 34.619 32.000 35.283 36.630
Aeration volume 3 (m3/min) 22.657 12.481 17.635 17.150 18.061 18.957
Aeration volume 4 (m3/min) 24.901 17.167 21.325 19.833 21.490 22.645

Qsr (m3/s) 1.983 1.331 1.675 1.528 1.698 1.789
Qr (m3/s) 4.930 4.188 4.494 4.386 4.451 4.617

In this study, we further processed the original data using the following min-max
normalization (Equation (3), where Ymax stands for the maximum value of the original
data, Ymin is the minimum value) to transformed data into the range [−1, 1] and reduce the
impact of the difference magnitude level of the data values.

y = 2
Y−Ymin

Ymax −Ymin
− 1 (3)

3. Methodology
3.1. LSTM Stimulatuon Model

The state of the bioreactors at the previous moment in the wastewater treatment
process has an impact on the subsequent bioreaction. While the LSTM can achieve the
function of filtering and storing information, capturing the long-term dependencies present
in the data [31,32], and therefore is more suitable for the dynamic of long time series data
in this study.

The LSTM neural network was used to predict the state of the bioreactor at the next
time step. The construction of LSTM considered the effects of organic nutrients on water
quality and operational parameters. In this study, the time series dataset of state variables,
influent variables, and control variables was used as inputs, and outputs were the state
variables at the next time step. The specific mathematical formula of the model is as follows.

Yt+∆t = LSTM(Xt, Xt−1, . . . , Xt−L|at, at−1, . . . , at−Lrt, rt−1, . . . , rt−L, θ) (4)

Xt are the state variables, containing: DO, MLSS, ORP, Oxic NO3;
rt are the influent variables, containing: Qin, COD, TP, TN, NH4

+-N, PH, SS;
at are the control variables, where at1 is the aeration volume, at2 is the internal return

flow rate (Qr), and at3 is the sludge internal recycle flow rate (Qsr);
Yt are the output state variables, containing DO, MLSS, ORP, and Oxic NO3 at the next

time step.
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∆t is the prediction time step.
θ is the parameters of LSTM.
Figure 2 shows the schematic diagram of the LSTM model proposed in this study. The

structural hyperparameters of LSTM are mainly the number of hidden layer neurons of
LSTM cells (Num_units in Figure 2), so this study used different numbers of LSTM units
for testing, and the final output is passed through a dense layer. In this paper, four LSTM
model structures (named structure 1–4) were constructed to verify their performance on the
prediction. The parameters of each structure, which were gradually adjusted in pre-tests,
are shown in Table 2. All the LSTM models were developed by Python 3.0 and TensorFlow
library [33].
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Table 2. Parameters of LSTM model structure 1–4.

Hidden Layer
Neurons

(Num_Unit)
Input Shape Activation

Function
Parameter of the Training Algorithm

Initial Learning Rate Epoch Loss

Structure 1 10 [n, 10, 24]
n: number of input data;

10: time steps;
24: the number of states

tanh 0.0001 100 MSE
Structure 2 15
Structure 3 20
Structure 4 25

Model performance evaluation aims to assess the effectiveness of model predictions.
In this study, the results of the proposed model predictions were evaluated by mean
squared error (MSE, Equation (5)) and Nash–Sutcliffe model efficiency coefficient (NSE,
Equation (6)), where n corresponds to the total number of measurements, Pi is the model
predicted value, and Si is the sample real value, and Si denotes the total average of the
sample real values.

MSE =
1
n

n

∑
i=1

(Pi − Si)
2 (5)

NSE = 1− ∑n
i=1(Pi − Si)

2

∑n
i=1
(
Si − Si

)2 (6)
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3.2. MPC Based on LSTM for Bioreaction Optimal Control
3.2.1. Structure of MPC

Based on the above LSTM, this study used a standard MPC architecture based on
recursive optimization [6,25] to build a real-time optimization model called LSTM-MPC
which can be described by 4 steps and is shown in Figure 3 below.
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Step 1, initialization: The control strategy is randomly initialized within a limited
range based on the control variable of the collected dataset.

Step 2, prediction: The real-time monitoring data and initialized control variables are
used as inputs and sent into the LSTM for prediction.

Step 3, evaluation: The prediction results are evaluated to determine whether the
current state can achieve the goal of optimal control with respect to the control variables in
Step 1. If true, the control variables will be output as a control strategy. Otherwise, go to
step 4.

Step 4, optimization: The control variables are sent into the optimization algorithm
(e.g., PSO in this study) for optimization, and the optimized control variables are used as
the new control variables in Step 2.

These four steps should be finished within one control interval (less than or equal
to ∆t) for real-time control. Through the above process, a sufficiently optimized control
strategy will be obtained for system operation.

In this study, considering the characteristics of the bioreactor, the following three
control variables are optimized.

(1) Optimization of at1 aeration control
Research shows that biological treatment is the main energy user in Chinese WWTPs [34].

In the aeration process of the AAO, there are often random factors and lags in human op-
eration, leading to excessive aeration and excessive consumption of electricity. Reducing
aeration is one of the most important and feasible steps to achieve energy savings. At the
same time, controlling dissolved oxygen in the bioreaction tank through aeration control
is the most effective way to control greenhouse gas emissions, which is in line with the
sustainable development needs of sewage treatment plants [35]. Therefore, in the opti-
mization of WWTPs operations, the process control means are recommended to prioritize
aeration control.

(2) Optimization of at2 internal recirculation control
The internal recirculation of the AAO process mainly provides nitrogen sources for

denitrification reactions in the anoxic tank to achieve nitrogen removal. As this stage
requires a low concentration of dissolved oxygen and sufficient nitrogen source input,
optimizing internal recirculation can effectively stabilize the operation of the process.

(3) Optimization of at3 sludge’s internal recycle control
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The sludge’s internal recycle flow of AAO mainly replenishes the activated sludge in
the reaction tanks and maintains the total amount of activated sludge. The control of at3
can ensure stable and qualified effluent to a certain extent in practical reaction conditions
of the bioreactors.

3.2.2. Optimization Algorithm

For the control requirements of the biochemical reactor tanks and the control duration,
the optimization algorithm selected in this study is the Particle Swarm Optimization (PSO)
algorithm [36,37]. PSO optimizes the control variables through the particle’s velocity and
their best-know positions, and its flow chart is shown in Figure 4 below.
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(mv) 

Figure 4. The flowchart of the PSO algorithm.

Since the time interval of control equipment (e.g., blowers and pumps) in the AAO
process is 30 min, the control time step ∆t = 30 min. The proposed optimization model was
developed in Python. The algorithm parameter configurations were as follows: population
size pop_size = 30, inertia weight w = 0.2, acceleration constant C1 = C2 = 0.6, and the
maximum number of iterations max_steps = 500. Due to the requirement of the algorithm
speed in the actual control, the optimization algorithm was terminated if there was no
significant change in the fitness function during 200 iterations.

3.2.3. Fitness Function

In the optimization algorithm, the fitness function was set based on control require-
ments. In this study, considering both the stability and optimization of the AAO process, a
comprehensive optimization fitness function Fit was designed (Equation (7)). This fitness
function consisted of two parts, stable control requirements (Ji, there are N of them) and
optimization control requirements (Gi, there are M of them). The detailed definition of
them are given in Equations (8) and (9), where xi is the ith state of the system, opt_bound
is the set target value of control variables.

Fit =
N

∑
i=1

Ji +
M

∑
j=1

Gj (7)

Ji =


1, lower_bound ≤ Xi ≤ upper_bound
exp(−|Xi − lower_bound|), Xi ≤ lower_bound
exp(−|upper_bound− Xi|), Xi ≥ upper_bound

(8)
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Gj = exp
(
−
∣∣aj − opt_bound

∣∣) (9)

Ji represents that xi needs to be maintained between the artificially specified upper and
lower bounds (lower_bound and upper_bound) which are shown in Table 3 below. The
Parameters Threshold is recommended by engineers in the WWTP and research [38,39].

Table 3. Parameters Threshold of Stable Control Requirements.

Anaerobic DO
(mg/L)

Anoxic DO
(mg/L)

Oxic DO
(mg/L)

MLSS
(g/L)

Anaerobic ORP
(mv)

Anoxic ORP
(mv)

lower_bound 0 0.2 2.0 2.0 Around −150 <−250
upper_bound 0.2 0.5 3.5 4.5

Gj indicates that aj needs to be as close as possible to the artificially specified target
(opt_bound). In other words, the closer the system’s control variables are to opt_bound, the
higher Fit score the system is. In this study, the parameters for setting Gj were:

(1) The aeration amount should be as low as possible, in Equation (9) aj > 0,
opt_bound = 0.

(2) The adjustment range of the Qr and Qsr ratios should be kept relatively stable to
reduce the impact of flow rate changes and the large-scale control operation of the pumps.
Their opt_bound in Equation (9) was a ratio determined by certain historical data.

3.3. The Rationality Verification for LSTM-MPC

After constructing the LSTM-MPC, it is necessary to preliminarily judge the rationality
of its output control variables and control effect to ensure safety and effectiveness.

The rationality verification proposed in this study is mainly based on three aspects:
whether the current optimization control variables are within the prescribed range set by
engineers, whether they are consistent with similar situations in history, and whether the
control effects of the current optimization control variables are acceptable. By checking
these three aspects, the evaluation of the effectiveness of optimization control can be made,
and its rationality can be determined accordingly, as shown in Figure 5.
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3.3.1. The Prescribed Range of Control Variables

When considering whether optimized control variables meet the standards of the
actual production process of the biochemical reactor, it is necessary to evaluate it through
the prescribed range.

In this study, the prescribed range is designed based on two parts: a large amount of
historical data on the biochemical reactors and recommended process parameters given
by engineers. For the first part, historical data and the 3σ principle were used to estimate
the prescribed range. The specific method is given as Equations (10) and (11), where U
represents the historical data of the control variable, and U represents the average control
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values of the historical data, and N represents the number of data. The recommended
process parameters

[
sdown, supper

]
is given by engineers and combined with the first part

through the intersection in Equation (12) to provide the final prescribed range.

upper = E[U] + 3
√

Var(U) =
1
N

N

∑
i=1

Ui + 3

√√√√ 1
N

N

∑
i=1

(
Ui −U

)2 (10)

down = E[U]− 3
√

Var(U) =
1
N

N

∑
i=1

Ui − 3

√√√√ 1
N

N

∑
i=1

(
Ui −U

)2 (11)

u ∈ [down, upper] ∩
[
sdown, supper

]
(12)

3.3.2. Consistency with Similar Historical States

In this study, the control variables were provided with respect to a given state. There-
fore, they should be consistent with themselves in similar situations in history. This study
used Euclidean distance d(x, y) (Equation (13), where x is the system state at the current
moment, and y is the historical data of the state) to evaluate the similarity between the
current situation and historical situations, through which the similar control variables in
history were selected and compared with current control variables, so as to evaluate the
rationality. Detailed steps were given as follows.

d(x, y) =

√√√√ M

∑
i=1

(xi − yi)
2 (13)

First, for the current system status (DO, MLSS, COD, etc.), find the historical data
of similar states. If the Euclidean distance d(x, y) between the two was less than a given
threshold, the two states were considered to be close, and the control variables correspond-
ing to y were collected, thereby obtaining the control variables under conditions similar to
those in history with the current state. Afterward, the 3σ principle was used to estimate
the upper and lower limits of the collected control variables. Finally, this upper and lower
limit was taken as the judgment standard to evaluate whether the optimized control vari-
ables were within this range, thereby further supplementing the evaluation standard of
their rationality.

3.3.3. Evaluation of the Control Effects

For MPC, the optimized control variables are mainly used to control the system in the
future period. Therefore, it is necessary to predict and evaluate the effects of the control
variables to determine their effectiveness.

The method for predicting and evaluating the control effects was as follows. Firstly,
the optimized control variables and the current state variables were used as inputs for
the prediction model, i.e., LSTM, to make a one-step prediction (Equation (14), where u′t
represents the optimized control variables). Then, the predicted result was compared with
the operating standards of the biochemical reactor. If the predicted state variables (DO,
MLSS, etc.) were within the prescribed range of the biochemical reactor, then the optimized
control variables were considered acceptable and can be used. Otherwise, it was considered
that the current control variables might pose a risk to the system during the actual control
process and could not be used as the final output, even though it may save aeration.

Xt+1 = LSTM(Xt−T , . . . , Xt−1, Xt|u′t, rt)

Xt+1 ∈
[
Xdown, Xupper

] (14)
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4. Results
4.1. LSTM Prediction

Four LSTM models (structure 4 in Table 2) were trained through the method in
Section 3.1. Combined with the hydraulic retention time (HRT) of the AAO process and the
actual operation interval for the WWTP control, the input of the LSTMs in this study was
the state variables, the influent variables, and the control variables within the past 10-time
steps (L in Equation (4) is 10, the sum of time span = 300 min), and the output of the LSTMs
was the state variables in the bioreactor at the next time step. They were trained and tested
on the data from 1 June–1 September 2019 with a monitoring frequency of 5 min, i.e., the
size of the full dataset is 30,000. The test set was the full dataset. There are two types of
training sets used to establish different LSTMs: Dataset 1 (number n = 1300) and Dataset 2
(number n = 6500). Both of them were randomly selected from the full dataset.

Prediction results of LSTM models on the test dataset were shown in Figure 6, the curve
can measure the fitting degree of the output. All the models proposed in this paper can
achieve accurate prediction, and the curves of Dataset 2 generally fit better than Dataset 1.
Table 4 evaluates the results of the proposed models on the test dataset by MSE and NSE.

Table 4. MSE and NSE of the prediction results for different proposed models on the test dataset.

Structure of Models Training Dataset of Models MSE on the Test Dataset NSE on the Test Dataset

structure 1 Training dataset 1 8.463662 0.945858
structure 2 Training dataset 1 7.261208 0.960149
structure 3 Training dataset 1 4.276100 0.986180
structure 4 Training dataset 1 4.387872 0.985448
structure 1 Training dataset 2 3.966258 0.988110
structure 2 Training dataset 2 3.476448 0.990865
structure 3 Training dataset 2 2.916338 0.993572
structure 4 Training dataset 2 2.635806 0.994749

Structure 1 has the highest MSE in both Dataset 1 and Dataset 2. Although Structure
1 with only 10 hidden layer neurons can learn the patterns of the dataset during the
training process, the accuracy of the model is limited. Structures 2–4 have 15–25 hidden
layer neurons, so their network structures are more complex respectively. Structure 4
can better learn the nonlinear training dataset, and demonstrate more accurate dynamic
characteristics. However, an overly complex network structure can cause overfitting and
reduce the model’s prediction performance. In the experiments with Dataset 1, the MSE
of Structure 4 is slightly higher than that of Structure 3, resulting in a decrease in the
model’s accuracy.

NSE is generally used to verify the fitness of hydrological model simulation results
and process simulation errors. An NSE value close to 1 indicates high model quality and
reliability. An NSE value close to 0 indicates that the simulation result is close to the average
value, which means that the overall result is reliable, but the process simulation is large.
The LSTM model with Structure 4 on dataset 2 has an NSE value closest to 1, indicating that
compared with other models proposed in this paper, this model has better performance. At
the same time, the NSE of Dataset 1 is generally higher than that of Dataset 2, indicating
that the model quality is higher after training on Dataset 2 with more data numbers.

The results demonstrate that LSTM had precise and stable predictive capabilities and
performed well in predicting system behavior for unseen datasets. Furthermore, selecting
an appropriate dataset and structure can enhance the LSTM model’s performance and
achieve better results.
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4.2. Performance of LSTM-MPC

As shown in Table 4, the model with structure 4 and dataset 2 is a relatively superior
prediction model. Therefore, this study used this model for LSTM-MPC.

(1) One-step optimization: a random time point (2 March 2019, at 17:30) was chosen
as the starting time step, and the control variables for the next time step were optimized
by LSTM-MPC. Figure 7 illustrates how the objective function Fit, J, and G changed in
the iteration.
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The fitness function Fit shows an overall significant upward trend, indicating that the
whole system was optimized. The objective function Gj corresponding to the optimization
requirements increased, indicating that the aeration volume was close to the target value
(as low as possible), while the Qr and Qsr ratios remained stable within a certain range.
The objective function Ji corresponding to the control requirements also increased but only
slightly and with some fluctuations, indicating that the AAO system maintained stability
and met the water quality parameters threshold after optimization.

(2) Multi-step optimization: a random time point (7 March 2019, at 22:35:00) was
chosen as the starting time step for LSTM-MPC, with a control time interval of 30 min and
a control time step of 48 (time span = 24 h).

Table 5 shows the average results of the multi-step control in LSTM-MPC.

Table 5. Control results of LSTM-MPC and LSTM-MPC-Rationality Verification.

Average Aeration Volume
in 24 h (m3/min)

Average Qr
(m3/s)

Average Qsr
(m3/s)

Aeration
Optimization Ratio

LSTM-MPC 66.406 4.696 1.634 33%
LSTM-MPC-RA

(Rationality Verification) 92.743 4.134 1.103 7.0%

historical control 99.727 4.130 1.125

As compared to the historical control, the optimized control strategy resulted in a 33%
reduction in the average aeration volume in 24 h, accompanied by a slight increase in both
Qr and Qsr. As aeration is the main energy-consuming process, this reduction would lead
to a decrease in the overall energy consumption of the bioreactor.

The prediction results of the optimized control strategy maintained the state variables
within reasonable thresholds and a decrease in DO concentrations, as shown in Figure 8.
Therefore, the proposed LSTM-MPC is feasible and effective for the optimization control of
the AAO system.
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4.3. The Effect of Rationality Verification

Based on the aforementioned LSTM-MPC, rationality verification was proposed and
employed to improve the safety of the optimization control. For the rationality verification
proposed in this study, the final optimal control will be output only when it meets all
three types of rationality verifications. The same time node (7 March 2019 22:35:00) of the
aforementioned LSTM-MPC model was used as the starting time step, the control time
interval was 30 min, and the control time step was 48 (24 h).

Table 4 also shows the prediction and control results after rationality verification.
Compared with the historical control, the average aeration volume of 24 h after optimization
was reduced by 7%, Qr was slightly reduced, Qsr was slightly increased, and the overall
energy consumption was reduced. The state variables of water quality stayed stable and
the DO concentrations decreased after optimal control. After the rationality verification,
the optimized control met the safety requirements, but its optimization and energy-saving
performance was significantly reduced compared with LSTM-MPC.

Overall, the proposed LSTM-MPC model for the AAO bioreactors was found to be ef-
fective in optimizing control variables and reducing energy consumption. And LSTM-MPC
with rationality verification improved the stability of bioreaction as well as ensured security.

5. Discussion
5.1. Performance of LSTM Prediction Model

Previously research often focused on the effluent quality of wastewater treatment,
considering data-driven models as a soft sensor, while the state variables of the bioreactor
were often not included as model outputs [29]. This study proposes an LSTM model based
on historical data. State variables, influent variables, and control variables were used as
inputs. On the one hand, the input of state variables compensates for the lack of state
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variables in the bioreaction process. On the other hand, the control variables make it
possible to construct control models such as MPC, which can further assist in optimizing
control-related research.

As shown in Section 4.1, the LSTM model established in this study can accurately
predict the changing trends of multiple state variables during the bioreactor operation
process. This result is consistent with previous research on the good performance of LSTM
models in predicting effluent quality, such as Yaquba et al. [24,25]. It is mostly attributable
to LSTM’s strong learning capability, training algorithms, and abundant data. As a deep
learning neural network, LSTM’s complex network structure allows it to better handle
nonlinear datasets, making it easier to identify patterns in the large time-series datasets
used in this study, thus improving model performance. The dataset used in this study has a
large time span, covering different operational conditions of the WWTP over 3 months. The
value of MSE is 2.64 (structure 4, Training Dataset 2) and all values of NSE are close to 1.
Since LSTM contains multiple output values and the datasets have different thresholds, the
errors are within a reasonable range for the entire AAO system. However, the generalization
and overfitting problems faced by deep learning models still exist (Table 4). For different
datasets, using LSTM hyperparameters with the right level of complexity can prevent
overfitting and achieve accurate prediction.

Moreover, the reliability of the dataset is one of the challenges in applying data-driven
methods to bioreaction processes in real wastewater treatment. WWTPs are many times
limited by the environment or the accuracy of the instrumentation and often do not get a
sufficient number of accurate datasets. Also in most practical applications, it is difficult to
avoid losing data during the long treatment process. Therefore, the method is limited to
complex nonlinear systems with insufficient data or untrained conditions.

5.2. Effect of Fitness Function for Stability on LSTM-MPC

The control of actual bioreaction in WWTP involves a wide range of controllable
indicators. Existing researches tend to focus on reducing energy consumption rather
than paying attention to the stability of the bioreaction tank’s state after control operation
changes. In the AAO process, its operation often needs to consider the impact of changes in
influent quality and flow. And similarly, large changes in control variables in a short period
can also have a negative impact on the stability of the biological reaction tank. Considering
the influence of control parameters on the stability of the state is of great significance in
the practical operation of WWTPs. In view of the multi-objective characteristics of the
optimization control of the AAO process, this study used the PSO optimization algorithm
to construct an LSTM-MPC model, taking the operational stability of the bioreactors as one
of the objective functions, and optimizing the aeration volume, internal recirculation flow
(Qr), and sludge internal recycle flow (Qsr).

LSTM-MPC aims to reduce aeration and save energy based on the stable operation.
Figure 7 shows the fitness function curve of the LSTM-PSO optimization algorithm in
one-step optimization. The overall fitness function FIT increased significantly, guiding the
particles to iterate in the direction of the optimal solution. The fitness function Gj of the
optimization control requirements made the main contribution to FIT, indicating that a
significant optimization has been made in the control, i.e., reducing aeration and controlling
the ratio of Qr/Qin and Qsr/Qin. And the fitness function Ji corresponding to the stable
control requirements fluctuated within a small range, indicating that the operational status
of the bioreaction tanks did not undergo drastic fluctuations. During the optimization
control process, the variations of state variables MLSS and NO3 in the oxic bioreaction tank
were controlled within 15%, and the ORP and DO concentrations in each tank met the
threshold requirements for stable operation. The overall bioreaction was running relatively
stable after the control variables were changed.
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5.3. Effect of Rationality Verification on LSTM-MPC

Numerous studies based on simulation models such as BSM1 have shown excellent
optimization results using neural network-based MPC [17]. However, neural networks
are still regarded as black-box models, and their computation process and logic remain
opaque. In practical applications, we must focus on the reliability and trustworthiness of
data-driven models such as LSTM-MPC. Therefore, further consideration of enhancing
the safety and rationality of control outputs is a necessary condition for promoting the
application of artificial intelligence methods.

This study proposes three rationality verification methods to ensure that the LSTM-
MPC proposed in this study is safe and trustworthy in real-world conditions, which
has a practical significance in actual wastewater treatment processes. Comparing the
results of Sections 4.2 and 4.3 (Figures 8 and 9), the LSTM-MPC combined with rationality
verification shows significantly reduced fluctuation in the predicted state variables and
better robustness when control operations vary under the same influent conditions. The
rationality verification process removes control variables that do not meet the requirements
of similar historical conditions, while the overall control variables change more smoothly.
It can also reduce the frequency of operations, meet historical operating experience, and
improve the acceptance of operation personnel for LSTM-MPC strategies.
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However, the optimization efficiency is dramatically decreased in the same state and
the optimized control variables offered by LSTM-MPC with rationality verification exhibit
a significantly lower decrease in aeration than the model without rationality verification.
This is because many operations that do not agree with historical data are eliminated during
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the rationality verification procedure, producing conservative output control variables. It
is not difficult to find that ensuring safety and meeting optimization requirements are a
set of conflicting objectives. In this study, we emphasize choosing the best solution that
satisfies rationality verification and relatively low energy consumption, which results in
excessively conservative operations in some time steps, and the possibility of abandoning
the global optimal solution. There is room for further improvement in the balance between
safety and optimization performance.

5.4. Calculation Time of LSTM-MPC

In addition, due to the real-time control requirements of WWTPs, the calculation speed
of the optimization algorithm must be taken into consideration. In this study, the PSO
algorithm was set to terminate if the fitness function did not show significant changes in
nearly 200 iterations. The calculation time of the LSTM-MPC was 430 s in one time step
of the optimization control at 200 iterations, which was much lower than the control time
interval in this case (30 min). Although the calculation speed of LSTM-MPC can meet
requirements in this certain WWTP, for more complex conditions, more time-consuming
optimization algorithms, and larger nonlinear systems, the calculation time issue cannot
be avoided. At this point, more powerful computing hardware or a new optimization
algorithm may be needed to improve calculation speed.

6. Conclusions

Deep neural network-based MPC is effective for nonlinear systems and widely used.
The stability of the bioreaction operation and the safety concerns are two important parts
of MPC in real WWTPs. To ensure stability and safety, this study proposes an LSTM-MPC
with rationality verification methods.

The LSTM model can accurately predict water quality variables in the AAO process
and provides a new tool for real-time control in WWTPs. The proposed LSTM-MPC with
PSO optimization achieved a 33% reduction while ensuring stable operation and saving
energy. Three rationality verification methods based on historical data are applied to ensure
the safety and effectiveness of the LSTM-MPC. The LSTM-MPC with rationality verification
can achieve a 7% reduction in aeration volume. In summary, the LSTM-MPC model with
rationality verification can propose reasonable and safe optimization control strategies
based on historical operation experience and achieve energy saving for real WWTPs. And
the balance between the safety and optimization performance of the LSTM-MPC with
rationality verification may be discussed in the future.
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