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Abstract: Even in the 21st century, water contamination has been a big problem and industrial processes
are to be blamed for polluted water supplies. The use of sunlight in the process of photocatalysis is
an efficient way to purify wastewater. Composites of TiO2/activated carbon/two-dimensional selenides
performed better than either of the individual material or binary composites for this application.
A straightforward hydrothermal technique was employed in the synthesis of photocatalysts. The
synthesized photocatalytic composites were verified with the help of UV-Visible spectroscopy, FTIR,
XRD, and SEM. The heterostructures absorbed nearly all of the sun’s UV and visible light. These
photons are then converted into usable reducing electrons and oxidizing species such as •O2 and OH•

to decompose organic pollutants from industrial wastewater. Since there were additional pathways
available for charge transfer along with several active edge sites, the composite photocatalysts are
proven more active than individual TiO2 and 2D MoSe2 components. With the help of a cascade-
driven mechanism of electrons, these channels can transmit more charges than single-component
heterojunctions. The results provided a realistic method for developing photocatalyst composites
powered by solar light for use in industrial wastewater treatment. Results of degradation of methylene
blue suggest that the synthesized composites possess better photocatalytic activity. This enhanced
photocatalytic activity is not limited to organic dyes. Other hazardous organic pollutants present in
industrial wastewater can be decomposed by using this approach.

Keywords: TiO2/activated carbon; 2D selenides; photocatalyst; wastewater treatment

1. Introduction

Water is essential for every individual to sustain life on earth [1]. Rapidly growing
populations, urbanization, extensive agricultural practices and industrialization are the
main reasons for water pollution, a threatening issue of the modern world [2–4]. In the
previous decade, a rapid increase in industries and industrial processes have created a
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huge impact in water pollution [5]. Industrial waste materials are the most frightening
environmental issues. They impose serious health effects on humans via surface wastew-
ater bodies [6,7]. About 2.2 million people die annually due to waterborne diseases in
developing countries [8]. The consumption of contaminated water causes diarrhea and
approximately 1.8 million children lose their lives every year from this disease [9,10]. There
is an urgent need to minimize the problem of water pollution and to save human beings
and aquatic life from these chronic diseases.

Water treatment facilities are preventive measures against waterborne diseases [11].
A huge amount of water is used in textile industries for different processes. Water is
used for washing purposes in the industry. If this water is released as such without
treatment, it imposes a serious threat on ecosystem [12]. This water is contaminated
with animal oils, fiber lint, organic dyes and other hazardous chemicals. These chemicals
are used to improve the quality of raw material. The liquid wastes along with several
contaminants are discarded from these industries, causing environmental pollution [13,14].
The colored wastewater of these industries contains an unpleasant odor, chemical oxygen
demand, biochemical oxygen demand, high pH and suspended solids. Suspended solids
are composed of different inorganic salts, heavy metals and hazardous chemicals [15,16]. A
high concentration of carcinogenic organic dyes is also present in industrial effluents [17].
Synthetic dyes can cause genetic mutations and cancer in human beings. These organic dyes
enter the food chain from wastewater of the textile industry. Dyes are extensively used in
the textile industry in different processes [18]. Textile industries are responsible for one-fifth
of industrial water pollution worldwide [19]. Methylene blue (MB) is the most commonly
used dye in textile industry. A large amount of MB is released in wastewater from textile
industries [20]. Above a certain concentration it is harmful for human beings, microbes
and the environment. MB is responsible for blindness, abdominal disorders, digestive
and destructive disorders [21,22]. It also causes diarrhea, cyanosis, gastritis, jaundice,
methemoglobinemia, shock, skin and eye irritation, tissue necrosis and vomiting [20].

Many conventional techniques such as biological treatments, adsorption, filtration,
sedimentation, osmosis, reverse osmosis and chemical treatments are applied for water
purification. Conventional techniques have been applied for the removal of contaminants
from wastewater, thereby enhancing water quality. These techniques are not adequately
effective to clean wastewater containing diverse contaminants [23]. The urgent need of the
time is to develop alternative wastewater techniques. The techniques which are capable
of completely eliminating these hazardous contaminants from wastewater are always
preferred [24].

Advanced oxidation processes are recently revolutionized as wastewater treatment
technique. These produce highly reactive free radicals (•OH) by degrading inorganic and
organic pollutants. •OH free radicals oxidize carbonaceous species into inorganic ions
and CO2 gas, a product due to their strong oxidizing nature [25]. Oxidants such as ozone
and hydrogen peroxide can trigger the formation of •OH. This can be completed by using
energy resources such as heat, ultrasounds and ultraviolet light or by using homogeneous
or heterogeneous photocatalysts such as Fenton’s reagent, TiO2 or ZnO [26]. Among
these advanced oxidation processes, a photocatalytic oxidation process is an attractive
technique. In this process, impurities and pollutants can be eliminated with the help of
oxidation activated by free radicals at a normal temperature and pressure. This results in
non-selective oxidation of contaminants in water such as carbon dioxide, anions and cations.
•OH, free radicals possess very high oxidation potential (•OH/H2O) = 2.80 eV/SHE. It
is the second most proficient oxidation potential. Maximum oxidation potential carries
fluorine (E◦ = 3.0 eV) [27]. Free radicals have a very short lifespan in water and vanish
rapidly from reaction medium [28]. The prime drawbacks of traditional advanced oxidation
processes include the following: tedious instrumentation, inadequate mineralization of
pollutants/contaminants, high-cost processing, ultraviolet light activity and half-life time
of O3 [29–31].
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Semiconductor-material-based photocatalysts have been proven as the best solution to
cover these drawbacks. Semiconductor photocatalysts do not form any kind of secondary
pollutants in water. Because of their chemically stable nature, photocatalysts can be repro-
cessed in aqueous medium [32]. TiO2 has been an extensively studied semiconducting
material, in the previous decade. Its wide applications are due to its easy availability, low
price and non-poisonous character, high stability, porous structure and greater surface
area [33–35].

Major limitations of TiO2 include suppression of photocatalytic activity, slow photocat-
alytic degradation rates, higher band energy, and aggregation of TiO2 nanoparticles due to
unstable nanosized particles [36–39]. Photocatalytic properties of TiO2 can be increased in
a visible region by minimizing a quick recombination of the photogenerated charge carrier,
by depositing metal nanoparticles on its surface [40–42].

A very effective strategy to expand absorption in the visible range from UV solar light
and to enhance photo-induced charge separation is the construction of heterostructure [43,44].
For this purpose, transition metal semiconductors can increase the photo-induced charge
separation of TiO2 and their Mn+/M(n−1)+ (M = transition metal) cycle directly activates
persulphates to reduce pollutants in wastewater [45]. In addition to the limitations of
semiconductors, major hindrances in the practical applications of composites include ion
diffusion, slow charge transfer and deficient electromagnetically active sites [46].

In recent research, two-dimensional transition metal dichalcogenides have grasped
the attention of researchers due to their unique electronic and optical properties. These
materials possess excellent light absorbance and fast electron migrating properties [47]. A
large number of active sites on their crystal edges provide more surface area for photocatalytic
reaction. Therefore, transition metal dichalcogenides are predictably suitable co-catalysts for
TiO2, to reduce its carrier recombination and improve its light absorbance capacity [48–50].
For example, MoSe2, has been proven to be a promising semiconductor because of its
narrow band gap (1.7 to 1.9 eV), which absorbs a broader range of solar light [51]. It
contains better antiphotocorrosive stability and an exceptional two-dimensional (2D) layer
structure for surface reaction [52–54]. In 2D MoSe2, Mo atoms are entrapped between the
layers of Se atoms via van der Waals cohesive forces [55]. The layered structure of 2D
MoSe2 can be referenced from a recent study which proved that interlayer spacing of MoS2
can be expanded in different phases [56]. The lower cost of MoSe2 and easy availability
proves it is a better cocatalyst than the graphene and noble metals [48,57].

Carbon materials are used to modify TiO2 because of their excellent electrical conduc-
tivity and strong visible light absorbing property. These properties enhance the efficiency
of photo-induced carrier separation [58,59]. Activated carbon (AC) is the most promising
adsorbent. The large surface area of AC, high surface activity and highly porous structure
enhance its absorption character. Different varieties of activated carbon are used as adsor-
bents, catalysts and catalyst supporters [60]. Literature survey regarding publications on
relevant topic has been given in Table 1.

Table 1. No. of publications on TiO2/MoSe2 from 2019 to 2023 at different sources.

Sr. No. Source No. of Publications in Years

2019 2020 2021 2022 2023 2019–2023

1 Google Scholar 545 783 951 1580 668 4527
2 Science Direct 6 6 20 15 10 57

TiO2/Activated Carbon/2D-Selenide photocatalysts were synthesized using the sim-
ple hydrothermal method. These composites absorb broad spectrum solar light in the
ultraviolet, visible and NIR region due to the presence of 2D MoSe2. The 2D MoSe2 reduces
the band gap of TiO2 and AC increases the light absorption tendency of TiO2. Maximum
light absorption power and the reduced band gap proves TiO2/AC/2DMoSe2 a better
photocatalyst for degradation of organic hazardous pollutants in wastewater.
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2. Materials and Methods
2.1. Materials

Charcoal (C), polyethylene glycol (C2nH4n+2On+1), ethylene diamine tetra acetic
acid ([CH2N(CH2CO2H)2]2), sodium selenite (Na2O3Se), hydrazine (N2H4), ammonium
paramolybdate tetrahydrate ((NH4)6Mo7O24.4H2O), and other reagents were imported
from Sigma-Aldrich. All the chemicals were of analytical grade so there was no need to
further purify them.

2.2. Activation of Charcoal

Sequence wise procedure for the activation of carbon has been shown in Figure 1. A
total of 3 g of charcoal was dipped completely into 1 M hydrochloric acid and left for 24 h.
After that the mixture was stirred for 2 h at 25 ◦C, filtered, and washed with distilled water,
0.1 M sodium hydroxide (NaOH) and again with distilled water. The activated carbon was
then dried and saved for further use.
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Figure 1. Schematic representation of activation of carbon.

2.3. Synthesis of TiO2

Schematic representation of the synthesis of TiO2 has been shown in Figure 2. TiO2 was
synthesized using the hydrothermal method [53]. Then, 20 mL of titanium tetra butoxide
(C16H36O4Ti) was added in excess of 0.1 M NaOH by continuous stirring. The pH of this
solution was decreased from 8–9 to 2–3 by adding 0.1 M HCl. The mixture was added into
a Teflon-lined autoclave, screwed tightly and kept in an oven at 170 ◦C for 24 h. Precipitates
of TiO2 were obtained, filtered, washed with methanol (CH3OH) and distilled water, and
dried. Annealing of TiO2 crystals was conducted at 300 ◦C for 3 h and then saved for
further use.

2.4. Synthesis of TiO2/xAC/2DMoSe2

Schematic representation of synthesis of TiO2/xAC/2D MoSe2 has been shown in
Figure 3 TiO2/xAC/2DMoSe2 heterostructures were prepared as follows. In the first step,
2D MoSe2 was prepared by adding 15 mL of polyethylene glycol (PEG) in 15 mL of distilled
water while stirring continued. The solution was divided into two equal halves into beaker
A and B. Then, 1–2 drops of ethylene diamine along with 0.359 g of sodium selenite and
5 mL of hydrazine along with 0.176 g ammonium paramolybdate tetrahydrate were added
in beaker A and B, respectively, by constant stirring. Both the mixtures were stirred for
30 min and mixed into beaker C by continuous stirring for 10 min. In the second step,
TiO2/xAC/MoSe2 was prepared by adding 1% (by mass) of TiO2 and activated carbon into
the above mixture. The mixture was magnetically stirred for 20 min and then transferred
into a 100 mL autoclave. After, the airtight sealed autoclave was placed in an oven for 24 h
at 200 ◦C. The precipitates obtained were washed with methanol, distilled water, and dried
at 60 ◦C overnight. The resulting composites were given the name of TiO2/xAC/MoSe2.
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Figure 3. Schematic representation of stepwise synthesis of TiO2/ AC/2DMoSe2.

The samples of 0.25%, 0.5%, 0.75% and 100% by mass ratios of activated carbon were
denoted as TiO2/0.25AC/2DMoSe2, TiO2/0.5AC/2DMoSe2, TiO2/0.75AC/2DMoSe2 and
TiO2/1AC/2DMoSe2, respectively.

2.5. Characterization

A PerkinElmer 100 FT-IR spectrometer (Waltham, MA, USA) was used to record
FTIR spectra of synthesized composites. The range of the FTIR spectrometer was set at
400–4500 cm−1 in transmittance mode in the Hi-Tech Laboratory of KFUEIT Rahim Yar
Khan, Pakistan. The XRD studies were performed at the University of Peshawar, Pakistan
by using the JEOL X-ray diffractometer (Model: JDX-3532, JEOL, Tokyo Japan). X-rays of
CuKα with Wavelength = 1.5418 Å and 2Theta-Range: 0 to 160◦. The SEM characterization
was performed in the Central Resource Laboratory of the University of Peshawar Pakistan
by using SEM (Model: JSM 5910, JEOL, Tokyo Japan). UV-Visible spectroscopy was
performed in the laboratory of the Institute of Chemical & Environmental Engineering,
KFUEIT Rahim Yar Khan Pakistan. Quartz cuvettes were used as a sample holder. Distilled
water was used as a reference.
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3. Results and Discussion
3.1. FTIR Study of Composites

In FTIR spectra, peaks at 830 cm−1, 1090 cm−1, 2941 cm−1 and 3650 cm−1 were repre-
senting O-Mo-O, Se-O bond, C-H stretching and OH stretching, respectively (Figure 4) [61,62].
Bands in the range of 550–750 cm−1 ascribe a stretching vibration of the O-Ti bond [63].
The absorption peak at 3410.51 cm−1 shows -OH stretching vibration. This stretching peak
shows absorption of water molecules, alcohols and phenolic compounds on the surface of
photocatalyst [64,65]. The peak at 1600.89 cm−1 is of C=C aromatic ring stretching vibration,
shifted from 1634 cm−1 to 1600.89 cm−1. Peaks that appeared at 832 cm−1 and 600 cm−1

show the formation of oxygen metal bonding. Therefore, these peaks represent the titanium
dioxide loaded with activated carbon [66]. The band between 550 and 650 cm−1 shows a
stretching vibration of Ti-O. At 1060.43 cm−1 a peak indicates activated carbon. The peak
intensity at 1060 cm−1 increases with an increase in activated carbon. An absorption peak
at 949 cm−1 and 550 cm−1 represents O-Ti-O-C bonds [67]. It was ascribed to the titania
mixture described by Zhang et al. A peak present at 1060.43 cm−1 shows the C-O-Ti bond.
A minute conjugation of Ti-O and a bulk of activated carbon is due to the electron affinity
difference [68]. At 1060 cm−1 the peak shows the Se-O bond [14].
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3.2. Structural Properties

The XRD spectra of synthesized composites are shown (Figure 5). These spectra were
recorded at the National Center of Excellence in Physical Chemistry Labs, University of
Peshawar Pakistan, by using a diffractometer (X-ray diffractometer, model. JDX-3532, JEOL,
Tokyo Japan) using X-rays; CuKα CuKα (λ = 1.5418 Å), 2θ = 0 to 160◦.

The crystal structure of synthesized photocatalysts were characterized by XRD. It
is clear from the spectrum that there is no prominent difference in the diffraction peaks
of pure TiO2 and synthesized photocatalyst nano composites (Figure 5). It clarifies that
the incorporation of activated carbon and 2DMoSe2 has a negligible effect on the crystal
structure of TiO2. Due to a small amount of MoSe2 and its high dispersion power on the
surface of activated carbon and TiO2, no prominent peak of MoSe2 appeared in the XRD
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spectrum of the composites [69,70]. Due to the amorphous nature of AC and less diffracting
2D material, no signals of activated carbon were found in the spectrum of photocatalyst [71].
Ammonium ions from ammonium molybdate easily enter into the layers of MoSe2. These
ammonium ions between the layers of MoSe2 result in shifting of the peak to 9.25◦ [69,72].
The anatase structure of TiO2 is indicated by (101) plane. The (110) plane represents the
rutile TiO2. As the percentage of AC increases the crystallinity of composites decreases
successively. As a result, the intensity of peaks decreases gradually.
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3.3. Morphological Properties

SEM photographs of synthesized photocatalysts are shown in Figure 6. Unfortunately,
the SEM that we had in access, did not have high enough resolution to accurately char-
acterize such small materials, but the pictures we captured were not a total failure, as
demonstrated in Figure 6. Figure 6 show evidence of pristine MoSe2 nanostructures on
the surfaces of TiO2 particles, and agglomerates are round by seeming, suggesting that
they are made up of skinny, non-linear units. Pure activated carbon does not exhibit any
crystalline shape as shown in Figure 6a. The spherical shape of pure TiO2 nanocrystals
appears in Figure 6b. This spherical shape in transformed into semi-spherical shape due to
addition of activated carbon. Activated carbon surrounds a large surface area over TiO2
nanocrystals [73,74]. Decrease in particle size of TiO2 is an indication of even distribution
of activated carbon in TiO2 nanocrystals [75]. In the 2D MoSe2 lattice structure, two layers
of Se atoms sandwich the Mo atom. Weak van der Waals interaction between these layers
develops a few-layered structures of 2D MoSe2, known as the monolayer structure [76].
These monolayers of 2D MoSe2 affect the crystalline structure of TiO2 to some extent. From
Figure 6c–f, an increasing percentage of activated carbon reduces the spherical shape of
TiO2 and the monolayer structure of 2D MoSe2.
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3.4. Optical Properties

The results of the degradation of methylene blue dye are shown in Figures 7–11.
10 mg/L Methylene blue (MB) solution was used by catalyst loading of 0.1 g/dm3 to
evaluate efficiency of composites [77] 0.01 M NaBH4 solution. The organic dye was selected
as it shows color change as a result of degradation. This color change is the visual evidence
of completion of photocatalytic chemical reaction. Being a member of the class cationic
thiazine dye MB is widely known by its biochemical and chemical applications. MB shows
a deep blue color in the aqueous solution in its oxidized form and is colorless in its reduced
form [78]. MB shows absorption at 290 nm because of π to π* transitions while at 664 nm
because of n to π* electronic shifting. These wavelengths help to monitor dye reduction [79].
NaBH4 is well known due to its strong reducing property. It was used in dye solution, in
such an extent that its low redox potential cannot complete the reaction and kinetically
show forbidden behavior [80].
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In the first step, the photocatalytic activity of synthesized composites was examined
by degrading methylene blue in aqueous solution. In the absence of photocatalysts in blank
solution, a very small change appeared in the color and intensity after 150 min. This shows
that NaBH4, individually has no tendency to degrade dye. However, in the presence of a
small amount of photocatalysts, a significant increase in dye degradation appeared.

The degradation of methylene blue was achieved by adding 1 mL of NaBH4 (0.001 M)
in 50 mL of 10 µg/L dye solution by constant stirring. A sample from this solution was
taken as the standard. After 5 min, 15 mg of photocatalyst was added into solution. The
prepared mixture was kept under dark for 150 min. Samples were taken out from the
reaction mixture at 30 min intervals to study the effect of time on degradation of MB. After
that, Philips light emitting Diode (LED) of 24 W was used to irradiate the solution keeping
approximately 10 cm away from it to examine the photocatalytic degradation efficiency of
synthesized composites. The LED lamp emits radiations of λ > 400 nm. The stirring of the
solution continued until the completion of the reaction. A small volume of the sample was
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taken out from the reaction mixture at 30 min intervals for the kinetic studies of the MB
degradation using UV-visible spectroscopy.

The process is repeated for all the synthesized composites in order to study their
photocatalytic behavior. Photocatalytic degradation of MB was repeated three times under
the same conditions to perform the re-usability test of the synthesized photocatalysts. All
the experiments were performed in 150 min. The photocatalytic efficiency of synthesized
composites was calculated by applying the following formula:

Percentage efficiency =
C0 −C

C0
× 100 (1)

where C0 = concentration of MB solution before photocatalytic reaction; C = concentration
of MB solution after photo irradiation for given time t.
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Figure 9. Photocatalytic degradation of TiO2/0.5AC/2DMoSe2: (a) Degradation of MB at different
time intervals; (b) C/C0 against time; (c) ln C/C0 against time; (d) %age Efficiency.

Figure 7a shows the photocatalytic degradation of pure TiO2 while Figures 8a, 9a, 10a and 11a
shows the photocatalytic degradation of synthesized composites having MB with the
passage of time. From these results, it is clear that the photocatalyst with the higher
percentage of AC in composite shows the maximum absorption of light and maximum
degradation efficiency.

The effect of light irradiation time on the MB concentration ratio (C/C0) is shown
in Figures 7b, 8b, 9b, 10b and 11b. C and C0 are the initial concentrations of MB in and
concentrations at time t, in the aqueous phase. The C/C0 ratio makes a convenient visual
comparison of the photocatalytic effect of the composite.
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On the base of the Langmuir–Hinshelwood model, photocatalytic reactions show pseudo
first order kinetics. The first order rate constant k can be calculated by applying formula:

ln C/C0 = −kt (2)
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Figures 7c, 8c, 9c, 10c and 11c show that pure TiO2 and synthesized photocatalytic
composites show pseudo-first order kinetics.

The percentage of degradation efficiency of pure TiO2 and synthesized composites is
shown in Figures 7d, 8d, 9d, 10d and 11d. From these graphical representations it is clear
that increased amounts of AC in composites increases the light absorption capability of the
photocatalyst which in turn results in increased photocatalytic activity.

Pure TiO2 shows the absorption maximum at 390 nm. It shows that TiO2 works only in
the ultraviolet region. Pure MoSe2 shows remarkable absorption in the ultraviolet, visible
and infrared region [79]. TiO2/xAC/2D MoSe2 show absorption in the visible to infrared
region. A large distribution of pore size structures in the photocatalyst, due to the presence
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of activated carbon and 2D MoSe2 will make it able to absorb all the ultraviolet, visible and
near infrared light.

Table 2 shows the comparative % efficiency of AC, TiO2 alone, combinations of TiO2
with AC and CNTs and our synthesized TiO2/AC/2D MoSe2 to degrade MB. From the
literature, it was found that the degradation efficiency of TiO2 and activated carbon
is not high when we use these materials individually to degrade organic pollutants in
wastewater [81,82]. The degradation efficiency of activated carbon is only 55%. The degra-
dation property of activated carbon is due to the presence of active sites on its surface.
The light absorption power of pure TiO2 decreases with the passage of time, so it showed
73% degradation at 30 minutes’ interval. Incorporation of activated carbon with TiO2
increased light absorption behavior of photocatalyst [68]. In another study, TiO2@AC
showed 65% degradation of MB in 180 min. The Xenon lamp was used as a light source
for the degradation of MB in that study [75]. Askari et al., (2017) decorated TiO2 with
multi-walled carbon nano tubes (MWCNT) and used synthesized photocatalyst for the
degradation of MB dye in water. The UV Philip lamp was used as a radiation source in that
study. The photocatalyst showed 61.1% degradation of MB at the rate of 30 min [83]. Yoon,
C.-J., et al., (2021) developed the TiO2@carbon nanotube and evaluated the photocatalytic
activity of the TiO2@carbon nanotube photocatalyst by the degradation of MB in water. The
photocatalyst showed 85% degradation of MB when the UV radiation source was used [84].
Alghamdi, Y.G., et al., (2022) synthesized biomass based activated carbon loaded with TiO2
and used it for the photocatalytic degradation of oflxacin and reactive red 120. The photo-
catalyst showed 82% degradation in the UV light source [85]. Justh et al., (2019) studied the
photocatalytic properties of TiO2@carbon aerogel composites. Composites were prepared
using the atomic layer deposition method. Photocatalysts showed 55% degradation at
240 min interval [86]. All the above studies show that TiO2 along with AC absorbs light
in the ultraviolet region. Although carbon nano-tubes and activated carbon increased the
photocatalytic activity of TiO2 up to 85%, these composites required ultraviolet light for
photodegradation. A main portion of sunlight is composed of the visible light spectrum.

Table 2. Comparison of photodegradation efficiencies of previously studied and synthesized composites.

Sr. No. Composite Ratio Photodegradation %Age Efficiency

1 AC pure 55% [75]
2 TiO2 Pure 71–73% [75]
3 TiO2/AC NA 55% [86]
4 TiO2@AC NA 65% [87]
5 TiO2/MWCNT NA 61.1% [83]
6 TiO2@carbon nanotube NA 85% [84]
7 AC-TiO2/(OFL) NA 82% [85]
8 TiO2/AC/2D MoSe2 1:0.25:1 76% present work
9 TiO2/AC/2D MoSe2 1:0.5:1 80% present work

10 TiO2/AC/2D MoSe2 1:0.75:1 81% present work
11 TiO2/AC/2D MoSe2 1:1:1 83% present work

In the present study, 2D MoSe2 was incorporated in TiO2/AC to reduce the band
gap of TiO2 and to increase the absorption spectrum of composites in the visible and NIR
region. From the values given in Table 2, it is also clear that the increased amount of
AC proved effective in increasing the efficiency of the photocatalyst as it increases the
light absorption capacity of the composite. The results show that maximum efficiency of
synthesized nanocomposite was observed with the increase in ratio of AC. The maximum
degradation efficiency (83%) of TiO2/AC/2D MoSe2 was observed at maximum ratio of
AC i.e., 1:1:1. The increase in light absorbance decreases dye intensity in water with the
passage of time. As time increases, the absorbance of light decreases which indicates that
dye molecules are dissociating into their fragments. The photocatalytic activity of the
synthesized composites is due to the reduced band gap of TiO2 because of the presence
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of 2DMoSe2 and the enhanced light absorption property due to the presence of elemental
activated carbon.

4. Parameters Affecting Photodegradation of Methylene Blue
4.1. Effect of Irradiation Time

The effect of time of irradiation on dye degradation was studied by successive increase
in time intervals irradiation on the MB samples in the presence of photocatalysts as shown
in Table 3. As the reaction time increases, a decrease in the absorption peak of MB appears.
At the same time, the color changes from blue to colorless. The reason for the decrease in
the absorption spectra is reduction of MB chromophore.

Table 3. Effect of irradiation time on MB degradation using photocatalysts.

Photocatalyst Time (min) 0 30 60 90 120 150

Pure TiO2

MB mg/L

10 9 7.3 5.1 4.2 2.9
TiO2/0.25AC/2DMoSe2 10 6.2 5.3 4.1 2.9 2.4
TiO2/0.50AC/2DMoSe2 10 7.6 6.6 4.8 3.3 2.0
TiO2/0.75AC/2DMoSe2 10 7.0 6.5 5.5 3.5 1.9

TiO2/AC/2DMoSe2 10 6.9 6.4 5.3 3.6 1.7

4.2. Effect of Initial Dye Concentration

To study the effect of initial concentration of MB on degradation rate, aqueous solution
of MB was prepared with concentration 5 mg/L, 10 mg/L, 15 mg/L, 20 mg/L and 25 mg/L.
The maximum percentage degradation shown by the photocatalyst, “TiO2/AC/2DMoSe2”,
is given in the Table 4.

Table 4. Initial concentration of MB versus percentage degradation.

Sr. No. MB (mg/L) % Degradation

1 5 87
2 10 83
3 15 74
4 20 69
6 25 65

The nature of dye, its initial concentration and presence of foreign species in the dye
solution greatly affect the rate of photodegradation [88]. At a lower concentration of MB,
its absorption capacity is high. It is because of the availability of more active sites on the
surface of the photocatalyst for low MB concentration [89]. Active sites of the photocatalyst
are covered by higher adsorption of dye molecules which decreases the photodegradation
rate at a higher concentration of MB. A higher concentration of dye molecule increases the
screening effect of light and minimizes the production of •OH active radicals [90]. In the
present study, the degradation rate of MB was found to be high at a lower concentration
of MB.

4.3. Effect of pH

To determine the impact of pH, MB solutions with different pH values were used.
A little change in degradation was observed when pH is changed from 7.0 to 4.0 (Table 5).
Degradation efficiency further decreased when pH decreased further from 4.0 to 2.0. While
an increase in degradation was observed when the pH of the MB solution increased from
7 to 9.5. The maximum degradation efficiency was achieved after 120 min of irradiation.

MB absorbs on highly negative charged photocatalysts, as it is a cationic dye [91]. At a
high pH (in basic medium), photocatalysts try to gain a negative charge which results in
increased adsorption of positively charged dyes. This increased adsorption of dye on the
surface of the photocatalyst is due to attraction of oppositely charged ions [92]. In acidic
medium (at lower pH), positive ions of dye compete with H+ of the medium, that results in
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a decrease in adsorption on the surface of photocatalyst and a decrease in photodegradation.
Similar is the case of MB dye. Reduction in the adsorption of MB on photocatalysts’ surface
reduces reaction between MB and •OH. There is no repulsion between MB and OH– and
repulsion between the negative surface of the photocatalyst and OH–. As a result, OH– will
remain in reaction medium and play its vital role in the photodegradation process [93,94].
Jia et al., (2017), in a photocatalytic study of TiO2, revealed that maximum absorption of MB
on its surface takes place in basic medium. That was because of the electrostatic attraction
between cationic dye on the negatively charged active surface of TiO2 [95].

Table 5. Effect of change of pH on photodegradation.

Sr. No. pH Percentage Degradation

1 7.0 72
2 7.5 74
3 8.0 79
4 8.5 80
5 9.0 82
6 9.5 83
7 10.0 81

4.4. Effect of Catalyst Loading

It is necessary to find out the optimum quantity of the photocatalyst for optimum
photodegradation of MB. The effect of catalyst loading on the photodegradation of MB
was checked by irradiating UV/Visible radiations and keeping other parameters constant.
The amount of photocatalyst varied from 0.01 g/dm3 to 0.25 g/dm3 for 5 ppm MB solu-
tion. Photodegradation efficiency is shown in Table 6. It can be seen from the data that
degradation efficiency increases as the amount of catalyst increases and then decreases.

Table 6. Effect of catalyst load on photodegradation efficiency.

Sr. No. Catalyst Loading (g/dm3) Percentage Degradation

1 0.01 79
2 0.10 83
3 0.15 73
4 0.20 66
5 0.25 62

After the optimum amount of photocatalyst, further increase in the amount results
in agglomeration. At higher levels of concentration turbidity of solution also increases.
These two factors inhibit the absorption of photons on the surface of the photocatalyst and
decrease its efficiency [96].

5. Proposed Photocatalytic Mechanism

From the Figure 12, it is clear that the energy band gap of MoSe2 was found to be
1.80 eV, so it can cover a broad solar energy region. The flat-band potential of MoSe2 was
found to be 2.27 V on NHE. The photocatalytic mechanism of the synthesized composite
is shown in the figure schematically. When light falls on the photocatalyst, valence band
electrons of TiO2 are transferred to the conduction band leaving holes in the valence band.
These valence electrons of TiO2 can be transferred to the conduction band of MoSe2 as it
lies nearer to the VB of TiO2 as compared to its conduction band. 2D MoSe2 sheets act as
active sites to carry out reactions. Separation of photogenerated electrons and reduction of
charge recombination becomes easy in such heterostructures, which leads to efficient and
enhanced photocatalytic activity. The adjustable band gap improves the light absorption
range in the visible region of the composite. As the photocatalytic activity of the sample is
linked with visible light absorption, 2D MoSe2 improves the activity of TiO2 in the visible
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region and near the IR region. In addition to this, activated carbon enhances the absorption
capacity of the composite.
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Photochemical reactions involved in degradation of dye are given below.

Photoexcitation: TiO2/AC/2D MoSe2 + hv (TiO2 surface)→ e-
CBTiO2+h+

VBTiO2 (3)

Entrapment of free electrons: e-
CB (TiO2)→ e-

CB (MoSe2) (4)

Photoexcited electron scavenging (Reduction): (O2) ads + e-
CB(MoSe2)→ O•2 (5)

Decomposition reaction: MB+ O•2 → CO2 + H2O (6)

Entrapment of holes: h+
VB(TiO2)→ h+

VB (MoSe2) (7)

Oxidation of hydroxyls: OH + h+
VB (MoSe2)→ OH• (8)

Photodegradation by OH• radicals: MB + OH• →CO2 + H2O (9)

The above reactions describe details of the photocatalytic degradation process. Pollu-
tants transfer from the bulk of wastewater to the surface of the photocatalyst. Adsorption
of pollutants on the surface of the photocatalyst is activated by photons of light. Photons of
light (UV-Vis-NIR region) excite electrons from the valence band of TiO2 to its conduction
band and produce holes on the valence band of TiO2. Photo-excited electrons migrate from
the conduction band of TiO2 to the conduction band of MoSe2. These electrons reduce
molecular oxygen into oxygen free radicals. Being very reactive, these oxygen free radicals
decompose organic pollutants such as MB into carbon dioxide gas and water molecules.
Holes generated as a result of photo-excitation move from the valence band of TiO2 to the
valence band of MoSe2. These holes oxidize water molecules into •OH. These •OH are
involved in the decomposition of organic pollutants. Decomposition products of this reac-
tion are CO2 and H2O. After these reactions, •O2 and OH could be generated by entrapped
UV-Vis-NIR light. These free radicals are strong oxidizing agents and can easily decompose
organic pollutants present in wastewater.
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6. Conclusions

Composites of TiO2 with 2D MoSe2 were synthesized in two steps and then AC
was incorporated in these composites. The simple hydrothermal method was used for
this purpose. TiO2 nanocrystals were synthesized from titanium tetrabutoxide in NaOH
solution. Nanocrystals were calcinated at a high 300 ◦C for 3 h to obtain a stable phase
of TiO2 nanoparticles. 2DMoSe2 was prepared by using sodium selenite and ammonium
paramolybdate tetrahydrate. TiO2/xAC/2DMoSe2 composites were synthesized with
the addition of AC and TiO2 in the reaction mixture of sodium selenite and ammonium
paramolybdate tetrahydrate. The synthesis and morphology of TiO2/xAC/2DMoSe2
composites were established by FTIR, XRD and SEM. UV—vis spectroscopy and FT-IR
analysis indicated the successful stabilization of composites. The studies revealed that
composites are very useful as active photocatalysts to degrade MB and are expected to
be equally useful to degrade other organic pollutants present in wastewater in the visible
light spectrum. The extended activity of synthesized composites credited to the anatase-
phase of TiO2 facilitated with the narrow-band gap 2D MoSe2. Moreover, the presence
of AC in the composite helps to absorb extended solar radiation which resulted in an
increase in photocatalytic activity of composites. As the percentage of AC increases in
composites, degradation power increased directly. The environment-friendly synthesis of
TiO2/xAC/2DMoSe2 using simple aqueous medium is an encouraging proposal to prepare
composites of other metals as well. Photocatalytic composites can be used efficiently to fight
with different environmental pitfalls including toxic organic dyes and health hazardous
organic pollutants present in industrial wastewater. Synthesized composites showed
maximum (83%) degradation efficiency that is greater than the degradation efficiency of
any individual semiconductor i.e., TiO2 and 2D MoSe2 and previously reported TiO2 based
photocatalysts. This indicates a very useful application of synthesized nano composites in
industrial water treatments.
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