Determination of Optimal Water Intake Layer Using Deep Learning-Based Water Quality Monitoring and Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Quality Standards
2.2. Monitoring Sites of Juam Lake
2.3. Long Short-Term Memory Model for Prediction
3. Results
3.1. Data Collection
3.2. Water Quality Characteristics of Juam Lake
3.3. Correlation of Water Quality Parameters
3.4. Data Preprocessing
3.5. LSTM Model Training and Performance Evaluation
3.6. Prioritizing Water Quality Factors Based on Water Treatment Difficulty
3.7. Selection of the Optimal Intake Layer Based on Water Quality Factors
3.8. Selection of the Optimal Water Intake Layer Based on Water Quality Prediction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saadatpour, M.; Javaheri, S.; Afshar, A.; Solis, S.S. Optimization of selective withdrawal systems in hydropower reservoir considering water quality and quantity aspects. Expert Syst. Appl. 2021, 184, 115474. [Google Scholar] [CrossRef]
- Ly, Q.V.; Lee, M.-H.; Hur, J. Using fluorescence surrogates to track algogenic dissolved organic matter (AOM) during growth and coagulation/flocculation processes of green algae. J. Environ. Sci. 2019, 79, 311–320. [Google Scholar] [CrossRef]
- Xia, R.; Zhang, Y.; Wang, G.; Zhang, Y.; Dou, M.; Hou, X.; Qiao, Y.; Wang, Q.; Yang, Z. Multi-factor identification and modelling analyses for managing large river algal blooms. Environ. Pollut. 2019, 254, 113056. [Google Scholar] [CrossRef]
- Song, K.; Fang, C.; Jacinthe, P.-A.; Wen, Z.; Liu, G.; Xu, X.; Shang, Y.; Lyu, L. Climatic versus anthropogenic controls of decadal trends (1983–2017) in algal blooms in lakes and reservoirs across China. Environ. Sci. Technol. 2021, 55, 2929–2938. [Google Scholar] [CrossRef]
- Wetzel, R.G.; Limnology, G. Lake and river ecosystems. Limnology 2001, 37, 490–525. [Google Scholar]
- Lee, Y.G.; Kang, J.-H.; Ki, S.J.; Cha, S.M.; Cho, K.H.; Lee, Y.S.; Park, Y.; Lee, S.W.; Kim, J.H. Factors dominating stratification cycle and seasonal water quality variation in a Korean estuarine reservoir. J. Environ. Monit. 2010, 12, 1072–1081. [Google Scholar] [CrossRef]
- Lu, Y.; Tuo, Y.; Xia, H.; Zhang, L.; Chen, M.; Li, J. Prediction model of the outflow temperature from stratified reservoir regulated by stratified water intake facility based on machine learning algorithm. Ecol. Indic. 2023, 154, 110560. [Google Scholar] [CrossRef]
- Hamilton-Taylor, J.; Smith, E.; Davison, W.; Sugiyama, M. Resolving and modeling the effects of Fe and Mn redox cycling on trace metal behavior in a seasonally anoxic lake. Geochim. Cosmochim. Acta 2005, 69, 1947–1960. [Google Scholar] [CrossRef]
- Dai, M.; Guo, X.; Zhai, W.; Yuan, L.; Wang, B.; Wang, L.; Cai, P.; Tang, T.; Cai, W.-J. Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought. Mar. Chem. 2006, 102, 159–169. [Google Scholar] [CrossRef]
- Lamping, J.; Worrall, F.; Morgan, H.; Taylor, S. Effectiveness of aeration and mixing in the remediation of a saline stratified river. Environ. Sci. Technol. 2005, 39, 7269–7278. [Google Scholar] [CrossRef]
- Tobiason, J.E.; Bazilio, A.; Goodwill, J.; Mai, X.; Nguyen, C. Manganese removal from drinking water sources. Curr. Pollut. Rep. 2016, 2, 168–177. [Google Scholar] [CrossRef]
- Ly, Q.V.; Nguyen, X.C.; Lê, N.C.; Truong, T.-D.; Hoang, T.-H.T.; Park, T.J.; Maqbool, T.; Pyo, J.; Cho, K.H.; Lee, K.-S. Application of Machine Learning for eutrophication analysis and algal bloom prediction in an urban river: A 10-year study of the Han River, South Korea. Sci. Total Environ. 2021, 797, 149040. [Google Scholar] [CrossRef] [PubMed]
- Jarvie, H.P.; Smith, D.R.; Norton, L.R.; Edwards, F.K.; Bowes, M.J.; King, S.M.; Scarlett, P.; Davies, S.; Dils, R.M.; Bachiller-Jareno, N. Phosphorus and nitrogen limitation and impairment of headwater streams relative to rivers in Great Britain: A national perspective on eutrophication. Sci. Total Environ. 2018, 621, 849–862. [Google Scholar] [CrossRef] [PubMed]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Ly, Q.V.; Maqbool, T.; Hur, J. Unique characteristics of algal dissolved organic matter and their association with membrane fouling behavior: A review. Environ. Sci. Pollut. Res. 2017, 24, 11192–11205. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Zhang, H.; Lei, P.; Tang, W.; Yin, W.; Li, J.; Zhong, H.; Li, K. Algal blooms in the middle and lower Han River: Characteristics, early warning and prevention. Sci. Total Environ. 2020, 706, 135293. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Meng, F.; Yao, L. Hepatotoxicity and immunotoxicity of MC-LR on silver carp. Ecotoxicol. Environ. Saf. 2019, 169, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Giesy, J.P.; Xie, P. The dose makes the poison. Sci. Total Environ. 2018, 621, 649–653. [Google Scholar] [CrossRef]
- Yang, W.-M. Development of Rule-Based Operation Method for Selecting Optimal Water Quality when Taking Raw Water from Lakes; Chonnam National University: Gwangju, China, 2023. [Google Scholar]
- Liu, P.; Wang, J.; Sangaiah, A.K.; Xie, Y.; Yin, X. Analysis and prediction of water quality using LSTM deep neural networks in IoT environment. Sustainability 2019, 11, 2058. [Google Scholar] [CrossRef]
- Maier, H.R.; Jain, A.; Dandy, G.C.; Sudheer, K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ. Model. Softw. 2010, 25, 891–909. [Google Scholar] [CrossRef]
- Lee, S.; Lee, D. Improved prediction of harmful algal blooms in four Major South Korea’s Rivers using deep learning models. Int. J. Environ. Res. Public Health 2018, 15, 1322. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-J.; Kuo, P.-H. A deep CNN-LSTM model for particulate matter (PM2.5) forecasting in smart cities. Sensors 2018, 18, 2220. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-W. Differences in Quality Standards between Reservoir Water and Tap Water. 2014. Available online: https://www.waterjournal.co.kr/news/articleView.html?idxno=21917 (accessed on 2 December 2014).
- Moreira, V.R.; Guimarães, R.N.; Moser, P.B.; Santos, L.V.; de Paula, E.C.; Lebron, Y.A.; Silva, A.F.R.; Casella, G.S.; Amaral, M.C. Restrictions in water treatment by conventional processes (coagulation, flocculation, and sand-filtration) following scenarios of dam failure. J. Water Process Eng. 2023, 51, 103450. [Google Scholar] [CrossRef]
- Lee, H.-N.; Jung, K.-S.; Cheon, G.-H.; Hur, Y.-T. A Investigation and Analysis of Water Temperature by Juam Regulation Dam Outflow in Downstream and Suncheon Bay. Korea Water Resour. Assoc. 2015, 48, 501–509. [Google Scholar] [CrossRef]
- Lee, G.-S.; Kim, T.-K. Estimation of Nonpoint Source Pollutant Loads of Juam-Dam Basin Based on the Classification of Satellite Imagery. Korean Assoc. Geogr. Inf. Studi 2012, 15, 1–12. [Google Scholar]
- Kim, B.-C.; Park, J.-H.; Heo, W.-M.; Lim, B.-J.; Hwang, G.-S.; Choi, K.-S.; Choi, J.-S. The Limnological Survey of Major Lakes in Korea (4): Lake Juam. Korean J. Limnol. 2001, 18, 81–95. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Graves, A. Long short-term memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–45. [Google Scholar]
- Staudemeyer, R.C.; Morris, E.R. Understanding LSTM—A tutorial into long short-term memory recurrent neural networks. arXiv 2019, arXiv:1909.09586. [Google Scholar]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Van Houdt, G.; Mosquera, C.; Nápoles, G. A review on the long short-term memory model. Artif. Intell. Rev. 2020, 53, 5929–5955. [Google Scholar] [CrossRef]
- Graves, A.; Fernández, S.; Gomez, F.; Schmidhuber, J. Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks. In Proceedings of the 23rd International Conference on Machine Learning, New York, NY, USA, 25–29 June 2006; pp. 369–376. [Google Scholar]
- Soutner, D.; Müller, L. Application of LSTM neural networks in language modelling. In Proceedings of the Text, Speech, and Dialogue: 16th International Conference, TSD 2013, Pilsen, Czech Republic, 1–5 September 2013; pp. 105–112. [Google Scholar]
- Karevan, Z.; Suykens, J.A. Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Netw. 2020, 125, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Shen, S.-L.; Zhou, A.; Jin, Y.-F. Application of LSTM approach for modelling stress–strain behaviour of soil. Appl. Soft Comput. 2021, 100, 106959. [Google Scholar] [CrossRef]
- Stollenga, M.F.; Byeon, W.; Liwicki, M.; Schmidhuber, J. Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar]
- Pratap, V.; Hannun, A.; Xu, Q.; Cai, J.; Kahn, J.; Synnaeve, G.; Liptchinsky, V.; Collobert, R. Wav2letter++: A fast open-source speech recognition system. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 6460–6464. [Google Scholar]
- Shewalkar, A.; Nyavanandi, D.; Ludwig, S.A. Performance evaluation of deep neural networks applied to speech recognition: RNN, LSTM and GRU. J. Artif. Intell. Soft Comput. Res. 2019, 9, 235–245. [Google Scholar] [CrossRef]
- Oruh, J.; Viriri, S.; Adegun, A. Long short-term memory recurrent neural network for automatic speech recognition. IEEE Access 2022, 10, 30069–30079. [Google Scholar] [CrossRef]
- Gers, F.A.; Pérez-Ortiz, J.A.; Eck, D.; Schmidhuber, J. Learning context sensitive languages with LSTM trained with Kalman filters. In Proceedings of the International Conference on Artificial Neural Networks, Madrid, Spain, 28–30 August 2002; pp. 655–660. [Google Scholar]
- Yang, Y.; Xiong, Q.; Wu, C.; Zou, Q.; Yu, Y.; Yi, H.; Gao, M. A study on water quality prediction by a hybrid CNN-LSTM model with attention mechanism. Environ. Sci. Pollut. Res. 2021, 28, 55129–55139. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zhang, Y.; Zhao, Y.; Xie, M.; Zhong, J.; Tu, Z.; Liu, J. A water quality prediction method based on the deep LSTM network considering correlation in smart mariculture. Sensors 2019, 19, 1420. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, J.; Chen, K.; Wang, Y.; Liu, L. Water quality prediction method based on LSTM neural network. In Proceedings of the 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Nanjing, China, 24–26 November 2017; pp. 1–5. [Google Scholar]
- Zhang, L.; Jiang, Z.; He, S.; Duan, J.; Wang, P.; Zhou, T. Study on water quality prediction of urban reservoir by coupled CEEMDAN decomposition and LSTM neural network model. Water Resour. Manag. 2022, 36, 3715–3735. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Xiao, F.; Wang, Y.; Sun, L. Water quality prediction method based on IGRA and LSTM. Water 2018, 10, 1148. [Google Scholar] [CrossRef]
- Zang, C.; Huang, S.; Wu, M.; Du, S.; Scholz, M.; Gao, F.; Lin, C.; Guo, Y.; Dong, Y. Comparison of relationships between pH, dissolved oxygen and chlorophyll a for aquaculture and non-aquaculture waters. Water Air Soil Pollut. 2011, 219, 157–174. [Google Scholar] [CrossRef]
- Lee, J.-H.; Oh, H.-M.; Maeng, J.-S. Water Quality and Phytoplankton Standing Crops in the Daechung Reservoir. Korean J. Env. Biol. 2000, 18, 355–365. [Google Scholar]
- Gwak, N.-T.; Ahn, T.-Y. Eutrophication and Its Countermeasure. Korean J. Microbiol. 1997, 33, 72–77. [Google Scholar]
- Choi, I.-W.; Kim, J.-H.; Im, J.-K.; Park, T.-J.; Kim, S.-Y.; Son, D.-H.; Huh, I.-A.; Rhew, D.-H.; Yu, S.-J. Application of TOC Standards for Managing Refractory Organic Compounds in Industrial Wastewater. J. Korean Soc. Water Environ. 2015, 31, 29–34. [Google Scholar] [CrossRef]
- Virro, H.; Amatulli, G.; Kmoch, A.; Shen, L.; Uuemaa, E. GRQA: Global river water quality archive. Earth Syst. Sci. Data 2021, 13, 5483–5507. [Google Scholar] [CrossRef]
- Nie, Y.; Zhang, R.; Li, S.; Xia, W.; Ma, J. Removal of Microcystis aeruginosa and its extracellular organic matters by using covalently bonded coagulant: An alternative choice in enhanced coagulation for algae-polluted water treatment. J. Clean. Prod. 2023, 419, 138337. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Elbestawy, A.R.; Ellakany, H.F.; Abaza, S.S.; Geneedy, A.M.; Salem, H.M.; Taha, A.E.; Swelum, A.A.; Omer, F.A. Undesirable odour substances (geosmin and 2-methylisoborneol) in water environment: Sources, impacts and removal strategies. Mar. Pollut. Bull. 2022, 178, 113579. [Google Scholar] [CrossRef] [PubMed]
- Okoro, B.U.; Sharifi, S.; Jesson, M.A.; Bridgeman, J. Natural organic matter (NOM) and turbidity removal by plant-based coagulants: A review. J. Environ. Chem. Eng. 2021, 9, 106588. [Google Scholar] [CrossRef]
- Ramli, S.F.; Aziz, H.A. Potential use of tin tetrachloride and polyacrylamide as a coagulant-coagulant aid in the treatment of highly coloured and turbid matured landfill leachate. Process Saf. Environ. Prot. 2023, 170, 971–982. [Google Scholar] [CrossRef]
- Nayak, M.; Rashid, N.; Suh, W.I.; Lee, B.; Chang, Y.K. Performance evaluation of different cationic flocculants through pH modulation for efficient harvesting of Chlorella sp. HS2 and their impact on water reusability. Renew. Energy 2019, 136, 819–827. [Google Scholar]
- Lin, Z.; Zhang, C.; Sun, C.; Lu, W.; Quan, B.; Su, P.; Li, X.; Zhang, T.; Guo, J.; Li, W. Treatment of high turbidity mine drainage with iron-based hybrid flocculants: Synthesis process and mechanism, and its interfacial flocculation mechanism. Sep. Purif. Technol. 2023, 327, 124870. [Google Scholar] [CrossRef]
- Jung, Y.-R.; Liu, H.; Kim, Y.-K.; Ye, L.; Chung, S.-W. Effect of Selective Withdrawal on the Control of Turbidity Flow and Its Water Quality Impact in Daecheong Reservoir. J. Korea Water Resour. Assoc. 2007, 40, 601–615. [Google Scholar] [CrossRef]
- Araújo, F.G.; Costa de Azevedo, M.C.; Lima Ferreira, M.d.N. Seasonal changes and spatial variation in the water quality of a eutrophic tropical reservoir determined by the inflowing river. Lake Reserv. Manag. 2011, 27, 343–354. [Google Scholar] [CrossRef]
- Abd Nasier, M.; Abdulrazzaq, K.A. Conventional water treatment plant, principles, and important factors influence on the efficiency. Des. Eng. 2021, 16009–16027. [Google Scholar]
Standard | pH | COD (mg/L) | TOC (mg/L) | SS (mg/L) | DO (mg/L) | T-P (mg/L) | T-N (mg/L) | Chl-a (mg/m3) | Total Coliforms | Fecal Coliforms | |
---|---|---|---|---|---|---|---|---|---|---|---|
Grade | |||||||||||
Very good (Ia) | 6.5 to 8.5 | ≤2 | ≤2 | ≤1 | ≥7.5 | ≤0.01 | ≤0.2 | ≤5 | ≤50 | ≤10 | |
Good (Ib) | 6.5 to 8.5 | ≤3 | ≤3 | ≤5 | ≥5.0 | ≤0.02 | ≤0.3 | ≤9 | ≤500 | ≤100 | |
Slightly good (Ⅱ) | 6.5 to 8.5 | ≤4 | ≤4 | ≤5 | ≥5.0 | ≤0.03 | ≤0.4 | ≤15 | ≤1000 | ≤200 | |
Commonly (Ⅲ) | 6.5 to 8.5 | ≤5 | ≤5 | ≤15 | ≥5.0 | ≤0.05 | ≤0.6 | ≤20 | ≤5000 | ≤1000 | |
Slightly bad (Ⅳ) | 6.5 to 8.5 | ≤8 | ≤6 | ≤15 | ≥2.0 | ≤0.10 | ≤1.0 | ≤35 | - | - | |
Bad (Ⅴ) | 6.5 to 8.5 | ≤10 | ≤8 | Luggage, etc., is floating | ≥2.0 | ≤0.15 | ≤1.5 | ≤70 | - | - | |
Very bad (Ⅵ) | 6.5 to 8.5 | >10 | > 8 | - | <2.0 | >0.15 | >1.5 | >70 | - | - |
Category | Lake Juam |
---|---|
Surface area (km2) | 22 |
Water capacity (106 m3) | 457 |
Average water volume (106 m3) | 311 |
Annual water inflow (106 m3) | 623 |
Annual water outflow (106 m3) | 673 |
Maximum water level (m) | 108.6 |
Average water level (m) | 104.1 |
Drainage area (km2) | 1010 |
Automatic Monitoring Station | Manual Measurement Point 2 (Upper Layer) | Manual Measurement Point 2 (Middle Layer) | Manual Measurement Point 2 (Lower Layer) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | Avg. | Median | S.D. | Min | Max | Skewness | Avg. | Median | S.D. | Min | Max | Skewness | Avg. | Median | S.D. | Min | Max | Skewness | Avg. | Median | S.D. | Min | Max | Skewness |
Temp. (°C) | 17.86 | 18.40 | 7.91 | 4.20 | 0.10 | −0.084 | 16.71 | 17.90 | 8.12 | 1.00 | 32.00 | −0.10 | 13.60 | 13.70 | 6.48 | 2.00 | 26.00 | 0.11 | 10.10 | 8.60 | 4.83 | 2.00 | 23.00 | 0.83 |
pH | 7.57 | 7.40 | 0.75 | 6.30 | 10.00 | 0.63 | 7.81 | 7.80 | 0.69 | 6.30 | 9.80 | 0.39 | 7.20 | 7.20 | 0.65 | 4.80 | 8.30 | −0.90 | 6.82 | 6.90 | 0.79 | 3.90 | 8.10 | −0.87 |
EC (μs/cm) | 80.30 | 79.00 | 10.87 | 54.00 | 127.00 | 0.47 | 81.86 | 81.50 | 9.70 | 59.00 | 107.00 | −0.20 | 78.88 | 79.00 | 11.30 | 47.00 | 105.00 | −0.14 | 85.94 | 82.50 | 15.67 | 59.00 | 156.00 | 1.45 |
DO (mg/L) | 9.59 | 9.60 | 1.86 | 4.00 | 16.40 | 0.13 | 10.14 | 10.00 | 1.88 | 6.70 | 13.90 | 0.03 | 8.63 | 9.10 | 3.31 | 1.20 | 13.30 | −0.50 | 7.32 | 7.95 | 3.93 | 0.10 | 13.10 | −0.26 |
Turbidity (NTU) | 1.77 | 1.40 | 1.94 | 0.10 | 138.90 | 19.05 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
TOC (mg/L) | 1.68 | 1.60 | 0.28 | 0.10 | 3.90 | 0.62 | 1.81 | 1.80 | 0.29 | 1.20 | 2.50 | 0.37 | 1.71 | 1.70 | 0.21 | 1.30 | 2.50 | 0.50 | 1.62 | 1.60 | 0.23 | 1.10 | 2.50 | 0.66 |
T-N (mg/L) | 0.66 | 0.64 | 0.21 | 0.10 | 1.75 | 0.68 | 0.73 | 0.71 | 0.21 | 0.40 | 1.72 | 1.85 | 0.84 | 0.75 | 0.32 | 0.42 | 2.35 | 2.24 | 0.83 | 0.76 | 0.24 | 0.45 | 1.81 | 1.78 |
T-P (mg/L) | 0.01 | 0.01 | 0.004 | 0.003 | 0.07 | 2.20 | 0.02 | 0.01 | 0.01 | 0.01 | 0.04 | 1.44 | 0.02 | 0.01 | 0.01 | 0.003 | 0.06 | 2.05 | 0.02 | 0.01 | 0.01 | 0.002 | 0.05 | 1.41 |
Chl-a () | 8.90 | 6.90 | 8.28 | 0.10 | 134.00 | 4.14 | 6.15 | 5.40 | 4.35 | 0.30 | 21.80 | 1.28 | 5.13 | 4.80 | 4.15 | 0.20 | 26.90 | 2.12 | 3.34 | 2.70 | 2.58 | 0.10 | 12.70 | 0.92 |
Chl-a | DO | EC | Turbidity | pH | TOC | T-N | T-P | WT | |
---|---|---|---|---|---|---|---|---|---|
Epoch | 700 | 700 | 700 | 700 | 700 | 700 | 700 | 700 | 700 |
Batch size | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 | 32 |
RMSE | 1.619 | 0.359 | 1.811 | 0.386 | 0.145 | 0.103 | 0.013 | 0.001 | 0.559 |
Depth Selection Metrics | Chl-a | TOC | T-N | T-P | Turbidity | pH | DO | WT | EC |
---|---|---|---|---|---|---|---|---|---|
Relative difficulty of water purification | 1 | 2 | 2 | 2 | 3 | 4 | 5 | 5 | - |
Depth Selection Metrics | Chl-a | TOC | T-N | T-P | Turbidity | pH | DO | WT | EC |
---|---|---|---|---|---|---|---|---|---|
Relative difficulty of water purification | Middle layer | Upper layer | Upper layer | Upper layer | Upper layer | Middle layer | Upper layer | Upper layer | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Kwak, S.; Lee, M.; Jeong, M.; Park, M.; Park, Y.-G. Determination of Optimal Water Intake Layer Using Deep Learning-Based Water Quality Monitoring and Prediction. Water 2024, 16, 15. https://doi.org/10.3390/w16010015
Kim Y, Kwak S, Lee M, Jeong M, Park M, Park Y-G. Determination of Optimal Water Intake Layer Using Deep Learning-Based Water Quality Monitoring and Prediction. Water. 2024; 16(1):15. https://doi.org/10.3390/w16010015
Chicago/Turabian StyleKim, Yunhwan, Seoeun Kwak, Minhyeok Lee, Moon Jeong, Meeyoung Park, and Yong-Gyun Park. 2024. "Determination of Optimal Water Intake Layer Using Deep Learning-Based Water Quality Monitoring and Prediction" Water 16, no. 1: 15. https://doi.org/10.3390/w16010015
APA StyleKim, Y., Kwak, S., Lee, M., Jeong, M., Park, M., & Park, Y. -G. (2024). Determination of Optimal Water Intake Layer Using Deep Learning-Based Water Quality Monitoring and Prediction. Water, 16(1), 15. https://doi.org/10.3390/w16010015