The WRF-Driven Grid-Xin’anjiang Model and Its Application in Small and Medium Catchments of China
Abstract
:1. Introduction
2. Methodology
2.1. The WRF Model
2.2. The Grid-XAJ Model
2.3. Successive Correction Method
2.4. The Penman–Monteith Equation
2.5. Evaluation Methods and Metrics
3. Study Area and Data
3.1. Study Catchments
3.2. Gauge Data
3.3. FNL Data
4. Results and Discussion
4.1. Parameters Calibration
4.2. Evaluation of Two Rainfall Products
4.3. Characteristics of PEPM
4.4. Evaluation of Discharge
4.5. Discussion
5. Conclusions
6. Study Limitations and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lei, T.J.; Wang, J.B.; Li, X.Y.; Wang, W.W.; Shao, C.L.; Liu, B.Y. Flood Disaster Monitoring and Emergency Assessment Based on Multi-Source Remote Sensing Observations. Water 2022, 14, 2207. [Google Scholar] [CrossRef]
- Bu Daher, J.; Huygue, T.; Stolf, P.; Hernandez, N. An Ontology and a reasoning approach for Evacuation in Flood Disaster Response. J. Inf. Knowl. Manag. 2023, 22, 2350042. [Google Scholar] [CrossRef]
- Cao, Y.T.; Sun, X.H. Application of Shuangchao hydrological model in Shanxi semiarid and semi-humid area. In Proceedings of the 2011 International Conference on Artificial Intelligence and Computational Intelligence (AICI 2011), Taiyuan, China, 23–25 September 2011; pp. 84–91. [Google Scholar]
- Gong, J.F.; Yao, C.; Li, Z.J.; Chen, Y.; Huang, Y.C.; Tong, B.X. Improving the flood forecasting capability of the Xinanjiang model for small-and medium-sized ungauged catchments in South China. Nat. Hazards 2021, 106, 2077–2109. [Google Scholar] [CrossRef]
- Gong, J.F.; Weerts, A.H.; Yao, C.; Li, Z.J.; Huang, Y.C.; Chen, Y.F.; Chang, Y.F.; Huang, P.N. State updating in a distributed hydrological model by ensemble Kalman filtering with error estimation. J. Hydrol. 2023, 620, 129450. [Google Scholar] [CrossRef]
- Jeziorska, J.; Niedzielski, T. Applicability of TOPMODEL in the mountainous catchments in the upper Nysa Kłodzka river basin (SW Poland). Acta Geophys. 2018, 66, 203–222. [Google Scholar] [CrossRef]
- Breinl, K. Driving a lumped hydrological model with precipitation output from weather generators of different complexity. Hydrol. Sci. J. 2016, 61, 1395–1414. [Google Scholar] [CrossRef]
- Taheri, M.; Shamsi Anboohi, M.; Nasseri, M.; Mbdolmajid, A. Developing a dynamic semi-distributed hydrological model considering interactions between soil moisture and evapotranspiration: Application of bulk transfer method. Hydrol. Sci. J. 2023, 68, 228–245. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Yao, C.; Li, Z.J.; Yu, Z.B.; Zhang, K. A priori parameter estimates for a distributed, grid-based Xinanjiang model using geographically based information. J. Hydrol. 2012, 468–469, 47–62. [Google Scholar] [CrossRef]
- Yao, C.; Li, Z.J.; Bao, H.J.; Yu, Z.B. Application of a developed Grid-Xinanjiang model to Chinese watersheds for flood forecasting purpose. J. Hydrol. Eng. 2009, 14, 923–934. [Google Scholar] [CrossRef]
- Liu, Q.; Wan, D.S.; Yu, Y.F.; Zhang, Y.M. Research and application of the parallel computing method for the grid-based Xin’anjiang model. Hydrol. Res. 2023, 54, 591–605. [Google Scholar] [CrossRef]
- Dembélé, M.; Hrachowitz, M.; Savenije, H.H.; Mariéthoz, G.; Schaefli, B. Improving the predictive skill of a distributed hydrological model by calibration on spatial patterns with multiple satellite data sets. Water Resour. Res. 2020, 56, e2019WR026085. [Google Scholar] [CrossRef]
- Wu, L.; Liu, X.; Yang, Z.; Yu, Y.; Ma, X.Y. Effects of single- and multi-site calibration strategies on hydrological model performance and parameter sensitivity of large-scale semi-arid and semi-humid watersheds. Hydrol. Process. 2022, 36, e14616. [Google Scholar] [CrossRef]
- Shin, M.J.; Jung, Y. Using a global sensitivity analysis to estimate the appropriate length of calibration period in the presence of high hydrological model uncertainty. J. Hydrol. 2022, 607, 127546. [Google Scholar] [CrossRef]
- Guo, W.J.; Wang, C.H.; Ma, T.F.; Zeng, X.M.; Yang, H. A distributed Grid-Xinanjiang model with integration of subgrid variability of soil storage capacity. Water Sci. Eng. 2016, 9, 97–105. [Google Scholar] [CrossRef]
- Zhang, S.T.; Zhang, J.Z.; Liu, Y.; Liu, Y.C. A mathematical spatial interpolation method for the estimation of convective rainfall distribution over small watersheds. Environ. Eng. Res. 2016, 21, 226–232. [Google Scholar] [CrossRef]
- Hu, Q.F.; Li, Z.; Wang, L.Z.; Huang, Y.; Wang, Y.T.; Li, L.J. Rainfall spatial estimations: A review from spatial interpolation to multi-source data merging. Water 2019, 11, 579. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Y. Link prediction based on graph neural networks. In Proceedings of the International Conference on Neural Information Processing, Siem Reap, Cambodia, 13–16 December 2018; pp. 5171–5181. [Google Scholar]
- Wu, Y.; Zhuang, D.; Labbe, A.; Sun, L. Inductive Graph Neural Networks for Spatiotemporal Kriging. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2–9 February 2021; 35, pp. 4478–4485. [Google Scholar] [CrossRef]
- Li, J.; Shen, Y.; Chen, L.; Ng, C.W.W. Rainfall Spatial Interpolation with Graph Neural Networks. In Proceedings of the International Conference on Database Systems for Advanced Applications, Tianjin, China, 17–20 April 2023; Springer: Cham, Switzerland, 2023; pp. 175–191. [Google Scholar] [CrossRef]
- Wang, Y.; Gueye, M.; Greybush, S.J.; Greatrex, H.; Whalen, A.J.; Ssentongo, P.; Zhang, F.Q.; Jenkins, G.S.; Schiff, S.J. Verification of operational numerical weather prediction model forecasts of precipitation using satellite rainfall estimates over Africa. Meteorol. Appl. 2023, 30, e2112. [Google Scholar] [CrossRef]
- Caldwell, P.; Chin, H.N.S.; Bader, D.C.; Bala, G. Evaluation of a WRF dynamical downscaling simulation over California. Climatic Chang. 2009, 95, 499–521. [Google Scholar] [CrossRef]
- Yao, C.; Ye, J.Y.; He, Z.X.; Bastola, S.; Zhang, K.; Li, Z.J. Evaluation of flood prediction capability of the distributed Grid-Xinanjiang model driven by weather research and forecasting precipitation. J. Flood Risk Manag. 2019, 12, e12544. [Google Scholar] [CrossRef]
- Sun, M.K.; Li, Z.J.; Yao, C.; Liu, Z.Y.; Wang, J.F.; Hou, A.Z.; Zhang, K.; Huo, W.B.; Liu, M.Y. Evaluation of Flood Prediction Capability of the WRF-Hydro Model Based on Multiple Forcing Scenarios. Water 2020, 12, 874. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Dudhia, J.; Ray, P.; Miao, S.G.; Nikolopoulos, E.; Treinish, L. Understanding the sensitivity of WRF hindcast of Beijing extreme rainfall of 21 July 2012 to microphysics and model initial time. Atmos. Res. 2022, 271, 106085. [Google Scholar] [CrossRef]
- Li, J.; Yuan, D.; Sun, Y.; Li, J. Comparing the performances of WRF QPF and PERSIANN-CCS QPEs in karst flood simulations and forecasting by coupling the Karst-Liuxihe model. Front. Earth Sci. 2022, 16, 381–400. [Google Scholar] [CrossRef]
- Yaremchuk, M.; Nechaev, D.; Panteleev, G. A Method of Successive Corrections of the Control Subspace in the Reduced-Order Variational Data Assimilation. Mon. Weather Rev. 2009, 137, 2966–2978. [Google Scholar] [CrossRef]
- Cui, Y.K.; Song, L.S.; Fan, W.J. Generation of spatio-temporally continuous evapotranspiration and its components by coupling a two-source energy balance model and a deep neural network over the Heihe River Basin. J. Hydrol. 2021, 597, 126176. [Google Scholar] [CrossRef]
- Jaafar, H.H.; Mourad, R.M.; Kustas, W.P.; Anderson, M.C. A Global Implementation of Single- and Dual-Source Surface Energy Balance Models for Estimating Actual Evapotranspiration at 30-m Resolution Using Google Earth Engine. Water Resour. Res. 2022, 58, e2022WR032800. [Google Scholar] [CrossRef]
- Jiang, Y.Z.; Tang, R.L.; Li, Z.L. A framework of correcting the angular effect of land surface temperature on evapotranspiration estimation in single-source energy balance models. Remote Sens. Environ. 2022, 283, 113306. [Google Scholar] [CrossRef]
- Du, J.Z.; Xu, X.L.; Liu, H.X.; Wang, L.Y.; Cui, B.S. Deriving a high-quality daily dataset of large-pan evaporation over China using a hybrid model. Water Res. 2023, 238, 120005. [Google Scholar] [CrossRef]
- Basu Roy, T.; Dutta, D.; Chakrabarty, A. Spatio-temporal variation of evapotranspiration derived from multi-temporal landsat datasets using fao-56 penman-monteith method. In Spatial Modeling in Forest Resources Management: Rural Livelihood and Sustainable Development; Shit, P.K., Pourghasemi, H.R., Eds.; Springer: Cham, Switzerland, 2021; pp. 405–423. [Google Scholar] [CrossRef]
- Ghafourian, S.; Aminnejad, B.; Ebrahimi, H. Evaluating Direct Assimilation of Satellite-Based Potential Evapotranspiration into SWAT for Improving Hydrological Modeling. J. Hydrol. Eng. 2023, 28, 05023019. [Google Scholar] [CrossRef]
- Jiang, S.; Wei, L.; Ren, L.; Xu, C.Y.; Zhong, F.; Wang, M.; Zhang, L.Q.; Yuan, F.; Liu, Y. Utility of integrated IMERG precipitation and GLEAM potential evapotranspiration products for drought monitoring over mainland China. Atmos. Res. 2021, 247, 105141. [Google Scholar] [CrossRef]
- Akar, F.; Katipoğlu, O.M.; Yeşilyurt, S.N.; Taş, M.B.H. Evaluation of tree-based machine learning and deep learning techniques in temperature-based potential evapotranspiration prediction. Polish. J. Environ. Stud. 2023, 32, 1009–1023. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, R.R.; Kisi, O.; Adnan, R.M.; Sadeghifar, T.; Kuriqi, A. Modeling potential evapotranspiration by improved machine learning methods using limited climatic data. Water 2023, 15, 486. [Google Scholar] [CrossRef]
- Meng, C.; Zhou, J.; Zhong, D.; Wang, C.; Guo, J. An Improved Grid-Xinanjiang Model and Its Application in the Jinshajiang Basin, China. Water 2018, 10, 1265. [Google Scholar] [CrossRef]
- Ai, G.; Wang, S.; Zhi, H. Simulations of a Heavy Snowfall Event in Xinjiang via the WRF Model Coupled with Different Land Surface Parameterization Schemes. Atmosphere 2023, 14, 1376. [Google Scholar] [CrossRef]
- Tiwari, G.; Kumar, P. Predictive skill comparative assessment of WRF 4DVar and 3DVar data assimilation: An Indian Ocean tropical cyclone case study. Atmos. Res. 2022, 277, 106288. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Kain, J.S.; Fritsch, J.M. The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems. Meteorl. Atmos. Phys. 1992, 49, 93–106. [Google Scholar] [CrossRef]
- Hong, S.Y.; Pan, H.L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Weather. Rev. 1996, 124, 2322–2339. [Google Scholar] [CrossRef]
- Shin, H.H.; Hong, S.Y.; Dudhia, J.; Kim, Y.J. Orography-Induced Gravity Wave Drag Parameterization in the Global WRF: Implementation and Sensitivity to Shortwave Radiation Schemes. Adv. Meteorol. 2010, 2010, 959014. [Google Scholar] [CrossRef]
- Cressman, G.P. An operational objective analysis system. Mon. Weather Rev. 1959, 87, 367–374. [Google Scholar] [CrossRef]
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. A-Math. Phy. 1948, 193, 120–145. [Google Scholar] [CrossRef]
- Monteith, J.L. Principles of Environmental Physics; Edward Arnold: London, UK, 1973; p. 241. [Google Scholar]
- Smith, M.; Allen, R.; Pereira, L. Revised FAO Methodology for Crop-Water Requirements; International Atomic Energy Agency (IAEA): Vienna, Austria, 1998; pp. 51–58. [Google Scholar]
- Singer, M.B.; Asfaw, D.T.; Rosolem, R.; Cuthbert, M.O.; Miralles, D.G.; MacLeod, D.; Quichimbo, E.A.; Michaelides, K. Hourly potential evapotranspiration at 0.1 resolution for the global land surface from 1981-present. Sci. Data 2021, 8, 224. [Google Scholar] [CrossRef] [PubMed]
- Ramis, C.; Romero, R.; Alonso, S. Relative Humidity; Meteorology Group, Department of Physics, University of the Balearic Islands: Palma, Spain, 2012; Volume 7122. [Google Scholar]
- Lee Rodgers, J.; Nicewander, W.A. Thirteen ways to look at the correlation coefficient. Am. Stat. 1988, 42, 59–66. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models. Part 1: A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- GB/T22482-2008; Sun, J.; Zhang, J.; Wang, J.; Liang, J.; Zhang, S.; Chen, S.; Wang, J. Standard for Hydrological Information and Hydrological Forecasting. Ministry of Water Resources of the People’s Republic of China (MWR): Beijing, China, 2008. (In Chinese)
- De Araujo, J.M.S. WRF wind speed simulation and SAM wind energy estimation: A case study in Dili Timor Leste. IEEE Access 2019, 7, 35382–35393. [Google Scholar] [CrossRef]
- Spiridonov, V.; Ćurić, M.; Grčić, M.; Jakimovski, B.; Spasovski, M. Assessment of the WRF model in simulating a catastrophic flash flood. Acta Geophys. 2023, 71, 1347–1359. [Google Scholar] [CrossRef]
- Mateus, P.; Borma, L.S.; da Silva, R.D.; Nico, G.; Catalão, J. Assessment of two techniques to merge ground-based and TRMM rainfall measurements: A case study about Brazilian Amazon Rainforest. Gisci. Remote Sens. 2016, 53, 689–706. [Google Scholar] [CrossRef]
- Shevenell, L. Regional potential evapotranspiration in arid climates based on temperature, topography and calculated solar radiation. Hydrol. Processes. 1999, 13, 577–596. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, R.; Song, Y.; Han, C.; Liu, J.; Liu, Z. Sensitivity of potential evapotranspiration to meteorological factors and their elevational gradients in the Qilian Mountains, northwestern China. J. Hydrol. 2019, 568, 147–159. [Google Scholar] [CrossRef]
- Zhao, R.J.; Liu, X.R. The Xinanjiang model. In Computer Models of Watershed Hydrology; Water Resources Publications: Nanjing, China, 1995; pp. 215–232. ISBN 9780918334916. [Google Scholar]
Category | Parameterization Selected | Reference |
---|---|---|
Microphysics option | Thompson | Thompson [41] |
Cumulus option | Kain–Fritsch | Kain and Fritsch [42] |
Planetary boundary layer | YSU | Hong and Pan [43] |
Radiation physics option | RRTMG | Shin [44] |
Catchment | Year | Events | Simulation Period | Peak Discharge (m3/s) |
---|---|---|---|---|
Tunxi | 2012 | 120423 | 23 April, 14:00–27 Aapril, 06:00 | 3170 |
2013 | 130606 | 6 June, 14:00–11 June, 20:00 | 3610 | |
2015 | 150607 | 7 June, 08:00–10 June, 17:00 | 3010 | |
2017 | 170623 | 23 June, 08:00–28 June, 00:00 | 4210 | |
Chenhe | 2003 | 030903 | 3 September, 02:00–8 September, 20:00 | 740 |
2005 | 050928 | 28 September, 08:00–3 October, 20:00 | 1740 | |
2011 | 110916 | 16 September, 14:00–21 September, 08:00 | 1200 | |
2012 | 120830 | 30 August, 20:00–3 September, 18:00 | 1710 |
Parameter | Description | Optimal Estimate of the Tunxi Catchment | Optimal Estimate of the Chenhe Catchment |
---|---|---|---|
K | Ratio of potential evapotranspiration to pan evaporation | 0.98 | 0.7 |
C | Evapotranspiration coefficient of deeper layer | 0.18 | 0.08 |
Ci | Recession constant of interflow storage | 0.3 | 0.55 |
Cg | Recession constant of groundwater storage | 0.98 | 0.87 |
Cs | Recession constant in the lag and route technique | 0.93 | 0.89 |
Lag | Lag time | 1.0 | 2.0 |
Catchment | Events | Wr | Wm | ||||||
---|---|---|---|---|---|---|---|---|---|
RR | NSE | PBpr% | PBcr% | RR | NSE | PBpr% | PBcr% | ||
Tunxi | 120423 | 0.66 | 0.32 | −40.1 | −60.1 | 0.99 | 0.98 | −2.6 | −0.4 |
130606 | 0.90 | 0.80 | −10.3 | −14.3 | 0.99 | 0.99 | 3.5 | −2.0 | |
150607 | 0.73 | 0.18 | 33.9 | −4.6 | 0.99 | 0.98 | −4.8 | 3.3 | |
170623 | 0.69 | 0.36 | −35.8 | 13.1 | 0.99 | 0.99 | −8.1 | 6.7 | |
Chenhe | 030903 | 0.39 | −1.29 | 142.6 | 51.2 | 0.95 | 0.75 | 88.1 | 36.8 |
050928 | 0.18 | −1.62 | 83.7 | 15.9 | 0.98 | 0.91 | 10.3 | 15.8 | |
110916 | 0.45 | 0.18 | −58.0 | −16.0 | 0.99 | 0.96 | 17.3 | 13.8 | |
120830 | 0.70 | 0.42 | −47.8 | −38.3 | 0.99 | 0.92 | 23.0 | 21.1 |
Catchment | Event | Wr + PEPM | Wm + PEPM | ||||||
---|---|---|---|---|---|---|---|---|---|
NSE | PB% | PBpf% | TEP (Hour) | NSE% | PB% | PBpf% | TEP (Hour) | ||
Tunxi | 120423 | 0.12 | −67.26 | −77.55 | −3 | 0.94 | 3.85 | −7.60 | 0 |
130606 | 0.93 | −5.42 | −25.38 | −2 | 0.91 | 4.18 | −16.24 | 1 | |
150607 | 0.82 | −1.51 | 36.41 | −2 | 0.94 | 1.71 | 14.51 | −2 | |
170623 | 0.68 | 11.96 | 31.36 | 0 | 0.96 | 4.14 | −5.59 | 0 | |
Chenhe | 030903 | 0.46 | 31.97 | −1.20 | −9 | 0.66 | 23.71 | 21.15 | 4 |
050928 | −1.65 | 24.48 | −1.49 | −42 | 0.54 | 26.08 | −9.06 | −3 | |
110916 | 0.54 | −16.43 | −29.75 | 20 | 0.87 | 19.20 | 16.27 | 0 | |
120830 | 0.54 | −42.58 | −48.40 | −5 | 0.66 | 41.69 | 7.10 | −2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, J.; Hu, Y.; Yao, C.; Ma, Y.; Sun, M.; Gong, J.; Shi, Z.; Li, J. The WRF-Driven Grid-Xin’anjiang Model and Its Application in Small and Medium Catchments of China. Water 2024, 16, 103. https://doi.org/10.3390/w16010103
Gong J, Hu Y, Yao C, Ma Y, Sun M, Gong J, Shi Z, Li J. The WRF-Driven Grid-Xin’anjiang Model and Its Application in Small and Medium Catchments of China. Water. 2024; 16(1):103. https://doi.org/10.3390/w16010103
Chicago/Turabian StyleGong, Junchao, Youbing Hu, Cheng Yao, Yanan Ma, Mingkun Sun, Junfu Gong, Zhuo Shi, and Jingbing Li. 2024. "The WRF-Driven Grid-Xin’anjiang Model and Its Application in Small and Medium Catchments of China" Water 16, no. 1: 103. https://doi.org/10.3390/w16010103
APA StyleGong, J., Hu, Y., Yao, C., Ma, Y., Sun, M., Gong, J., Shi, Z., & Li, J. (2024). The WRF-Driven Grid-Xin’anjiang Model and Its Application in Small and Medium Catchments of China. Water, 16(1), 103. https://doi.org/10.3390/w16010103