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Abstract: The real-time derivation of the concentration, area, and velocity of river surface ice based
on camera imagery is essential for predicting the potential risks related to ice blockages in water
routes. The key lies in the continuous tracking and velocity measuring of river ice, and reliable
ice motion detection is a prerequisite for the dynamic perception of tracking targets. Previous
studies did not utilize motion tracking for measuring ice velocity, and particle image velocimetry and
feature point matching were used. This study aimed to use deep learning methods to address the
challenging problems of deriving the ice concentration, area, and velocity based on camera imagery,
and the focus was on measuring the ice velocity and drawing trajectories using the particle video
tracking algorithm. We built a dataset named IPC_RI_IDS and collected information during the
ice cover break-up process in the Nenjiang River (China). Our suggested approach was divided
into four steps: (1) image preprocessing, where the camera image was calibrated to real-world
coordinates; (2) determining the ice and water pixels in the camera image using the lightweight
semantic segmentation network and then calculating the ice concentration and area; (3) enhancing and
optimizing motion detection using the semantic segmentation results; and (4) adapting the particle
video tracking algorithm to measure ice velocity using the proposed tracking points generation
strategy. Finally, we analyzed the surface ice data in the study area and attempted to predict the stage
of the ice break-up process to provide support for the real-time short-term forecasts of ice floods.

Keywords: river ice; ice regime; ice velocity; ice tracking; particle video; deep learning

1. Introduction

Large-scale floating ice collisions cause significant damage to hydraulic structures and
inland transportation along rivers, and the accumulation of floating ice can quickly raise
water levels, leading to ice-jam floods [1]. River ice hazards cause substantial economic
losses. In 2017, during the spring melt, ice-jam floods cost approximately USD 300 million
in North America alone [2]. In 2021, a large floating ice mass hit and destroyed the Xinxing
Bridge in the Ant River, Fangzheng County, Harbin, China [3]. Real-time river ice regime
recognition can provide practical information and support for the early warning of ice
floods to reduce disaster losses. Based on computer vision technology with deep learning
techniques, the pixel distributions of ice and water in a camera image were identified
to extract additional high semantic information, such as ice concentration, area, velocity,
distribution, and change process, which provided essential data support for the analysis
and prediction of ice floods. This paper studies river ice regime recognition based on
camera images, as shown in Figure 1.

River ice break-up forming an ice run is a river’s short-term natural behavior, and it
often occurs in one day or over several days. It is necessary to study this change process
by recognizing river ice regimes through real-time monitoring. Researchers mainly use
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three types of river ice images. The first is a high-spatial-resolution remote sensing image
(satellite imagery) [4–6]. The advantage is that it can observe and calculate the overall river
ice regime over an extensive range. However, only coarse-grained river ice changes can be
captured due to the long image-shooting interval. The second is unmanned aerial vehicle
imaging (UAV imagery) [7–9], which has the advantage of its relatively low cost and ability
to capture hourly data for river ice changes occurring anywhere. However, it is challenging
to capture the long-term data for river ice changes. The third is a fixed-position camera
image with an oblique perspective (camera imagery) [10–12], which has the advantage of
monitoring the long-term continuous changes in a river ice regime from a fixed perspective,
and it more accurately captures the details of river ice in a river section and is convenient for
locking the measurement condition variables to analyze the changes in a river ice regime.
Aiming to address the suddenness of river ice hazards, a real-time monitoring camera
presents more advantages for short-term forecasting.

Water 2024, 15, x FOR PEER REVIEW 2 of 21 
 

 

 
Figure 1. Process overview of river ice regime recognition, including ice concentration, area, and 
velocity. 

River ice break-up forming an ice run is a river’s short-term natural behavior, and it 
often occurs in one day or over several days. It is necessary to study this change process 
by recognizing river ice regimes through real-time monitoring. Researchers mainly use 
three types of river ice images. The first is a high-spatial-resolution remote sensing image 
(satellite imagery) [4–6]. The advantage is that it can observe and calculate the overall river 
ice regime over an extensive range. However, only coarse-grained river ice changes can 
be captured due to the long image-shooting interval. The second is unmanned aerial ve-
hicle imaging (UAV imagery) [7–9], which has the advantage of its relatively low cost and 
ability to capture hourly data for river ice changes occurring anywhere. However, it is 
challenging to capture the long-term data for river ice changes. The third is a fixed-posi-
tion camera image with an oblique perspective (camera imagery) [10–12], which has the 
advantage of monitoring the long-term continuous changes in a river ice regime from a 
fixed perspective, and it more accurately captures the details of river ice in a river section 
and is convenient for locking the measurement condition variables to analyze the changes 
in a river ice regime. Aiming to address the suddenness of river ice hazards, a real-time 
monitoring camera presents more advantages for short-term forecasting. 

Previous studies have provided some methods for river ice regime recognition. Re-
lated to this paper, Daigle et al. (2013) [13] used an artificial neural network and a particle 
image velocimetry method to measure the concentration and velocity of river ice on a 
camera, and this was a relatively early and comprehensive study on river ice recognition. 
The shortcoming was that it could not continuously track ice and measure ice velocity. 
Wang et al. (2022) [7] took UAV images from a high-altitude, overlooking a river, during 
ice flood periods in the Heilongjiang Basin in China, and they selected two images with 
an interval of one second, extracted and matched similar feature points of the river ice 
using the scale-invariant feature transform (SIFT) algorithm and the brute force (BF) algo-
rithm, and then measured the river ice velocity according to the displacement difference. 
A shortcoming was the inability to monitor the river ice for a long time by UAV. Zhang et 
al. (2020–2023) [8,14,15] conducted a series of studies on the semantic segmentation of 
river ice on oblique UAV images. Finally, they achieved real-time semantic segmentation 
while ensuring high accuracy, and they further calculated and analyzed the concentration 
of the river ice. This method required a lot of image calibration work to recognize the river 
ice parameters. Xin et al. (2023) [10] used the boundary rectangle method and Harris cor-
ner detection method to measure a river’s ice surface area and velocity on camera images 
from the Huma River Basin in the Daxing’an Mountains. The author mentioned that ice 
velocity measurements required manual operation. Li et al. (2023) [11] collected river ice 
images based on a fixed camera at the Yellow River. Their main work was to estimate the 
Gaussian distribution of the sizes and shapes of the river ice and establish the relationship 

Figure 1. Process overview of river ice regime recognition, including ice concentration, area, and
velocity.

Previous studies have provided some methods for river ice regime recognition. Related
to this paper, Daigle et al. (2013) [13] used an artificial neural network and a particle image
velocimetry method to measure the concentration and velocity of river ice on a camera,
and this was a relatively early and comprehensive study on river ice recognition. The
shortcoming was that it could not continuously track ice and measure ice velocity. Wang
et al. (2022) [7] took UAV images from a high-altitude, overlooking a river, during ice
flood periods in the Heilongjiang Basin in China, and they selected two images with an
interval of one second, extracted and matched similar feature points of the river ice using
the scale-invariant feature transform (SIFT) algorithm and the brute force (BF) algorithm,
and then measured the river ice velocity according to the displacement difference. A
shortcoming was the inability to monitor the river ice for a long time by UAV. Zhang et al.
(2020–2023) [8,14,15] conducted a series of studies on the semantic segmentation of river
ice on oblique UAV images. Finally, they achieved real-time semantic segmentation while
ensuring high accuracy, and they further calculated and analyzed the concentration of the
river ice. This method required a lot of image calibration work to recognize the river ice
parameters. Xin et al. (2023) [10] used the boundary rectangle method and Harris corner
detection method to measure a river’s ice surface area and velocity on camera images from
the Huma River Basin in the Daxing’an Mountains. The author mentioned that ice velocity
measurements required manual operation. Li et al. (2023) [11] collected river ice images
based on a fixed camera at the Yellow River. Their main work was to estimate the Gaussian
distribution of the sizes and shapes of the river ice and establish the relationship function
between the river ice concentration and the ice drift velocity, which helped to understand
and analyze the freezing and thawing mode of the river ice. The semantic segmentation of
the river ice was manually completed, and their work was not automated.
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In summary, camera imagery is of more practical significance for the real-time moni-
toring of and risk early warnings for river ice. Research on multi-target continuous tracking
and velocity measurements of river ice is still lacking. Under these motivations, this paper
studies river ice regime recognition using camera imagery, including the ice concentration,
area, and velocity. The difficulties were as follows: (1) there was a need for a river ice
dataset of camera imagery; (2) in practice, we found that ice motion detection results could
be more precise; (3) the continuous and accurate river ice tracking and velocimetry; and
(4) forecasting the possibility of ice hazards through ice concentrations and velocity was
not enough, and it also required the parameter of ice motion intensity (i.e., a visual scale of
the surface ice motion, similar to the volume of ice flow in three-dimensional space). This
work began with building the dataset, enhancing motion detection, and improving the ice
velocimetry to solve the above problems.

The main contributions of this study are as follows:

1. It addressed the motion detection problem caused by the color similarity of river ice
to river water. Compared with traditional methods, motion detection using the results
of the semantic segmentation of river ice can extract a more significant and precise
binary map of river ice motion, and then it can use the river ice mask to further modify
the binary map of motion, which can be used to obtain a reliable binary map of the
motion of the river ice.

2. We proposed a novel continuous ice velocity measurement method based on particle
video tracking. The difference between the velocity measurement method and previ-
ous works (e.g., the PIV-based method from 2013 [13] and the SIFT-based matching
method from 2023 [7]) is the continuous tracking, and the features of the regions
adjacent to the points were extracted using the feature method and the optical flow
method without global image matching.

3. The relationship between river ice concentration, area, velocity, and motion intensity
in the ice cover break-up process was analyzed. We proposed the calculation of the
motion intensity of the ice run and designed a feed-forward neural network to predict
the stage of the ice cover break-up process using the above ice parameters.

4. We built a dataset named IPC_RI_IDS of river ice regime recognition that contained
the complete ice cover break-up process. We annotated 113 dataset images with
semantic segmentation and provided preliminary numerical information, such as
ice concentration, area, velocity, and motion intensity, for each image. Subsequent
research on river ice regime recognition will be supported by this research.

2. Study Area and Materials
2.1. Study Area

The Nenjiang River, located in Northeast China, is a tributary of the Songhua River.
The river is 1370 km long, with an average flow of 823.4 m3/s. At medium and high water
levels, the maximum water surface width is 450–8000 m, and the maximum water depth is
6–13 m. At low water levels, the maximum water surface width is 170–180 m, the maximum
water depth is 1.6–7.2 m, and 300–500 ton ships can navigate the middle and lower reaches.
The freezing period is from mid-November to mid-April of the following year.

The observation location in this study was located in Baishatan Village, Dandai Town-
ship, Zhenlai County, Jilin Province, at the entrance of the Nenjiang River in Jilin Province
(as shown in Figure 2). The river’s surface was 150 m in width. Monitoring and early
warning points were set here to ensure the safety of the downstream river. We set up a
nine-meter-high network camera on the right bank facing the opposite river to monitor the
ice cover break-up in real time, and it captured the complete ice cover break-up process on
31 March 2023. The ice cover break-up started at 10 a.m. Beijing time. The ice run began at
2 p.m. and ended at 5 p.m. The ice cover, frozen for several months, broke up in one day
and flowed downstream. The data collection of the ice cover break-up process is significant
for the real-time short-term forecasting of ice floods.
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Figure 2. Schematic diagram of the observation geographical location. The base map is from
Tianditu.com [16] accessed on 1 November 2023.

2.2. Materials

A dataset of the ice cover break-up process of the Nenjiang River or other similar rivers
was needed. Therefore, we collected a monitoring video of the ice cover break-up process
of the Nenjiang River in the study area on 31 March 2023, and we saved 43 video clips
(data size of 43 GB). We divided the ice cover break-up process into five stages according
to the morphology and intensity of the ice cover and ice run, namely, (1) the ice frozen
stage, (2) the ice break-up beginning stage, (3) the ice drifting stage, (4) the ice break-up
ending stage, and (5) the ice-free stage. According to each stage’s characteristics and river
ice morphologies, we extracted 26 one-minute short video clips from the five stages (1, 6,
10, 6, and 3), each with a frame rate of 10 fps, and we were able to extract 600 sequence
images. Therefore, there were 15,600 sequence images, as shown in Table 1. This dataset
was named IPC_RI_IDS, as shown in Figure 3, and we annotated it with refined semantics,
as shown in Figure 4.
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Figure 3. The five stages of our river ice dataset: (a) ice frozen stage; (b) ice break-up beginning stage;
(c) ice drifting stage; (d) ice break-up ending stage; and (e) ice-free stage.
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Table 1. The number of images in each stage.

No. The Stage of Ice Break-Up The Number of
Videos

The Number of
IMAGES

1 ice frozen 1 600
2 ice break-up beginning 6 3600
3 ice drifting 10 60,000
4 ice break-up ending 6 3600
5 ice-free 3 1800

Total 26 15,600
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In the first stage, one video clip was selected where the river ice had no change during
the freezing stage, and each video clip was the same. In other stages, only the ice-drifting
stage had a significant image change. We extracted 10 video clips, and we also made
refined annotations on them in terms of semantic segmentation. A total of 113 images were
annotated; on average, each image annotation took 2 h.

By observing the river ice video, it was found that in the ice drifting stage, the shape of
the floating ice was complex, and the mixture of fragmented ice residue and water brought
difficulties to semantic segmentation and motion detection. The drift velocity of the floating
ice was too fast, and the shapes changed too fast, bringing significant challenges to the
subsequent ice velocity measurement task.

3. Methods

In this study, the suggested approach was divided into six main steps. The goal was to
extract the river ice concentration, area, velocity, and motion intensity to predict the stage
of the ice cover break-up process, as shown in Figure 5.
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First, the camera image was calibrated to real-world coordinates during the image
preprocessing step. Second, the lightweight depth convolution neural network was used
to perform semantic segmentation on the river surface ice, extracting the ice pixels from
the camera imagery to calculate the ice concentration and area. Third, we innovatively
used the semantic segmentation results to improve the motion detection to enhance the
significance of the motion binary map and optimize it to calculate the motion intensity.
Fourth, the tracking point generation strategy was proposed, in which the tracking points
were dynamically controlled by dividing the 16 × 16 grid patches of the motion binary
map of the river ice. Fifth, the particle video tracking method was adjusted to adapt to
the dynamic tracking of the river ice, and when measuring the ice velocity, the maximum
velocity and average velocity were recorded. Finally, the five parameters of concentra-
tion, area, maximum velocity, average velocity, and motion intensity were input into the
feed-forward neural network to predict the stage of the ice cover break-up process. The
processing procedures in each step are introduced individually in subsequent sections.

3.1. Image Preprocessing and Calibration

In the image preprocessing step, the input camera images were resized to 1280 pixels
wide × 720 pixels high × 3 RGB channels and then cropped to 960 × 660 × 3 by aligning
the bottoms and centers.
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Projective Transform

The camera images were calibrated to obtain the vertical-looking non-deformed im-
ages to calculate more accurate river ice parameter values. We used the projective transform
method [17] to convert the camera images to real-world coordinates and used the actual
widths and heights of the pixels to calculate the ice concentration, area, velocity, and motion
intensity (see Figure 6).
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If we let x and y represent the pixel coordinates of the original images, x’ and y’
represent the pixel coordinates of the converted images, and h represent the transformation
coefficient, then the formulas for computing the transformation of x’ and y’ are as follows:x′

y′

1

 =

h11 h12 h13
h21 h22 h23
h31 h32 1

x
y
1

 and (1)

x′ =
h11x + h12y + h13

h31x + h32y + 1
, y′ =

h21x + h22y + h23

h31x + h32y + 1
. (2)

We selected four point-pairs according to the distance parameters (the blue ‘×’ in
Figure 6a) to calculate the transformation coefficient, as set out in Equations (3) and (4)
below:

[X, Y] =


270 130
0 660

685 125
960 660

,
[
X′, Y′] =


400 500
400 2000
600 500
600 2000

 and (3)

h11 h12 h13
h21 h22 h23
h31 h32 1

 =

 0.7692 1.8690 152.0306
0.1585 11.7309 −814.4399

0.00008 0.0038 1

. (4)

We proposed PW (the actual pixel width) and HW (the actual pixel height) to easily
calculate the pixel actual area. For the pixel Pxy, the coordinates were x and y in the image.
We let PW represent the actual width of the pixel Pxy in the projection coordinates, and PH
represented the actual height of the pixel Pxy in the projection coordinates, as set out in
Equations (5) and (6) below:

PW = (x + 1)′ − x′ and (5)

PH = (y + 1)′ − y′. (6)

3.2. River Ice Semantic Segmentation

Semantic segmentation is a popular and mature image recognition task. The goal is
to classify each pixel in an image. As shown in Figure 4b, the green color represents the
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ice, the yellow color represents the water, and the red color represents the background.
Since Long et al. [18] proposed using a full convolutional neural network, the effect of the
semantic segmentation task has been qualitatively improved. Excellent examples of this
method include DeepLabV3+ [19], K-Net [20], and Mask2Former [21]. In our previous
work [22], we conducted a special study on the zero-shot semantic segmentation of river
ice in this scene.

This work was more concerned with the processing efficiency of semantic segmenta-
tion. We trained several lightweight semantic segmentation methods on IPC_RI_IDS. The
selected models were FastScnn [23], MobileSeg [24], PPLiteSeg [25], and PPMobileSeg [26].
The codes were from the open-source project PaddleSeg [27] repository. The model with
the best efficiency and precision would be the final semantic segmentation model.

After the semantic segmentation step, the ice concentration and area were calculated
as follows:

Ice Concentration. We calculated the ice concentration according to the category of each
pixel. We let Pice represent the pixel classified as river ice and Pwater represent the pixel
classified as water, as set out in Equation (7) below:

Ice Concentration =
Count(Pice)

Count(Pice) + Count(Pwater)
. (7)

Ice Area. We calculated the ice area according to the actual area corresponding to each
ice pixel Pice, and then we summed them. IS_ICE meant 1 when Pxy was the Pice category;
otherwise, it meant 0, as set out in Equation (8) below:

Ice Area = ∑IMG_H
y=0 ∑IMG_W

x=0 PW × PH × IS_ICE. (8)

3.3. Motion Detection

A motion detection algorithm identifies pixels with motion changes in continuous
images, and it usually includes background subtraction, temporary differences, optical
flows, and so on [28].

This work used the classic and efficient ViBe [29] algorithm to obtain the motion binary
map of the surface ice. The traditional strategy of a motion detection algorithm cannot
achieve accurate results when directly applied to an original image. Therefore, we proposed
a novel strategy for improving motion detection based on the semantic segmentation map,
and the obtained motion binary map was more prominent. To distinguish the motion of
the ice water, we used the river ice region in the semantic segmentation map to trim the
motion binary image, and we modified the river ice motion binary map.

The purpose of obtaining the motion binary maps was to calculate the motion intensity
parameters of the surface ice, and the scale of the surface ice movement was crucial for
forecasting the possibility of an ice hazard.

Motion Intensity. To express the scale of the surface ice movement, we used the
concentration of the motion binary map multiplied by the standard deviation of the motion
pixels to obtain the Motion Intensity. Pmotion represents the moving pixel, and std () represents
the “numpy·std ()” method in Python to calculate the standard deviation, as set out in
Equation (9) below:

Motion Intensity =
count(Pmotion)

IMG_W × IMG_H
× std(Pmotion)

max(IMG_W, IMG_H)
. (9)

3.4. Tracking Points Generation

To dynamically control and generate new river ice tracking points, we proposed a
tracking point generation strategy based on grid patches. The strategy was to divide the
image into n × n (n = 16 in this paper) grids, and then the tracking points were taken
from the geometric center of the maximum motion contour in each patch. The goal was
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to generate, at most, one tracking point per grid patch each time the tracking points were
generated, as shown in Figure 7. For the steps, see Algorithm 1.

Algorithm 1: Strategy for the tracking point generation
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3.5. Particle Video Tracking

The standard global image motion estimation method is PIV (particle image velocime-
try) [30]. By calculating the velocity field between two images, a velocity field can describe
the motion mode of an image’s content. Since Sand and Teller [31] proposed the particle
video, the particle tracking effect has been more accurate and smooth. Harley et al. [32]
proposed the persistent independent particles (PIPs) method based on deep learning, and
this method makes the similarity template more reliable and further improves the point-
tracking performance. In this study, the PIPs method was adjusted to adapt the river ice
tracking, and the advantage was that it could obtain accurate river ice trajectories and
velocities, as shown in Figure 8. For the ice tracking and velocimetry steps, see Algorithm 2.
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Algorithm 2: The algorithm steps for the particle video tracking and velocimetry
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Ice Velocity. If we let Pxy’ represent the current real-world coordinate of the tracking
point, Px1y1’ represents the real-world coordinate of the next frame of the tracking point,
and duration represents the frame time interval (100 ms). Then, in each frame, only the
velocity of tracking points tracked for more than five consecutive frames was included in
the statistics, where the maximum velocity was recorded as MAX velocity, and the average
velocity was recorded as AVG velocity, as set out in Equation (10) below:

Ice Velocity =

√(
Px

′ − Px1
′)2 −

(
Py

′ − Py1
′)2

duration × 1000
. (10)
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3.6. Prediction of the Ice Cover Break-Up Stages

In this study, the process of ice cover break-up was divided into the following five
stages: (1) ice frozen stage, (2) ice break-up beginning stage, (3) ice drifting stage, (4) ice
break-up ending stage, and (5) ice-free stage. The real-time short-term warning of ice
floods would be realized by predicting the current stage of the ice cover break-up process.
A three-layer feed-forward neural network was designed to predict the stage. The first
layer was the input layer, which inputs the following five values of river surface ice:
concentration, area, MAX velocity, AVG velocity, and motion intensity; so there were five
input neurons in total. The second layer was the hidden layer with ten neurons, followed
by a Sigmoid activation function. The third layer was the output layer, with five neurons
representing the five stages of the ice cover break-up process, as shown in Figure 9. The
loss function adopted cross-entropy loss, and the optimizer adopted the Adam (adaptive
moment estimation) method.
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Figure 9. The architecture of the feed-forward neural network.

Data Preprocessing. We analyzed and handled missing or abnormal values in the
dataset to ensure that the data could be correctly read by the model. We visualized the data
distribution through box plots and observed any abnormal values in the data. Records
with missing values were removed, and abnormal values were modified to limit values.
Then, data normalization was deemed necessary since neural network models are sensitive
to data scales. The ice area and velocity values were normalized to [0, 1] based on min–max
normalization. The min–max normalization was calculated using the equation established
in reference [33], as follows:

Wi =
Xi − min(X)

max(X)− min(X),
(11)
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where Xi is the number of features required to be normalized, and Wi represents the
normalized features [33].

4. Results and Analysis

This experiment used the deep learning frameworks PaddlePaddle 2.5.1, PaddleSeg
2.8, Python 3.8.17, CUDA 11.7, and CUDNN 8.4.1.50. The experimental equipment included
an NVIDIA GPU GeForce RTX 3070 laptop (NVIDIA Corporation., Santa Clara, CA, USA)
with 8 GB of VRAM, 32 GB of RAM, an AMD Ryzen 7 5800 H CPU (Advanced Micro
Devices, Inc., Santa Clara, CA, USA), and the Windows 11 operating system.

Because of the discontinuity of each video clip, it was not easy to obtain data on
the river ice motion and velocity in the 20 frames at the beginning of the video clip.
Therefore, the data from the first 20 frames were removed during the data extraction of
the experimental results, and the total data were reduced from 15,600 (23 × 600) frames to
15,080 (26 × 580) frames.

4.1. Ice Concentration and Area

The ice concentration and area were calculated based on the semantic segmentation
results. We tested four lightweight semantic segmentation methods on our IPC_RI_IDS
dataset, and PPMobileSeg [26] had the best effect, as shown in Table 2.

Table 2. Comparison of the different methods on the IPC_RI_IDS dataset.

Methods mIoU Acc Time

FastScnn [23] 0.9687 0.9821 112 ms
MobileSeg [24] 0.9666 0.9810 115 ms
PPLiteSeg [25] 0.9672 0.9813 121 ms

PPMobileSeg [26] 0.9762 0.9865 121 ms

Through the pixel area calculation of the semantic segmentation results for each frame,
the curves of the ice concentration and area were obtained, as shown in Figures 10 and 11. It
can be seen that as the ice breaking progressed, the ice concentration and ice area gradually
decreased, and the ice concentration and ice area were linearly correlated.
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Water 2024, 16, 58 13 of 21
Water 2024, 15, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 11. Ice area curve. The different colors represent the different stages. Similar to the ice con-
centration, the ice area decreased continuously over time, and the floating ice from upstream in-
creased the area. 

4.2. Motion Intensity 
The motion intensity of the surface ice was calculated based on the results of the mo-

tion detection. The experiment demonstrated that the motion detection method directly 
applied to the original image could not obtain effective results, as shown in Figure 12b. 
The motion detection on the semantic segmentation maps achieved more prominent out-
comes, as shown in Figure 12c. After revision by the semantic segmentation maps, only 
the motion of the river ice was retained in the motion binary map. The white part repre-
sents the moving ice, as shown in Figure 12d. 

    
(a) (b) (c) (d) 

Figure 12. The motion detection based on the semantic segmentation map was more prominent than 
the original image motion detection. (a) Original image. (b) Motion detection on the original image. 
(c) Motion detection on the segmentation map. (d) Motion detection revision by the segmentation 
map. 

The motion intensity of the river ice was calculated according to the ice concentration 
and dispersion of the motion binary map. Because the values were relatively small, they 
were enlarged 50 times to [0, 1]. As shown in Figure 13, the ice drifting stage had the 
highest motion intensity, and there was also a short section with high motion intensity at 
the ice break-up ending stage. The zigzag curve was because each video clip was not con-
tinuous, resulting in constant changes in motion intensity from low to high. 
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increased the area.

4.2. Motion Intensity

The motion intensity of the surface ice was calculated based on the results of the
motion detection. The experiment demonstrated that the motion detection method directly
applied to the original image could not obtain effective results, as shown in Figure 12b. The
motion detection on the semantic segmentation maps achieved more prominent outcomes,
as shown in Figure 12c. After revision by the semantic segmentation maps, only the motion
of the river ice was retained in the motion binary map. The white part represents the
moving ice, as shown in Figure 12d.
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Figure 12. The motion detection based on the semantic segmentation map was more prominent than
the original image motion detection. (a) Original image. (b) Motion detection on the original image.
(c) Motion detection on the segmentation map. (d) Motion detection revision by the segmentation map.

The motion intensity of the river ice was calculated according to the ice concentration
and dispersion of the motion binary map. Because the values were relatively small, they
were enlarged 50 times to [0, 1]. As shown in Figure 13, the ice drifting stage had the
highest motion intensity, and there was also a short section with high motion intensity
at the ice break-up ending stage. The zigzag curve was because each video clip was not
continuous, resulting in constant changes in motion intensity from low to high.
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4.3. Ice Velocity

The ice velocity was calculated using particle video velocimetry, and the maximum
velocity (MAX velocity) and average velocity (AVG velocity) were counted for each frame.
As shown in Figures 14 and 15, the maximum velocity was approximately 3 m/s, and the
average velocity was approximately 0.5 m/s. The ice velocity in the ice break-up ending
stage was higher than it was in other stages, which was related to the absence of ice jams
after river dredging.
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4.4. Prediction of the Ice Cover Break-Up Stages
4.4.1. Data Preprocessing

A total of 15,080 frames in the dataset were preprocessed using the following steps:
(1) missing values processing, (2) abnormal values processing, and (3) data normalization.
The data before preprocessing are shown in Table 3. All data were correctly read, and the
Python interface’s ‘pandas.isna ()’ method was used to check for missing values. The box
plot was used to analyze the abnormal values, as shown in Figure 16. It was found that
there were abnormal values greater than 10 m/s and 5 m/s in the maximum velocity and
average velocity, respectively, of the ice. In this work, the abnormal values were processed
by modifying them to the nearest normal value, and then we normalized the ice area and
velocity to [0, 1], as shown in Figure 17.
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Table 3. Partial data for the ice regime parameters in the IPC_RI_IDS dataset.

No. Stage Ice
Concentration Ice Area Motion

Intensity
Maximum
Velocity

Average
Velocity

2 1 0.9761 4857.9570 0.0100 0.0 0.0
4 1 0.9760 4857.3160 0.0050 0.0 0.0
5 1 0.9775 4865.0730 0.0200 0.0 0.0
6 1 0.9764 4860.0120 0.0050 0.0 0.0

. . . 1

3037 2 0.8705 4264.3650 0.0400 0.3904 0.1946
3040 2 0.8698 4259.4620 0.0350 0.3884 0.0971
3041 2 0.8707 4263.4260 0.0400 0.4136 0.2005
3042 2 0.8707 4264.1170 0.0350 0.4136 0.2010

. . .
6121 3 0.8171 3857.9760 0.4800 2.8409 0.4689
6122 3 0.8165 3854.6580 0.4750 3.3266 0.5130
6124 3 0.8159 3850.7420 0.4800 2.9883 0.2939
6125 3 0.8165 3854.5810 0.4800 2.8676 0.4193

. . .
10,531 4 0.4162 1655.6450 0.0550 1.2755 0.4717
10,533 4 0.4150 1652.1780 0.0450 1.2076 0.3242
10,536 4 0.4136 1638.5600 0.0400 2.8678 1.1598
10,537 4 0.4140 1645.8530 0.0400 2.9536 0.5697

. . .
14,547 5 0.0074 51.8180 0.0100 0.4564 0.4551
14,548 5 0.0062 43.3105 0.0050 0.4564 0.2282
14,549 5 0.0071 49.8568 0.0150 0.9077 0.6820
14,550 5 0.0085 59.5084 0.0300 0.0 0.0

Note: 1 Omit data.
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4.4.2. Training Network

To balance the data distribution on the 15,080 frames dataset, the training set, verifi-
cation set, and test set were extracted from each video clip in the ratio of 6:2:2. A total of
9047 frames were divided into the training set, 2985 into the verification set, and 3048 into
the test set. The Adam optimizer was adopted, the learning rate was set to 0.01, cross-
entropy was adopted as the loss function, and the iterations were set to 2000 times. The
curves of the training accuracy and loss are shown in Figure 18.
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Figure 18. Training log curve. Accuracy and loss on the training set and validation set, respectively.

The optimization of hyperparameters in neural networks has a significant impact on
the performance of a model. We conducted experiments on the network at three learning
rates, with learning rates of 0.1, 0.01, and 0.001, respectively. It was found that a larger
learning rate converged faster but was unstable on the curve, while a smaller one converged
slower but was stable. Both the 0.01 and 0.1 learning rates ultimately achieved the highest
accuracy of 0.9990 on the validation set, as shown in Figure 19. We saved the optimal model
parameters with the highest accuracy of 0.9990 on the 1871st iteration of the validation set.
The accuracy of the optimal model was 0.9984 on the test set.
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4.4.3. Experimentation Comparison

The softmax regression [34] and support vector machine (SVM) [35] methods were
used for the comparison. Logistic regression is a commonly used linear model for handling
binary classification problems, and softmax regression is an extension of logistic regression
in multi-classification problems. SVM handles binary classification problems through hy-
perplanes, and combining multiple SVM classifiers can be extended to multi-classification
problems.

The softmax regression method used five-dimensional feature inputs and five-dimensional
category outputs in this experiment. The Gradient Descent method was used as the optimizer.
Cross entropy was the loss function, and the iterations were set to 2000 times. It was found that
setting the learning rate to five would achieve faster convergence. The best model was saved at
the 1720th iteration, with the highest accuracy (0.9005) of the validation set. The SVM method
used the implementation from the sklearn model of the Python package, set the hyperparameter
C to 1.0, and tested four kernel functions on the dataset.

The comparison results of the three methods on the test set are shown in Table 4.
The feed-forward neural network outperformed the other methods in terms of overall
performance. The future prediction of the ice break-up process would introduce more
hydrological features such as water level, water flow velocity, discharge, temperature, wind
speed, etc., and the feed-forward neural network would be more suitable for this task.

Table 4. Comparison results of the three methods.

Methods Kernel Accuracy Loss

Softmax regression - 0.9008 0.2782

SVM

Linear 0.8967 -
Poly (degree = 5) 0.9646 -

RBF 0.9190 -
Sigmoid 0.2684 -

Ours - 0.9813 0.0173

4.5. Real-Time Monitoring of the River Ice Regime

Combining all the above steps as a single pipeline achieved the real-time monitoring
of the river ice regime, and then the short-term early warning of ice floods was realized
through the prediction of the stage of the ice cover break-up process. An early warning
prompt could be issued when the ice cover break-up process entered the ice break-up
beginning stage. As shown in Figure 20 and Video S1, our method accurately predicted
different ice cover breaking stages and real-time displays of river ice regime information.
The significance of the stage prediction was the short-term risk early warning prompts. In
this work, the river ice-related risk warning level of the five stages is shown in Table 5.

Table 5. River ice-related risk warning level of the five stages.

No. The Stage of Ice
Break-Up Warning Level Note

1 Ice frozen Medium Observe if there is an ice jam

2 Ice break-up
beginning High Ice run is about to occur

3 Ice drifting High Pay attention to blockage and
collisions

4 Ice break-up ending Low The risk is minimal
5 Ice-free None The river has been opened
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Figure 20. Real-time monitoring of the river ice regime in each break-up stage. The images were
captured from the tenth-second frame of the corresponding video clip. The blue color represents the
medium warning level; the red color represents the high warning level; the green color represents the
low warning level; the grey color represents the none warning level.

5. Discussion

This work addressed the ice tracking and velocimetry problem on camera imagery
and used the derivation of the concentration, area, and motion intensity to realize river ice
regime monitoring and short-term ice flood warnings. There are still many shortcomings.

5.1. Uncertainty Quantification

Uncertainty quantification has been proven to effectively assist decision-makers in
understanding the uncertainty associated with the prediction results of neural networks
and taking appropriate action [36]. This study was no exception; the neural network
mechanically predicted any input image into five stages without creating uncertainty.
Sometimes, highly uncertain prediction results can mislead decision-makers into making
incorrect decisions.

In future work, we will estimate the uncertainty of neural networks from two aspects.
Meanwhile, uncertainty quantification can help us improve the network.
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Aleatoric uncertainty is the uncertainty caused by noisy data. Therefore, the network
must estimate the error of the samples during inference to obtain uncertainty. We can
modify a neural network’s estimation of probability distribution instead of using a simple
prediction.

Epistemic uncertainty is the uncertainty caused by a noisy model. Uncertainty can
be estimated through multiple model results. In this work, we needed to estimate the
uncertainty for the classification using the probability distribution of the softmax regression
to estimate the uncertainty.

5.2. Capability Expansion

The task of river ice regime recognition involves not only the monitoring of surface ice
but also the monitoring of underwater ice. It is significant to realize the three-dimensional
monitoring of river ice. Xin et al. [10] proposed the estimation of river ice thickness. River
ice regime identification is still facing many challenges that need to be further addressed,
as listed below:

1. The estimation of river ice thickness;
2. The integration of hydrological monitoring elements such as temperature, water level,

water flow velocity, discharge, wind speed, and evaporation;
3. Joint monitoring and predictions using multiple cameras;
4. Joint monitoring by fusing satellite remote sensing and ground camera images.

By solving the above four problems, systematic river ice regime recognition can be
realized, and then comprehensive river ice flood warning and prediction can be realized.

6. Conclusions

The success of the river ice recognition method based on camera imagery in this paper
lies in the following: first, it addressed the motion detection problem caused by the color
similarity of the river ice to the water to extract a more accurate and precise motion binary
map of the river ice. Second, a novel ice velocity measurement method was proposed. By
dividing the 16 × 16 grid patches of the river ice motion binary map into dynamic control
points, the particle video tracking method could be based on deep learning to adapt the
continuous tracking scene of the river ice, which made the river ice velocity measurement
more accurate. Finally, the ice concentration, area, motion intensity, and velocity were
extracted to predict the stage of the ice cover break-up process to realize the short-term
early warning of ice floods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w16010058/s1, Video S1: River ice monitoring based on web
cameras.
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