Treatment of Dairy Farm Runoff in Vegetated Bioretention Systems Amended with Biochar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Porous Medium
2.2. Semi-Synthetic Dairy Runoff
2.3. Pilot-Scale Bioretention Systems
2.4. Water Quality Analysis
2.5. Data Analysis
3. Results and Discussion
3.1. Hydraulic Performance
3.2. Fecal Indicator Bacteria Removal
3.3. Nitrogen Removal
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Curriero, F.C.; Patz, J.A.; Rose, J.B.; Lele, S. The Association between Extreme Precipitation and Waterborne Disease Outbreaks in the United States, 1948–1994. Am. J. Public Health 2001, 91, 1194–1199. [Google Scholar] [CrossRef] [PubMed]
- Holly, M.A.; Larson, R.A.; Cooley, E.T.; Wunderlin, A.M. Silage Storage Runoff Characterization: Annual Nutrient Loading Rate and First Flush Analysis of Bunker Silos. Agric. Ecosyst. Environ. 2018, 264, 85–93. [Google Scholar] [CrossRef]
- Lian, Q.; Yao, L.; Uddin Ahmad, Z.; Lei, X.; Islam, F.; Zappi, M.E.; Gang, D.D. Nonpoint Source Pollution. Water Environ. Res. 2019, 91, 1114–1128. [Google Scholar] [CrossRef]
- Bennett, S.D.; Sodha, S.V.; Ayers, T.L.; Lynch, M.F.; Gould, L.H.; Tauxe, R.V. Produce-Associated Foodborne Disease Outbreaks, USA, 1998–2013. Epidemiol. Infect. 2018, 146, 1397–1406. [Google Scholar] [CrossRef]
- Heiman, K.E.; Mody, R.K.; Johnson, S.D.; Griffin, P.M.; Hannah Gould, L. Escherichia Coli O157 Outbreaks in the United States, 2003–2012. Emerg. Infect. Dis. 2015, 21, 1293–1301. [Google Scholar] [CrossRef]
- EPA Recreational Water Quality Criteria; U.S. Environmental Protection Agency: Washington, DC, USA, 2012; pp. 1–69. Available online: https://www.epa.gov/sites/default/files/2015-10/documents/rwqc2012.pdf (accessed on 5 May 2024).
- Mantovi, P.; Marmiroli, M.; Maestri, E.; Tagliavini, S.; Piccinini, S.; Marmiroli, N. Application of a Horizontal Subsurface Flow Constructed Wetland on Treatment of Dairy Parlor Wastewater. Bioresour. Technol. 2003, 88, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Ibekwe, A.M.; Grieve, C.M.; Lyon, S.R. Characterization of Microbial Communities and Composition in Constructed Dairy Wetland Wastewater Effluent. Appl. Environ. Microbiol. 2003, 69, 5060–5069. [Google Scholar] [CrossRef]
- Larson, R.A.; Safferman, S.I. Field Application of Farmstead Runoff to Vegetated Filter Strips: Surface and Subsurface Water Quality Assessment. J. Environ. Qual. 2012, 41, 592–603. [Google Scholar] [CrossRef]
- Díaz, F.J.; O’Geen, A.T.; Dahlgren, R.A. Efficacy of Constructed Wetlands for Removal of Bacterial Contamination from Agricultural Return Flows. Agric. Water Manag. 2010, 97, 1813–1821. [Google Scholar] [CrossRef]
- Schellinger, G.R.; Clausen, J.C. Vegetative Filter Treatment of Dairy Barnyard Runoff in Cold Regions. J. Environ. Qual. 1992, 21, 40–45. [Google Scholar] [CrossRef]
- Rusciano, G.M.; Obropta, C.C. Bioretention Column Study: Fecal Coliform and Total Suspended Solids Reductions. Trans. ASABE 2007, 50, 1261–1269. [Google Scholar] [CrossRef]
- Lopez-Ponnada, E.V.; Lynn, T.J.; Ergas, S.J.; Mihelcic, J.R. Long-Term Field Performance of a Conventional and Modified Bioretention System for Removing Dissolved Nitrogen Species in Stormwater Runoff. Water Res. 2020, 170, 115336. [Google Scholar] [CrossRef] [PubMed]
- Ergas, S.J.; Sengupta, S.; Siegel, R.; Pandit, A.; Yao, Y.; Yuan, X. Performance of Nitrogen-Removing Bioretention Systems for Control of Agricultural Runoff. J. Environ. Eng. 2010, 136, 1105–1112. [Google Scholar] [CrossRef]
- Liu, J.; Yue, P.; He, Y.; Zhao, M. Removal of E. coli from Stormwater by Bioretention System: Parameter Optimization and Mechanism. Water Sci. Technol. 2020, 81, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Hathaway, J.M.; Hunt, W.F. Indicator Bacteria Performance of Storm Water Control Measures in Wilmington, North Carolina. J. Irrig. Drain. Eng. 2012, 138, 185–197. [Google Scholar] [CrossRef]
- Mahmoud, A.; Alam, T.; Yeasir, A.; Rahman, M.; Sanchez, A.; Guerrero, J.; Jones, K.D. Evaluation of Field-Scale Stormwater Bioretention Structure Flow and Pollutant Load Reductions in a Semi-Arid Coastal Climate. Ecol. Eng. X 2019, 1, 100007. [Google Scholar] [CrossRef]
- Zhang, L.; Seagren, E.A.; Davis, A.P.; Karns, J.S. The Capture and Destruction of Escherichia Coli from Simulated Urban Runoff Using Conventional Bioretention Media and Iron Oxide-Coated Sand. Water Environ. Res. 2010, 82, 701–714. [Google Scholar] [CrossRef]
- Li, Y.L.; Deletic, A.; Alcazar, L.; Bratieres, K.; Fletcher, T.D.; McCarthy, D.T. Removal of Clostridium Perfringens, Escherichia Coli and F-RNA Coliphages by Stormwater Biofilters. Ecol. Eng. 2012, 49, 137–145. [Google Scholar] [CrossRef]
- Li, Y.; McCarthy, D.T.; Deletic, A. Escherichia Coli Removal in Copper-Zeolite-Integrated Stormwater Biofilters: Effect of Vegetation, Operational Time, Intermittent Drying Weather. Ecol. Eng. 2016, 90, 234–243. [Google Scholar] [CrossRef]
- Grebel, J.E.; Mohanty, S.K.; Torkelson, A.A.; Boehm, A.B.; Higgins, C.P.; Maxwell, R.M.; Nelson, K.L.; Sedlak, D.L. Engineered Infiltration Systems for Urban Stormwater Reclamation. Environ. Eng. Sci. 2013, 30, 437–454. [Google Scholar] [CrossRef]
- Rippy, M.A. Meeting the Criteria: Linking Biofilter Design to Fecal Indicator Bacteria Removal. WIREs Water 2015, 2, 577–592. [Google Scholar] [CrossRef]
- Chen, G.; Walker, S.L. Fecal Indicator Bacteria Transport and Deposition in Saturated and Unsaturated Porous Media. Environ. Sci. Technol. 2012, 46, 8782–8790. [Google Scholar] [CrossRef] [PubMed]
- White, R.E. Principles and Practice of Soil Science: The Soil as a Natural Resource; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Minagawa, H.; Nishikawa, Y.; Ikeda, I.; Miyazaki, K.; Takahara, N.; Sakamoto, Y.; Komai, T.; Nairta, H. Characterization of Sand Sediment by Pore Size Distribution and Permeability Using Proton Nuclear Magnetic Resonance Measurement. J. Geophys. Res. Solid Earth 2008, 113, 1–9. [Google Scholar] [CrossRef]
- Rahman, M.Y.A.; Nachabe, M.H.; Ergas, S.J. Biochar Amendment of Stormwater Bioretention Systems for Nitrogen and Escherichia Coli Removal: Effect of Hydraulic Loading Rates and Antecedent Dry Periods. Bioresour. Technol. 2020, 310, 123428. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar Effects on Soil Biota—A Review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of Biochar Effects on Soil Hydrological Properties Using Meta-Analysis of Literature Data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Berger, A.W.; Valenca, R.; Miao, Y.; Ravi, S.; Mahendra, S.; Mohanty, S.K. Biochar Increases Nitrate Removal Capacity of Woodchip Biofilters during High-Intensity Rainfall. Water Res. 2019, 165, 115008. [Google Scholar] [CrossRef]
- Tian, J.; Miller, V.; Chiu, P.C.; Maresca, J.A.; Guo, M.; Imhoff, P.T. Nutrient Release and Ammonium Sorption by Poultry Litter and Wood Biochars in Stormwater Treatment. Sci. Total Environ. 2016, 553, 596–606. [Google Scholar] [CrossRef] [PubMed]
- Nabiul Afrooz, A.R.M.; Boehm, A.B. Effects of Submerged Zone, Media Aging, and Antecedent Dry Period on the Performance of Biochar-Amended Biofilters in Removing Fecal Indicators and Nutrients from Natural Stormwater. Ecol. Eng. 2017, 102, 320–330. [Google Scholar] [CrossRef]
- Rahman, M.Y.A.; Cooper, R.; Truong, N.; Ergas, S.J.; Nachabe, M.H. Water Quality and Hydraulic Performance of Biochar Amended Biofilters for Management of Agricultural Runoff. Chemosphere 2021, 283, 130978. [Google Scholar] [CrossRef]
- Shrestha, P.; Hurley, S.E.; Wemple, B.C. Effects of Different Soil Media, Vegetation, and Hydrologic Treatments on Nutrient and Sediment Removal in Roadside Bioretention Systems. Ecol. Eng. 2018, 112, 116–131. [Google Scholar] [CrossRef]
- Rycewicz-Borecki, M.; McLean, J.E.; Dupont, R.R. Nitrogen and Phosphorus Mass Balance, Retention and Uptake in Six Plant Species Grown in Stormwater Bioretention Microcosms. Ecol. Eng. 2017, 99, 409–416. [Google Scholar] [CrossRef]
- Sarazen, J.; Hurley, S.; Faulkner, J. Nitrogen and Phosphorus Removal in a Bioretention Cell Experiment Receiving Agricultural Runoff from a Dairy Farm Production Area during Third and Fourth Years of Operation. J. Environ. Qual. 2023, 52, 149–160. [Google Scholar] [CrossRef]
- Henderson, C.; Greenway, M.; Phillips, I. Removal of Dissolved Nitrogen, Phosphorous and Carbon from Stormwater by Biofiltration Mesocosms. Water Sci. Technol. 2007, 55, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Chandrasena, G.I.; Shirdashtzadeh, M.; Li, Y.L.; Deletic, A.; Hathaway, J.M.; McCarthy, D.T. Retention and Survival of E. coli in Stormwater Biofilters: Role of Vegetation, Rhizosphere Microorganisms and Antimicrobial Filter Media. Ecol. Eng. 2017, 102, 166–177. [Google Scholar] [CrossRef]
- Skorobogatov, A.; He, J.; Chu, A.; Valeo, C.; van Duin, B. The Impact of Media, Plants and Their Interactions on Bioretention Performance: A Review. Sci. Total Environ. 2020, 715, 136918. [Google Scholar] [CrossRef]
- Parker, E.A.; Rippy, M.A.; Mehring, A.S.; Winfrey, B.K.; Ambrose, R.F.; Levin, L.A.; Grant, S.B. Predictive Power of Clean Bed Filtration Theory for Fecal Indicator Bacteria Removal in Stormwater Biofilters. Environ. Sci. Technol. 2017, 51, 5703–5712. [Google Scholar] [CrossRef]
- Muerdter, C.P.; Wong, C.K.; Lefevre, G.H. Emerging Investigator Series: The Role of Vegetation in Bioretention for Stormwater Treatment in the Built Environment: Pollutant Removal, Hydrologic Function, and Ancillary Benefits. Environ. Sci. Water Res. Technol. 2018, 4, 592–612. [Google Scholar] [CrossRef]
- Thakur, T.K.; Barya, M.P.; Dutta, J.; Mukherjee, P.; Thakur, A.; Swamy, S.L.; Anderson, J.T. Integrated Phytobial Remediation of Dissolved Pollutants from Domestic Wastewater through Constructed Wetlands: An Interactive Macrophyte-Microbe-Based Green and Low-Cost Decontamination Technology with Prospective Resource Recovery. Water 2023, 15, 3877. [Google Scholar] [CrossRef]
- Yang, X.; Arias, M.E.; Ergas, S.J. Hybrid Constructed Wetlands Amended with Zeolite/Biochar for Enhanced Landfill Leachate Treatment. Ecol. Eng. 2023, 192, 106990. [Google Scholar] [CrossRef]
- Prince George’s County. Design Manual for Use of Bioretention in Storm Water Management; Prince George’s County: Landover, MD, USA, 1993. [Google Scholar]
- Rahman, M.Y.A. Biochar Amended Bioretention Systems for Nutrient and Fecal Indicator Bacteria Removal from Urban and Agricultural Runoffs. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2021. [Google Scholar]
- Hu, Y.S.; Kumar, J.L.G.; Akintunde, A.O.; Zhao, X.H.; Zhao, Y.Q. Effects of Livestock Wastewater Variety and Disinfectants on the Performance of Constructed Wetlands in Organic Matters and Nitrogen Removal. Environ. Sci. Pollut. Res. 2011, 18, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Andrews, W.J. Reconnaissance of Water Quality at Nine Dairy Farms in North Florida, 1990–1991; US Geological Survey: Tallahassee, FL, USA, 1992.
- Vadas, P.A.; Powell, J.M. Nutrient Concentrations in Leachate and Runoff from Dairy Cattle Lots with Different Surface Materials. J. Soil Water Conserv. 2019, 74, 613–621. [Google Scholar] [CrossRef]
- EPA. Method 1603: E. Coli in Water by Membrane Filtration Using Modified MTEC; EPA: Washington, DA, USA, 2014. [Google Scholar]
- American Public Health Association; American Water Works Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 24th ed.; Lipps, W.C., Braun-Howland, E.B., Baxter, T.E., Eds.; APHA Press: Washington, DC, USA, 2023. [Google Scholar]
- Lu, J.; Zhang, Q.; Werner, A.D.; Li, Y.; Jiang, S.; Tan, Z. Root-Induced Changes of Soil Hydraulic Properties—A Review. J. Hydrol. 2020, 589, 125203. [Google Scholar] [CrossRef]
- Koivusalo, H.; Dubovik, M.; Wendling, L.; Assmuth, E.; Sillanpää, N.; Kokkonen, T. Performance of Sand and Mixed Sand–Biochar Filters for Treatment of Road Runoff Quantity and Quality. Water 2023, 15, 1631. [Google Scholar] [CrossRef]
- Brown, R.A.; Hunt, W.F. Impacts of Media Depth on Effluent Water Quality and Hydrologic Performance of Undersized Bioretention Cells. J. Irrig. Drain. Eng. 2011, 137, 132–143. [Google Scholar] [CrossRef]
- Mukerji, K.G.; Manoharachary, C.; Singh, J. Microbial Activity in the Rhizosphere; Varma, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 9783540291824. [Google Scholar]
- Chandrasena, G.I.; Pham, T.; Payne, E.G.; Deletic, A.; McCarthy, D.T.E. Coli Removal in Laboratory Scale Stormwater Biofilters: Influence of Vegetation and Submerged Zone. J. Hydrol. 2014, 519, 814–822. [Google Scholar] [CrossRef]
- Werner, S.; Kätzl, K.; Wichern, M.; Buerkert, A.; Steiner, C.; Marschner, B. Agronomic Benefits of Biochar as a Soil Amendment after Its Use as Waste Water Filtration Medium. Environ. Pollut. 2018, 233, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, J.A.; Laird, D.A.; Busscher, W.J. Environmental Benefits of Biochar. J. Environ. Qual. 2012, 41, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Clothier, B.E.; Green, S.R.; Deurer, M. Preferential Flow and Transport in Soil: Progress and Prognosis. Eur. J. Soil Sci. 2008, 59, 2–13. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Boehm, A.B. Escherichia coli Removal in Biochar-Augmented Biofilter: Effect of Infiltration Rate, Initial Bacterial Concentration, Biochar Particle Size, and Presence of Compost. Environ. Sci. Technol. 2014, 48, 11535–11542. [Google Scholar] [CrossRef]
- Biswal, B.K.; Vijayaraghavan, K.; Tsen-Tieng, D.L.; Balasubramanian, R. Biochar-Based Bioretention Systems for Removal of Chemical and Microbial Pollutants from Stormwater: A Critical Review. J. Hazard. Mater. 2022, 422, 126886. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.R.; Condron, L.M.; Clough, T.J.; Fiers, M.; Stewart, A.; Hill, R.A.; Sherlock, R.R. Biochar Induced Soil Microbial Community Change: Implications for Biogeochemical Cycling of Carbon, Nitrogen and Phosphorus. Pedobiologia 2011, 54, 309–320. [Google Scholar] [CrossRef]
- Richardson, N. Nutrient Removal of Biochar Amended Modified Bioretention Systems Treating Nursery Runoff; University of South Florida: Tampa, FL, USA, 2024. [Google Scholar]
- Lea, P.J.; Morot-Gaudry, J.F. Plant Nitrogen; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 162, ISBN 9783642087318. [Google Scholar]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of Biochar Amendment on Sorption and Leaching of Nitrate, Ammonium, and Phosphate in a Sandy Soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
- Havlin, J.L. Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
Average Log Removals * | ||||
---|---|---|---|---|
System | PV ≤ 1 (Time ≤ 90 min) | 1 < PV ≤ 2 (90 min < Time ≤ 180 min) | PV > 2 (Time > 180 min) | Total |
BC | 5.25 ± 1.81 (a, b) | 3.64 ± 1.58 (b) | 3.96 ± 2.02 (a, b) | 4.24 ± 2.09 (b) |
BC+P | 6.22 ± 1.65 (a) | 5.55 ± 2.19 (a) | 4.82 ± 2.31 (a) | 5.58 ± 1.89 (a) |
S | 4.60 ± 1.93 (b) | 3.84 ± 1.69 (b) | 3.50 ± 1.59 (b) | 4.03 ± 1.79 (b) |
S+P | 4.84 ± 2.20 (b) | 3.95 ± 2.05 (b) | 3.02 ± 1.71 (a, b) | 3.99 ± 2.11 (b) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.Y.A.; Richardson, N.; Nachabe, M.H.; Ergas, S.J. Treatment of Dairy Farm Runoff in Vegetated Bioretention Systems Amended with Biochar. Water 2024, 16, 1347. https://doi.org/10.3390/w16101347
Rahman MYA, Richardson N, Nachabe MH, Ergas SJ. Treatment of Dairy Farm Runoff in Vegetated Bioretention Systems Amended with Biochar. Water. 2024; 16(10):1347. https://doi.org/10.3390/w16101347
Chicago/Turabian StyleRahman, Md Yeasir A., Nicholas Richardson, Mahmood H. Nachabe, and Sarina J. Ergas. 2024. "Treatment of Dairy Farm Runoff in Vegetated Bioretention Systems Amended with Biochar" Water 16, no. 10: 1347. https://doi.org/10.3390/w16101347
APA StyleRahman, M. Y. A., Richardson, N., Nachabe, M. H., & Ergas, S. J. (2024). Treatment of Dairy Farm Runoff in Vegetated Bioretention Systems Amended with Biochar. Water, 16(10), 1347. https://doi.org/10.3390/w16101347