The Occurrence, Distribution, Environmental Effects, and Interactions of Microplastics and Antibiotics in the Aquatic Environment of China
Abstract
:1. Introduction
2. Structure, Properties, and Distribution of MPs and ATs
2.1. Structure, Characteristics, and Distribution of MPs
2.2. Structure, Characteristics, and Distribution of ATs
3. Mixed Ecological Effects of MPs and ATs
4. Factors Influencing the Interaction between MPs and ATs
4.1. Physicochemical Properties of MPs
4.1.1. Types
4.1.2. Crystallinity
4.1.3. Size
4.1.4. Aging Behaviors
4.2. Physicochemical Properties of ATs
4.3. Environment Factors
4.3.1. pH
4.3.2. Ionic Strength
4.3.3. Salinity
4.3.4. Dissolved Organic Matter
5. Factors Influencing the Interaction between MPs and ATs
5.1. Hydrophobic Effect
5.2. Intermolecular Interactions (Hydrogen Bonding, π-π Interactions, and Van Der Waals Forces)
5.3. Electrostatic Effect
5.4. Other Mechanisms of Action
6. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kasmuri, N.; Tarmizi, N.A.A.; Mojiri, A. Occurrence, impact, toxicity, and degradation methods of microplastics in environment—A review. Environ. Sci. Pollut. Res. 2022, 29, 30820–30836. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Yang, Y.N.; Liu, X.; Zhao, J.; Liu, R.H.; Xing, B.S. Interaction of Microplastics with Antibiotics in Aquatic Environment: Distribution, Adsorption, and Toxicity. Environ. Sci. Technol. 2021, 55, 15579–15595. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Pu, S.Y.; Liu, S.B.; Bai, Y.C.; Mandal, S.; Xing, B.S. Microplastics in aquatic environments: Toxicity to trigger ecological consequences. Environ. Pollut. 2020, 261, 16. [Google Scholar] [CrossRef] [PubMed]
- Romarate, R.R.; Ancla, S.M.B.; Patilan, D.M.M.; Inocente, S.A.T.; Pacilan, C.J.M.; Sinco, A.L.; Guihawan, J.Q.; Capangpangan, R.Y.; Lubguban, A.A.; Bacosa, H.P. Breathing plastics in Metro Manila, Philippines: Presence of suspended atmospheric microplastics in ambient air. Environ. Sci. Pollut. Res. 2023, 12, 53662–53673. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Liu, H.; Cui, J.; Wu, Y.; Guo, X.; Liu, Q.; Liu, Q.; Gao, H.; Yan, C.; He, W. The characteristics and influencing factors of farmland soil microplastic in Hetao Irrigation District, China. J. Hazard. Mater. 2024, 465, 133472. [Google Scholar] [CrossRef]
- Li, Y.; Meng, Y.H.; Qin, L.W.; Shen, M.H.; Qin, T.T.; Chen, X.D.; Chai, B.B.; Liu, Y.; Dou, Y.Y.; Duan, X.J. Occurrence and Removal Efficiency of Microplastics in Four Drinking Water Treatment Plants in Zhengzhou, China. Water 2024, 16, 131. [Google Scholar] [CrossRef]
- Porcino, N.; Bottari, T.; Mancuso, M. Is Wild Marine Biota Affected by Microplastics? Animals 2022, 13, 147. [Google Scholar] [CrossRef]
- Li, C.R.; Busquets, R.; Campos, L.C. Assessment of microplastics in freshwater systems: A review. Sci. Total Environ. 2020, 707, 135578. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.J.; Huang, X.P.; Xiang, L.; Wang, Y.Z.; Li, Y.W.; Li, H.; Cai, Q.Y.; Mo, C.H.; Wong, M.H. Source, migration and toxicology of microplastics in soil. Environ. Int. 2020, 137, 105263. [Google Scholar] [CrossRef]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.R.; Bu, J.Q.; Bian, K.; Su, J.M.; Wang, Z.Y.; Sun, H.; Wang, H.; Zhang, Y.S.; Wang, C.Q. Surface change of microplastics in aquatic environment and the removal by froth flotation assisted with cationic and anionic surfactants. Water Res. 2023, 233, 119794. [Google Scholar] [CrossRef] [PubMed]
- Tibbetts, J.; Krause, S.; Lynch, I.; Smith, G.H.S. Abundance, Distribution, and Drivers of Microplastic Contamination in Urban River Environments. Water 2018, 10, 1597. [Google Scholar] [CrossRef]
- Danner, M.C.; Robertson, A.; Behrends, V.; Reiss, J. Antibiotic pollution in surface fresh waters: Occurrence and effects. Sci. Total Environ. 2019, 664, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Rajasekar, A.; Zhang, S.H. A decennial study of the trend of antibiotic studies in China. Environ. Sci. Pollut. Res. 2023, 16, 121338–121353. [Google Scholar] [CrossRef] [PubMed]
- Kummerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.Q.; Liu, Y.G.; Chen, Y.; Zhang, W.; Zhao, J.M.; He, S.Y.; Yang, C.P.; Zhang, T.; Tang, C.F.; Zhang, C.; et al. A review: Research progress on microplastic pollutants in aquatic environments. Sci. Total Environ. 2021, 766, 142572. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.L.; Gao, Y.; Ke, J.; Show, P.L.; Ge, Y.H.; Liu, Y.H.; Guo, R.X.; Chen, J.Q. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered 2021, 12, 7376–7416. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.G.; Zhou, X.Y.; Huang, H.X.; Zhang, J.S. Prevalence of Antibiotic Resistance Genes and Their Association with Antibiotics in a Wastewater Treatment Plant: Process Distribution and Analysis. Water 2019, 11, 2495. [Google Scholar] [CrossRef]
- Ahn, Y.; Choi, J. Bacterial Communities and Antibiotic Resistance Communities in a Full-Scale Hospital Wastewater Treatment Plant by High-Throughput Pyrosequencing. Water 2016, 8, 580. [Google Scholar] [CrossRef]
- Cong, X.Y.; Krolla, P.; Khan, U.Z.; Savin, M.; Schwartz, T. Antibiotic resistances from slaughterhouse effluents and enhanced antimicrobial blue light technology for wastewater decontamionation. Environ. Sci. Pollut. Res. 2023, 30, 109315–109330. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, R.A.; Polk, J.S.; Datta, T.; Parekh, R.R.; Agga, G.E. Occurrence of Antibiotic Resistant Bacteria in Urban Karst Groundwater Systems. Water 2022, 14, 960. [Google Scholar] [CrossRef]
- Zainab, S.M.; Junaid, M.; Xu, N.; Malik, R.N. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020, 187, 116455. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Shen, Y.; Jiang, L.; Jiang, B.; Li, Y.; Yuan, Q.B.; Zhang, Y.H. Occurrence and risk levels of antibiotic pollution in the coastal waters of eastern China. Environ. Sci. Pollut. Res. 2023, 30, 71371–71381. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhao, Y.; Cui, L.; Tian, Y.; Zhang, Z.; Zhu, Q.; Zhao, W. Multiple antibiotics distribution in drinking water and their co-adsorption behaviors by different size fractions of natural particles. Sci. Total Environ. 2021, 775, 145846. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.Y.; Hu, X.Y.; Li, W.X.; Zhang, J.; Hu, B.L.; Lou, L.P. Soil Component: A Potential Factor Affecting the Occurrence and Spread of Antibiotic Resistance Genes. Antibiotics 2023, 12, 333. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, L.H. Transport of micro- and nanoplastics in the environment: Trojan-Horse effect for organic contaminants. Crit. Rev. Environ. Sci. Technol. 2022, 52, 810–846. [Google Scholar] [CrossRef]
- Li, Z.; Li, M.; Zhang, Z.; Li, P.; Zang, Y.; Liu, X. Antibiotics in aquatic environments of China: A review and meta-analysis. Ecotox. Environ. Saf. 2020, 199, 110668. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.Y.; Biswal, B.K.; Balasubramanian, R. Insights into interactions of biodegradable and non-biodegradable microplastics with heavy metals. Environ. Sci. Pollut. Res. 2023, 30, 107419–107434. [Google Scholar] [CrossRef]
- Sun, Y.Z.; Ji, J.H.; Tao, J.G.; Yang, Y.Y.; Wu, D.; Han, L.F.; Li, S.; Wang, J. Current advances in interactions between microplastics and dissolved organic matters in aquatic and terrestrial ecosystems. TrAC—Trends Anal. Chem. 2023, 158, 116882. [Google Scholar] [CrossRef]
- Karbalaei, S.; Hanachi, P.; Walker, T.R.; Cole, M. Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environ. Sci. Pollut. Res. 2018, 25, 36046–36063. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.W.; Zhou, Y.; Sui, Q.; Zhou, Y.B. Mechanism and characterization of microplastic aging process: A review. Front. Env. Sci. Eng. 2023, 17, 100. [Google Scholar] [CrossRef] [PubMed]
- Bayo, J.; Olmos, S.; López-Castellanos, J. Non-polymeric chemicals or additives associated with microplastic particulate fraction in a treated urban effluent. WIT Trans. Built Environ. 2018, 179, 303–314. [Google Scholar]
- Miloloza, M.; Grgic, D.K.; Bolanca, T.; Ukic, S.; Cvetnic, M.; Bulatovic, V.O.; Dionysiou, D.D.; Kusic, H. Ecotoxicological Assessment of Microplastics in Freshwater Sources-A Review. Water 2021, 13, 56. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.; Kim, N.; Lee, J.H.; Yoon, Y. Potential of Adsorption of Diverse Environmental Contaminants onto Microplastics. Water 2022, 14, 4086. [Google Scholar] [CrossRef]
- Sethulekshmi, S.; Kalbar, P.; Shriwastav, A. A unified modelling framework for type I (discrete) settling and rising of microplastics in primary sedimentation tanks. J. Environ. Manag. 2023, 334, 117444. [Google Scholar] [CrossRef] [PubMed]
- Hongprasith, N.; Kittimethawong, C.; Lertluksanaporn, R.; Eamchotchawalit, T.; Kittipongvises, S.; Lohwacharin, J. IR microspectroscopic identification of microplastics in municipal wastewater treatment plants. Environ. Sci. Pollut. Res. 2020, 27, 18557–18564. [Google Scholar] [CrossRef]
- Hamidian, A.H.; Ozumchelouei, E.J.; Feizi, F.; Wu, C.X.; Zhang, Y.; Yang, M. A review on the characteristics of microplastics in wastewater treatment plants: A source for toxic chemicals. J. Clean. Prod. 2021, 295, 126480. [Google Scholar] [CrossRef]
- Murray, A.; Örmeci, B. Removal Effectiveness of Nanoplastics (<400 nm) with Separation Processes Used for Water and Wastewater Treatment. Water 2020, 12, 635. [Google Scholar] [CrossRef]
- Peng, X.; Chen, M.; Chen, S.; Dasgupta, S.; Xu, H.; Ta, K.; Du, M.; Li, J.; Guo, Z.; Bai, S. Microplastics contaminate the deepest part of the world’s ocean. Geochem. Perspect. Lett. 2018, 9, 1–5. [Google Scholar] [CrossRef]
- Cunningham, E.M.; Ehlers, S.M.; Dick, J.T.A.; Sigwart, J.D.; Linse, K.; Dick, J.J.; Kiriakoulakis, K. High Abundances of Microplastic Pollution in Deep-Sea Sediments: Evidence from Antarctica and the Southern Ocean. Environ. Sci. Technol. 2020, 54, 13661–13671. [Google Scholar] [CrossRef] [PubMed]
- Tekman, M.B.; Wekerle, C.; Lorenz, C.; Primpke, S.; Hasemann, C.; Gerdts, G.; Bergmann, M. Tying up Loose Ends of Microplastic Pollution in the Arctic: Distribution from the Sea Surface through the Water Column to Deep-Sea Sediments at the HAUSGARTEN Observatory. Environ. Sci. Technol. 2020, 54, 4079–4090. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.Y.; Bellerby, R.; Zhang, F.; Sun, X.R.; Li, D.J. The ocean’s ultimate trashcan: Hadal trenches as major depositories for plastic pollution. Water Res. 2020, 168, 115121. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Jimenez, P.D.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Zhang, W.W.; Zhang, S.F.; Wang, J.Y.; Wang, Y.; Mu, J.L.; Wang, P.; Lin, X.Z.; Ma, D.Y. Microplastic pollution in the surface waters of the Bohai Sea, China. Environ. Pollut. 2017, 231, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.G.; He, H.X.; Liu, M.Y.; Li, S.W.; Tang, G.W.; Wang, W.M.; Huang, P.; Wei, G.; Lin, Y.; Chen, B.; et al. Lost but can’t be neglected: Huge quantities of small microplastics hide in the South China Sea. Sci. Total Environ. 2018, 633, 1206–1216. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Bai, H.Y.; Chen, B.J.; Sun, X.M.; Qu, K.M.; Xia, B. Microplastic pollution in North Yellow Sea, China: Observations on occurrence, distribution and identification. Sci. Total Environ. 2018, 636, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.F.; Zhou, H.H.; Cui, Y.Z.; Wang, C.S.; Li, Y.H.; Zhang, D.D. Microplastics in offshore sediment in the Yellow Sea and East China Sea, China. Environ. Pollut. 2019, 244, 827–833. [Google Scholar] [CrossRef]
- Wang, W.F.; Yuan, W.K.; Chen, Y.L.; Wang, J. Microplastics in surface waters of Dongting Lake and Hong Lake, China. Sci. Total Environ. 2018, 633, 539–545. [Google Scholar] [CrossRef]
- Di, M.X.; Wang, J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China. Sci. Total Environ. 2018, 616, 1620–1627. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.Y.; Zhu, B.S.; Yang, D.Q.; Su, L.; Shi, H.H.; Li, D.J. Microplastics in sediments of the Changjiang Estuary, China. Environ. Pollut. 2017, 225, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Cai, H.W.; Kolandhasamy, P.; Wu, C.X.; Rochman, C.M.; Shi, H.H. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ. Pollut. 2018, 234, 347–355. [Google Scholar] [CrossRef]
- Xiong, X.; Zhang, K.; Chen, X.C.; Shi, H.H.; Luo, Z.; Wu, C.X. Sources and distribution of microplastics in China’s largest inland lake—Qinghai Lake. Environ. Pollut. 2018, 235, 899–906. [Google Scholar] [CrossRef]
- Chen, S.Y. The Aging Process of Microplastics and Its Influence on the Sorption of Pollutants. Master’s Thesis, Anhui University of Technology, Ma’anshan, China, 2020. (In Chinese). [Google Scholar]
- Wang, W.F.; Ndungu, A.W.; Li, Z.; Wang, J. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Sci. Total Environ. 2017, 575, 1369–1374. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Zhu, L.X.; Wang, T.; Li, D.J. Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution. Mar. Pollut. Bull. 2014, 86, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zuo, L.Z.; Peng, J.P.; Cai, L.Q.; Fok, L.; Yan, Y.; Li, H.X.; Xu, X.R. Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China. Sci. Total Environ. 2018, 644, 375–381. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Zhu, L.X.; Li, D.J. Microplastic in three urban estuaries, China. Environ. Pollut. 2015, 206, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Su, J.; Xiong, X.; Wu, X.; Wu, C.X.; Liu, J.T. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China. Environ. Pollut. 2016, 219, 450–455. [Google Scholar] [CrossRef]
- Qiu, Q.X.; Peng, J.P.; Yu, X.B.; Chen, F.C.Z.; Wang, J.D.; Dong, F.Q. Occurrence of microplastics in the coastal marine environment: First observation on sediment of China. Mar. Pollut. Bull. 2015, 98, 274–280. [Google Scholar] [CrossRef]
- Mao, Y.F.; Li, H.; Gu, W.K.; Yang, G.F.; Liu, Y.; He, Q. Distribution and characteristics of microplastics in the Yulin River, China: Role of environmental and spatial factors. Environ. Pollut. 2020, 265, 115033. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.S.; Lu, H.W.; Yao, T.C.; Xue, Y.X.; Yin, C.; Tang, M. Spatial characteristics of microplastics in the high-altitude area on the Tibetan Plateau. J. Hazard. Mater. 2021, 417, 126034. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.B.; Yin, L.S.; Li, Z.W.; Wen, X.F.; Luo, X.; Hu, S.P.; Yang, H.Y.; Long, Y.N.; Deng, B.; Huang, L.Z.; et al. Microplastic pollution in the rivers of the Tibet Plateau. Environ. Pollut. 2019, 249, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.Y.; Chan, F.K.S.; Johnson, M.; Stanton, T.; He, J.; Jia, T.; Wang, J.; Wang, Z.L.; Yao, Y.T.; Yang, J.T.; et al. Microplastic pollution in Chinese urban rivers: The influence of urban factors. Resour. Conserv. Recycl. 2021, 173, 105686. [Google Scholar] [CrossRef]
- Zhang, K.; Xiong, X.; Hu, H.J.; Wu, C.X.; Bi, Y.H.; Wu, Y.H.; Zhou, B.S.; Lam, P.K.S.; Liu, J.T. Occurrence and Characteristics of Microplastic Pollution in Xiangxi Bay of Three Gorges Reservoir, China. Environ. Sci. Technol. 2017, 51, 3794–3801. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Ouyang, Z.Z.; Liu, P.; Zhao, X.N.; Wu, R.R.; Zhang, C.T.; Lin, C.; Li, Y.Y.; Guo, X.T. Distribution and characteristics of microplastics in the basin of Chishui River in Renhuai, China. Sci. Total Environ. 2021, 773, 145591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.J.; Liu, T.; Liu, L.; Fan, Y.F.; Rao, W.X.; Zheng, J.L.; Qian, X. Distribution and sedimentation of microplastics in Taihu Lake. Sci. Total Environ. 2021, 795, 148745. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.K.; Liu, X.N.; Wang, W.F.; Di, M.X.; Wang, J. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China. Ecotox. Environ. Saf. 2019, 170, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Mao, R.F.; Hu, Y.Y.; Zhang, S.Y.; Wu, R.R.; Guo, X.T. Microplastics in the surface water of Wuliangsuhai Lake, northern China. Sci. Total Environ. 2020, 723, 137820. [Google Scholar] [CrossRef]
- Wang, X. The Distribution Characteristics, Source and Flux of Microplastics from Daliao River into the Sea. Master’s Thesis, Dalian Maritime University, Dalian, China, 2021. (In Chinese). [Google Scholar]
- Wang, L.F.; Li, H.; Dang, J.H.; Guo, H.; Zhu, Y.E.; Han, W.H. Occurrence, distribution, and partitioning of antibiotics in surface water and sediment in a typical tributary of Yellow River, China. Environ. Sci. Pollut. Res. 2021, 28, 28207–28221. [Google Scholar] [CrossRef]
- Niu, X.Y. Study on the Occurrence Characteristics of Microplastics in the Surface Water of the Yellow River Estuary. Master’s Thesis, Shandong Normal University, Jinan, China, 2020. (In Chinese). [Google Scholar]
- Lv, Y.N. Study on Microplastic Pollution in Water and Sediment System of Ganjiang River. Master’s Thesis, Qufu Normal University, Qufu, China, 2020. (In Chinese). [Google Scholar]
- Hu, Y. Carbon Nanotubes Synthesized from Microplastics in the Chin Ling-Weihe River Transition Zone by Catalytic Pyrolysis. Master’s Thesis, Northwest Agricultural and Forestry University, Xi’an, China, 2021. (In Chinese). [Google Scholar]
- Li, Y.D. Occurrence Characteristics, Source Apportionment and Environmental Influencing Factors of Microplastics in the Urban Rivers of Harbin. Master’s Thesis, Harbin Normal University, Harbin, China, 2022. (In Chinese). [Google Scholar]
- Serwecinska, L. Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- An, R.; Qi, Y.; Zhang, X.-X.; Ma, L. Xenogenetic evolutionary of integrons promotes the environmental pollution of antibiotic resistance genes—Challenges, progress and prospects. Water Res. 2023, 231, 119629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [PubMed]
- Omuferen, L.O.; Maseko, B.; Olowoyo, J.O. Occurrence of antibiotics in wastewater from hospital and convectional wastewater treatment plants and their impact on the effluent receiving rivers: Current knowledge between 2010 and 2019. Environ. Monit. Assess. 2022, 194, 306. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Sreekrishnan, T.R.; Ahammad, S.Z. Effects of heavy metals on the development and proliferation of antibiotic resistance in urban sewage treatment plants. Environ. Pollut. 2022, 308, 119649. [Google Scholar] [CrossRef] [PubMed]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-González, C. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water 2020, 12, 102. [Google Scholar] [CrossRef]
- Uluseker, C.; Kaster, K.M.; Thorsen, K.; Basiry, D.; Shobana, S.; Jain, M.; Kumar, G.; Kommedal, R.; Pala-Ozkok, I. A Review on Occurrence and Spread of Antibiotic Resistance in Wastewaters and in Wastewater Treatment Plants: Mechanisms and Perspectives. Front. Microbiol. 2021, 12, 717809. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.G.; Zhou, S.H.; Han, X.K.; Zhang, L.L.; Ding, S.Y.; Li, Y.; Zhang, D.J.; Zarin, K. Occurrence, distribution, and source track of antibiotics and antibiotic resistance genes in the main rivers of Chongqing city, southwest China. J. Hazard. Mater. 2020, 389, 122110. [Google Scholar] [CrossRef]
- Xu, W.H.; Zhang, G.; Zou, S.C.; Ling, Z.H.; Wang, G.L.; Yan, W. A Preliminary Investigation on the Occurrence and Distribution of Antibiotics in the Yellow River and its Tributaries, China. Water Environ. Res. 2009, 81, 248–254. [Google Scholar] [CrossRef]
- Zhang, R.J.; Zhang, G.; Zheng, Q.; Tang, J.H.; Chen, Y.J.; Xu, W.H.; Zou, Y.D.; Chen, X.X. Occurrence and risks of antibiotics in the Laizhou Bay, China: Impacts of river discharge. Ecotox. Environ. Saf. 2012, 80, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.D.; Lin, L.F.; Luo, Z.X.; Yan, C.Z.; Zhang, X. Occurrence of selected antibiotics in Jiulongjiang River in various seasons, South China. J. Environ. Monit. 2011, 13, 1953–1960. [Google Scholar] [CrossRef]
- Zou, S.C.; Xu, W.H.; Zhang, R.J.; Tang, J.H.; Chen, Y.J.; Zhang, G. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities. Environ. Pollut. 2011, 159, 2913–2920. [Google Scholar] [CrossRef]
- Qin, Y.W.; Zhang, L.; Shi, Y.; Ma, Y.Q.; Chang, X.; Liu, Z.C. Contamination Characteristics and Ecological Risk Assessment of Typical Antibiotics in Surface Water of the Daliao River, China. Res. Environ. Sci. 2015, 28, 361–368. (In Chinese) [Google Scholar]
- Luo, Y.; Xu, L.; Rysz, M.; Wang, Y.Q.; Zhang, H.; Alvarez, P.J.J. Occurrence and Transport of Tetracycline, Sulfonamide, Quinolone, and Macrolide Antibiotics in the Haihe River Basin, China. Environ. Sci. Technol. 2011, 45, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Zhang, R.J.; Wang, Y.H.; Pan, X.H.; Tang, J.H.; Zhang, G. Occurrence and distribution of antibiotics in the Beibu Gulf, China: Impacts of river discharge and aquaculture activities. Mar. Environ. Res. 2012, 78, 26–33. [Google Scholar] [CrossRef]
- Gao, L.; Li, X.; Zhang, Y.; Wei, Y.M.; Li, W.; Feng, Z. Research on pollution characteristics of antibiotics in Qinghe River in Beijing. Ecol. Sci. 2014, 33, 83–92. (In Chinese) [Google Scholar]
- LI, J.; Zhang, R.J.; Wang, R.M.; Zhang, H.; Jiang, D.J.; Zou, T.; Tang, J.H.; Lv, J. Distribution characteristics and ecological risk assessment of antibiotic pollution in Xiaoqing River watershed. J. Agro-Environ. Sci. 2016, 35, 1384–1391. (In Chinese) [Google Scholar]
- Tang, J.; Chen, H.Y.; Shi, T.Z.; Li, X.D.; Hua, R.M.; Chen, Y. Current Status and Source Analysis of Quinolone and Tetracycline Drug Pollution in Chaohu Lake. J. Anhui Agric. Univ. 2013, 40, 1043–1048. [Google Scholar] [CrossRef]
- Zhao, B.; Xu, J.M.; Zhang, G.D.; Lu, S.Y.; Liu, X.H.; Li, L.X.; Li, M. Occurrence of antibiotics and antibiotic resistance genes in the Fuxian Lake and antibiotic source analysis based on principal component analysis-multiple linear regression model. Chemosphere 2021, 262, 127741. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Gao, L.; Liu, J.; Cai, Y. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere 2012, 89, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Lu, S.Y. Occurrence and ecological risk of typical antibiotics in surface water of the Datong Lake, China. China Environ. Sci. 2018, 38, 320–329. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, L.; Hu, X.L.; Yin, D.Q.; Zhang, H.C.; Yu, Z.Y. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. Chemosphere 2011, 82, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Li, F.F.; Chen, L.J.; Chen, W.D.; Bao, Y.Y.; Zheng, Y.H.; Huang, B.; Mu, Q.L.; Wen, D.H.; Feng, C.P. Antibiotics in coastal water and sediments of the East China Sea: Distribution, ecological risk assessment and indicators screening. Mar. Pollut. Bull. 2020, 151, 110810. [Google Scholar] [CrossRef] [PubMed]
- Minh, T.B.; Leung, H.W.; Loi, I.H.; Chan, W.H.; So, M.K.; Mao, J.Q.; Choi, D.; Lam, J.C.W.; Zheng, G.; Martin, M.; et al. Antibiotics in the Hong Kong metropolitan area: Ubiquitous distribution and fate in Victoria Harbour. Mar. Pollut. Bull. 2009, 58, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Zhao, H.; Liu, S.; Xie, H.; Wang, Y.; Chen, J. Antibiotics in the coastal water of the South Yellow Sea in China: Occurrence, distribution and ecological risks. Sci. Total Environ. 2017, 595, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.H.; Zhang, G.; Zou, S.C.; Li, X.D.; Liu, Y.C. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environ. Pollut. 2007, 145, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Lu, S.Y.; Guo, W.; Xi, B.D.; Wang, W.L. Antibiotics in the aquatic environments: A review of lakes, China. Sci. Total Environ. 2018, 627, 1195–1208. [Google Scholar] [CrossRef]
- Wang, W.H.; Zhang, W.F.; Liang, H.; Gao, D.W. Seasonal distribution characteristics and health risk assessment of typical antibiotics in the Harbin section of the Songhua River basin. Environ. Technol. 2019, 40, 2726–2737. [Google Scholar] [CrossRef]
- Liang, S. Distribution Characteristics and Risk Assessment of Antibiotics in Lancang and Yarlung Zangbo Rivers. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2019. (In Chinese). [Google Scholar]
- Feng, M.J.; Zhang, Y.; Song, N.H.; Bu, Y.Q.; Yang, Z.B.; Liu, Y.H.; Guo, R.X.; Chen, J.Q.; Zhang, S.H. Occurrence Characteristics and Risk Assessment of Antibiotics in Source Water of the Nanjing Reach of the Yangtze River. Chin. J. Environ. Sci. 2019, 40, 5286–5293. (In Chinese) [Google Scholar]
- Wang, R.J.; QiuQian, L.L.; Li, G.X.; Zong, Y.N.; Tang, J.F.; Xu, Y.Y. Distribution characteristics and ecological risk assessment of selected antibiotics in Moon Lake, Ningbo City. J. Lake Sci. 2018, 30, 1616–1624. (In Chinese) [Google Scholar]
- Sun, Q.G.; Wang, Z.Y.; Dong, J.W.; Chen, C.; Chen, Q.W.; Liu, J.J.; Shi, F.Y. Spatial-temporal distribution and risk evaluation of four typical antibiotics in river networks of Taihu Lake Basin. Acta Sci. Circumst. 2018, 38, 4400–4410. (In Chinese) [Google Scholar]
- Wu, Y.X.; Zou, H.; Zhu, R.; Wang, J.G. Occurrence, Distribution and Ecological Risk of Antibiotics in Surface Water of the Gonghu Bay, in Taihu Lake. Chin. J. Environ. Sci. 2016, 37, 4596–4604. (In Chinese) [Google Scholar]
- Xu, L.; Ye, X.P.; Hao, G.J.; Sheng, P.C.; Zhou, D.R.; Sun, B.Z.; Zhang, H.Q. Typical Antibiotic Pollution Characteristics and Ecological Risk Assessment of Surface Water in Tiaoxi River. Mod. Agric. Sci. Tech. 2020, 7, 180–183+187. (In Chinese) [Google Scholar]
- Ding, H.J. Study on the Characteristics of Antibiotics in Poyang Lake and the Adsorption and Degradation of Typical Antibiotics. Ph.D. Thesis, Wuhan University, Wuhan, China, 2018. (In Chinese). [Google Scholar]
- Tang, J.; Shi, T.Z.; Wu, X.W.; Cao, H.Q.; Li, X.D.; Hua, R.M.; Tang, F.; Yue, Y.D. The occurrence and distribution of antibiotics in Lake Chaohu, China: Seasonal variation, potential source and risk assessment. Chemosphere 2015, 122, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.X.; Wu, Y.X.; Ding, H.J.; Wang, L.; Yang, W.F.; Zhang, J.W. Pollution Characteristics of Antibiotics and Antibiotic Resistance Genes in Urban Lakes of Wuhan. Environ. Sci. Tech. 2019, 42, 9–16. (In Chinese) [Google Scholar]
- Feng, L.; Cheng, Y.R.; Feng, L.; Zhang, S.; Liu, Y.Q. Distribution of Typical Antibiotics and Ecological Risk Assessment in Main Waters of Three Gorges Reservoir Area. Res. Environ. Sci. 2017, 30, 1031–1040. (In Chinese) [Google Scholar]
- Wang, Y.N.; Peng, J.; Huang, H.T.; Tan, H.; Zhang, A.H.; Yang, H.B.; Guo, F.; He, J.L. Distribution characteristics of typical antibiotics in Urban Rivers of Guiyang City. Environ. Chem. 2018, 37, 2039–2048. (In Chinese) [Google Scholar]
- Wang, J.W.; Wei, H.; Yang, X.Y.; Sun, B.C.; Zhang, J.T. Occurrence and ecological risk of sulfonamide antibiotics in the surface water of the Weihe Xi’an section. Environ. Chem. 2017, 36, 2574–2583. (In Chinese) [Google Scholar]
- Liu, M.S.; Zhou, Z.H.; Liu, Y.X.; Zhao, J.L.; Cai, Y.P. Distribution characteristics of antibiotics in the pearl river basin. Guangzhou Chem. Ind. 2017, 45, 159–162. (In Chinese) [Google Scholar]
- Xie, C.S.; Yang, S.T.; Wei, Q.; Jiang, X.X.; Wang, Z.X.; Wu, X.G. Antibiotic pollution characteristics and risk assessment of Xinghu Lake in Zhaoqing. J. Environ. Health (In Chinese). 2019, 36, 427–431. (In Chinese) [Google Scholar]
- Wang, D.X.; Wang, Q.Q. Analysis on the Distribution of Antibiotics Pollution in the Water Environment of Weihe River Area in Huaihe River Basin. Environ. Sci. Manag. 2020, 45, 63–66. (In Chinese) [Google Scholar]
- Wang, Y.Q. Distribution Characteristics of Typical Antibiotics, Antibiotic Resistance Genes and Microbial Community in Ebinur Lake Basin. Master’s Thesis, Shandong Normal University, Jinan, China, 2020. (In Chinese). [Google Scholar]
- Yan, X.S. Distribution, Sources and Risk Evaluation of Typical Antibiotics in Xiaoqing River Basin. Master’s Thesis, Shandong Normal University, Jinan, China, 2018. (In Chinese). [Google Scholar]
- Wang, Q.Q. Pollution Levels of Antibiotics from Aquatic Environment in Alashankou Region of Xinjiang and Surrounding Area. Master’s Thesis, Shihezi University, Shihezi, China, 2016. (In Chinese). [Google Scholar]
- Hu, Y.; Yan, X.; Shen, Y.; Di, M.; Wang, J. Antibiotics in surface water and sediments from Hanjiang River, Central China: Occurrence, behavior and risk assessment. Ecotox. Environ. Saf. 2018, 157, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Jing, L.; Teng, Y.; Wang, J. Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks. Sci. Total Environ. 2018, 618, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.M.; Zhang, L.W.; Liu, S.; Guo, Z.Y.; Hua, X.Y. Antibiotics in water and sediments from Liao River in Jilin Province, China: Occurrence, distribution, and risk assessment. Environ. Earth Sci. 2016, 75, 1202. [Google Scholar] [CrossRef]
- Li, S.; Shi, W.Z.; Li, H.M.; Xu, N.; Zhang, R.J.; Chen, X.J.; Sun, W.L.; Wen, D.H.; He, S.L.; Pan, J.G.; et al. Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River estuary, south China. Sci. Total Environ. 2018, 636, 1009–1019. [Google Scholar] [CrossRef]
- Liang, X.M.; Chen, B.W.; Nie, X.P.; Shi, Z.; Huang, X.P.; Li, X.D. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China. Chemosphere 2013, 92, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.A.; Li, T.; Bi, J.; Wang, C. Spatiotemporal heterogeneity of antibiotic pollution and ecological risk assessment in Taihu Lake Basin, China. Sci. Total Environ. 2018, 643, 12–20. [Google Scholar] [CrossRef]
- Zhou, L.-J.; Ying, G.-G.; Zhao, J.-L.; Yang, J.-F.; Wang, L.; Yang, B.; Liu, S. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China. Environ. Pollut. 2011, 159, 1877–1885. [Google Scholar] [CrossRef]
- Chen, K.; Zhou, J.L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China. Chemosphere 2014, 95, 604–612. [Google Scholar] [CrossRef]
- Wei, Y.M.; Zhang, Y.; Xu, J.; Guo, C.S.; Li, L.; Fan, W.H. Simultaneous quantification of several classes of antibiotics in water, sediments, and fish muscles by liquid chromatography-tandem mass spectrometry. Front. Environ. Sci. Eng. 2014, 8, 357–371. [Google Scholar] [CrossRef]
- Luo, F.; Pan, G.; Li, L.; Zhang, J.; Wang, N.; Jiao, S.; Zhang, X. The distribution characteristics and potential risk of tetracycline, oxytetracycline and their corresponding genes pollution in sediment of Hongze Lake. J. Agro-Environ. Sci. 2017, 36, 369–375. [Google Scholar]
- Ding, D.; Wang, B.; Zhang, X.A.; Zhang, J.X.; Zhang, H.H.; Liu, X.X.; Gao, Z.; Yu, Z.L. The spread of antibiotic resistance to humans and potential protection strategies. Ecotoxicol. Environ. Safe. 2023, 254, 114734. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Tan, L.; Zhang, L.M.; Tian, W.Q.; Ma, L.Q. A Review of the Distribution of Antibiotics in Water in Different Regions of China and Current Antibiotic Degradation Pathways. Front. Environ. Sci. 2021, 9, 692298. [Google Scholar] [CrossRef]
- Zhao, P.; Cui, L.M.; Zhao, W.G.; Tian, Y.M.; Li, M.; Wang, Y.Y.; Chen, Z.X. Cotransport and deposition of colloidal polystyrene microplastic particles and tetracycline in porous media: The impact of ionic strength and cationic types. Sci. Total Environ. 2021, 753, 142064. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.F.; Ying, C.H.; Zhu, J.Y.; Zhou, Q.; Sun, K.; Tian, Y.J.; Li, J. Effects of Salinity, pH, and Cu(II) on the Adsorption Behaviors of Tetracycline onto Polyvinyl Chloride Microplastics: A Site Energy Distribution Analysis. Water 2023, 15, 1925. [Google Scholar] [CrossRef]
- Yu, Z.Y.; Zhang, L.; Huang, Q.S.; Dong, S.J.; Wang, X.H.; Yan, C.Z. Combined effects of micro-/nano-plastics and oxytetracycline on the intestinal histopathology and microbiome in zebrafish (Danio rerio). Sci. Total Environ. 2022, 843, 156917. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wang, Q.; Duan, J.L.; Li, X.Y.; Ma, J.Y.; Wu, L.; Han, Y.; Liu, X.Y.; Zhang, Y.B.; Yuan, X.Z. Attachment and adhesion force between biogas bubbles and anaerobic granular sludge in the up-flow anaerobic sludge blanket. Water Res. 2020, 171, 115458. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.W.; Li, Y.X.; Sun, Y.A.; Xie, K.P.; Zeng, Q.Z.; Hao, Y.M.; Yang, Q.; Pu, Y.H.; Shi, S.N.; Gong, Z. Deterioration of sludge characteristics and promotion of antibiotic resistance genes spread with the co-existing of polyvinylchloride microplastics and tetracycline in the sequencing batch reactor. Sci. Total Environ. 2024, 906, 167544. [Google Scholar] [CrossRef]
- Han, Y.; Zhou, W.S.; Tang, Y.; Shi, W.; Shao, Y.Q.; Ren, P.; Zhang, J.M.; Xiao, G.Q.; Sun, H.X.; Liu, G.X. Microplastics aggravate the bioaccumulation of three veterinary antibiotics in the thick shell mussel Mytilus coruscus and induce synergistic immunotoxic effects. Sci. Total Environ. 2021, 770, 145273. [Google Scholar] [CrossRef]
- Yang, Y.K.; Xue, T.Y.; Xiang, F.; Zhang, S.Y.; Hanamoto, S.; Sun, P.Z.; Zhao, L. Toxicity and combined effects of antibiotics and nano ZnO on a phosphorus-removing Shewanella strain in wastewater treatment. J. Hazard. Mater. 2021, 416, 125532. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Xue, T.; Hanamoto, S.; Wang, H.; Sun, P.; Zhao, L. Complex behavior between microplastic and antibiotic and their effect on phosphorus-removing Shewanella strain during wastewater treatment. Sci. Total Environ. 2022, 845, 157260. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, D.; Li, Z.Y.; Song, K.; He, Y.J. Evaluation of microplastic polyvinylchloride and antibiotics tetracycline co-effect on the partial nitrification process. Mar. Pollut. Bull. 2020, 160, 111671. [Google Scholar] [CrossRef]
- Shah, S.Q.A.; Cabello, F.C.; L’Abee-Lund, T.M.; Tomova, A.; Godfrey, H.P.; Buschmann, A.H.; Sorum, H. Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites. Environ. Microbiol. 2014, 16, 1310–1320. [Google Scholar] [CrossRef]
- Singh, R.; Singh, A.P.; Kumar, S.; Giri, B.S.; Kim, K.H. Antibiotic resistance in major rivers in the world: A systematic review on occurrence, emergence, and management strategies. J. Clean. Prod. 2019, 234, 1484–1505. [Google Scholar] [CrossRef]
- Smyth, C.; O’Flaherty, A.; Walsh, F.; Do, T.T. Antibiotic resistant and extended-spectrum β-lactamase producing faecal coliforms in wastewater treatment plant effluent. Environ. Pollut. 2020, 262, 114244. [Google Scholar] [CrossRef]
- Liu, L.; Sun, Y.; Du, S.; Li, Y.; Wang, J. Nanoplastics promote the dissemination of antibiotic resistance genes and diversify their bacterial hosts in soil. Eco-Environ. Health 2024, 3, 1–10. [Google Scholar] [CrossRef]
- Wang, S.; Xue, N.; Li, W.; Zhang, D.; Pan, X.; Luo, Y. Selectively enrichment of antibiotics and ARGs by microplastics in river, estuary and marine waters. Sci. Total Environ. 2020, 708, 134594. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, Y.; Wu, J.; Luo, Y. Effects of microplastics on distribution of antibiotic resistance genes in recirculating aquaculture system. Ecotox. Environ. Saf. 2019, 184, 109631. [Google Scholar] [CrossRef]
- Vethaak, A.D.; Legler, J. Microplastics and human health. Science 2021, 371, 672–674. [Google Scholar] [CrossRef]
- Li, Z.; Junaid, M.; Chen, G.L.; Wang, J. Interactions and associated resistance development mechanisms between microplastics, antibiotics and heavy metals in the aquaculture environment. Rev. Aquac. 2022, 14, 1028–1045. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Liu, P.; Wei, H.Y.; Li, H.; Li, J.L.; Qiu, X.R.; Ding, R.; Guo, X.T. Alteration in microbial community and antibiotic resistance genes mediated by microplastics during wastewater ultraviolet disinfection. Sci. Total Environ. 2022, 825, 153918. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhu, L.; Wang, Y.; Zhu, Y.-G. Metagenomic insights into environmental risk of field microplastics in an urban river. Water Res. 2022, 223, 119018. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.H.; Wu, D.; Su, Y.L.; Xie, B. Selective enrichment of antibiotic resistance genes and pathogens on polystyrene microplastics in landfill leachate. Sci. Total Environ. 2021, 765, 142775. [Google Scholar] [CrossRef]
- Wu, X.J.; Pan, J.; Li, M.; Li, Y.; Bartlam, M.; Wang, Y.Y. Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res. 2019, 165, 114979. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Liu, Y.; Wang, J.L. Sorption of sulfamethazine onto different types of microplastics: A combined experimental and molecular dynamics simulation study. Mar. Pollut. Bull. 2019, 145, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.Y.; Wang, X.L.; Zhou, X.Z.; Kong, X.Z.; Tao, S.; Xing, B.S. Sorption of Four Hydrophobic Organic Compounds by Three Chemically Distinct Polymers: Role of Chemical and Physical Composition. Environ. Sci. Technol. 2012, 46, 7252–7259. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.X.; Li, M.; Wang, Y.F.; Jin, L.M.; Ma, G.C.; Yu, H.Y. Developing Predictive Models for Carrying Ability of Micro-Plastics towards Organic Pollutants. Molecules 2019, 24, 1784. [Google Scholar] [CrossRef]
- Shen, X.C.; Li, D.C.; Sima, X.F.; Cheng, H.Y.; Jiang, H. The effects of environmental conditions on the enrichment of antibiotics on microplastics in simulated natural water column. Environ. Res. 2018, 166, 377–383. [Google Scholar] [CrossRef]
- Li, J.; Zhang, K.N.; Zhang, H. Adsorption of antibiotics on microplastics. Environ. Pollut. 2018, 237, 460–467. [Google Scholar] [CrossRef]
- Liu, N.N.; Yu, F.; Wang, Y.Y.; Ma, J. Effects of environmental aging on the adsorption behavior of antibiotics from aqueous solutions in microplastic-graphene coexisting systems. Sci. Total Environ. 2022, 806, 150956. [Google Scholar] [CrossRef]
- Xiong, Y.C.; Zhao, J.H.; Li, L.Q.; Wang, Y.Y.; Dai, X.H.; Yu, F.; Ma, J. Interfacial interaction between micro/nanoplastics and typical PPCPs and nanoplastics removal via electrosorption from an aqueous solution. Water Res. 2020, 184, 116100. [Google Scholar] [CrossRef]
- Li, Y.D.; Li, M.; Li, Z.; Yang, L.; Liu, X. Effects of particle size and solution chemistry on Triclosan sorption on polystyrene microplastic. Chemosphere 2019, 231, 308–314. [Google Scholar] [CrossRef]
- Celina, M.C. Review of polymer oxidation and its relationship with materials performance and lifetime prediction. Polym. Degrad. Stabil. 2013, 98, 2419–2429. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, T.; Tian, L.L.; Liu, X.L.; Qi, Z.C.; Ma, Y.N.; Ji, R.; Chen, W. Aging Significantly Affects Mobility and Contaminant-Mobilizing Ability of Nanoplastics in Saturated Loamy Sand. Environ. Sci. Technol. 2019, 53, 5805–5815. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Z.; Zhu, Z.L.; Yang, Y.X.; Sun, Y.R.; Yu, F.; Ma, J. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater. Environ. Pollut. 2019, 246, 26–33. [Google Scholar] [CrossRef]
- Lv, Y.D.; Huang, Y.J.; Kong, M.Q.; Yang, Q.; Li, G.X. Multivariate correlation analysis of outdoor weathering behavior of polypropylene under diverse climate scenarios. Polym. Test 2017, 64, 65–76. [Google Scholar] [CrossRef]
- Yang, C.; Guan, J.; Yang, Y.; Liu, Y.; Li, Y.; Yu, Y. Interface behavior changes of weathered polystyrene with ciprofloxacin in seawater environment. Environ. Res. 2022, 212, 113132. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J.L. Sorption of antibiotics onto aged microplastics in freshwater and seawater. Mar. Pollut. Bull. 2019, 149, 110511. [Google Scholar] [CrossRef]
- Fan, X.L.; Gan, R.; Liu, J.Q.; Xie, Y.; Xu, D.Z.; Xiang, Y.; Su, J.K.; Teng, Z.; Hou, J. Adsorption and desorption behaviors of antibiotics by tire wear particles and polyethylene microplastics with or without aging processes. Sci. Total Environ. 2021, 771, 145451. [Google Scholar] [CrossRef] [PubMed]
- Huffer, T.; Hofmann, T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environ. Pollut. 2016, 214, 194–201. [Google Scholar] [CrossRef]
- Kaiser, D.; Kowalski, N.; Waniek, J.J. Effects of biofouling on the sinking behavior of microplastics. Environ. Res. Lett. 2017, 12, 124003. [Google Scholar] [CrossRef]
- Luo, T.Y.; Dai, X.H.; Wei, W.; Xu, Q.X.; Ni, B.J. Microplastics Enhance the Prevalence of Antibiotic Resistance Genes in Anaerobic Sludge Digestion by Enriching Antibiotic-Resistant Bacteria in Surface Biofilm and Facilitating the Vertical and Horizontal Gene Transfer. Environ. Sci. Technol. 2023, 57, 14611–14621. [Google Scholar] [CrossRef] [PubMed]
- Wunder, D.B.; Bosscher, V.A.; Cok, R.C.; Hozalski, R.M. Sorption of antibiotics to biofilm. Water Res. 2011, 45, 2270–2280. [Google Scholar] [CrossRef]
- Holmes, L.A.; Turner, A.; Thompson, R.C. Adsorption of trace metals to plastic resin pellets in the marine environment. Environ. Pollut. 2012, 160, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.X.; Zhang, K.; Huang, X.L.; Liu, J.T. Sorption of pharmaceuticals and personal care products to polyethylene debris. Environ. Sci. Pollut. Res. 2016, 23, 8819–8826. [Google Scholar] [CrossRef]
- Zhang, Q.; Qu, Q.; Lu, T.; Ke, M.J.; Zhu, Y.C.; Zhang, M.; Zhang, Z.Y.; Du, B.B.; Pan, X.L.; Sun, L.W.; et al. The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth. Environ. Pollut. 2018, 243, 1106–1112. [Google Scholar] [CrossRef]
- Jin, J.H.; Yang, Z.H.; Xiong, W.P.; Zhou, Y.Y.; Xu, R.; Zhang, Y.R.; Cao, J.; Li, X.; Zhou, C.Y. Cu and Co nanoparticles co-doped MIL-101 as a novel adsorbent for efficient removal of tetracycline from aqueous solutions. Sci. Total Environ. 2019, 650, 408–418. [Google Scholar] [CrossRef]
- Duan, L.; Li, L.F.; Xu, Z.; Chen, W. Adsorption of tetracycline to nano-NiO: The effect of co-existing Cu(II) ions and environmental implications. Environ. Sci.-Process Impacts 2014, 16, 1462–1468. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Liu, Z.L.; Li, L.H.; Jiang, S.H.; Shi, C.H. Systematic review of randomized controlled trials of traditional Chinese medicine treatment of non-acute bronchial asthma complicated by gastroesophageal reflux. J. Tradit. Chin. Med. 2012, 32, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Padilla-Ortega, E.; Leyva-Ramos, R.; Mendoza-Barron, J. Role of electrostatic interactions in the adsorption of cadmium(II) from aqueous solution onto vermiculite. Appl. Clay Sci. 2014, 88–89, 10–17. [Google Scholar] [CrossRef]
- Guo, X.T.; Pang, J.W.; Chen, S.Y.; Jia, H.Z. Sorption properties of tylosin on four different microplastics. Chemosphere 2018, 209, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Shih, K.M.; Li, X.Y. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics. Chemosphere 2015, 119, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Ajouyed, O.; Hurel, C.; Ammari, M.; Ben Allal, L.; Marmier, N. Sorption of Cr(VI) onto natural iron and aluminum (oxy)hydroxides: Effects of pH, ionic strength and initial concentration. J. Hazard. Mater. 2010, 174, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Li, J.N.; Wang, F.H.; Yang, H.; Liu, L. Adsorption of tetracyclines onto polyethylene microplastics: A combined study of experiment and molecular dynamics simulation. Chemosphere 2021, 265, 129133. [Google Scholar] [CrossRef] [PubMed]
- Filius, J.D.; Lumsdon, D.G.; Meeussen, J.C.L.; Hiemstra, T.; Riemsdijk, W.H.v. Adsorption of fulvic acid on goethite. Geochim. Cosmochim. Acta 2000, 64, 51–60. [Google Scholar] [CrossRef]
- Turku, I.; Sainio, T.; Paatero, E. Thermodynamics of tetracycline adsorption on silica. Environ. Chem. Lett. 2007, 5, 225–228. [Google Scholar] [CrossRef]
- Liu, P.; Zhan, X.; Wu, X.W.; Li, J.L.; Wang, H.Y.; Gao, S.X. Effect of weathering on environmental behavior of microplastics: Properties, sorption and potential risks. Chemosphere 2020, 242, 125193. [Google Scholar] [CrossRef]
- Quan, B.Y.; Li, X.; Zhang, H.; Zhang, C.; Ming, Y.; Huang, Y.C.; Xi, Y.N.; Xu, W.H.; Liu, Y.G.; Tang, Y.Q. Technology and principle of removing triclosan from aqueous media: A review. Chem. Eng. J. 2019, 378, 122185. [Google Scholar] [CrossRef]
- Aristilde, L.; Marichal, C.; Miehe-Brendle, J.; Lanson, B.; Charlet, L. Interactions of Oxytetracycline with a Smectite Clay: A Spectroscopic Study with Molecular Simulations. Environ. Sci. Technol. 2010, 44, 7839–7845. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Chen, C.; Wang, J.L. Sorption of sulfamethoxazole onto six types of microplastics. Chemosphere 2019, 228, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Alimi, O.S.; Budarz, J.F.; Hernandez, L.M.; Tufenkji, N. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef] [PubMed]
- Tourinho, P.S.; Koci, V.; Loureiro, S.; van Gestel, C.A.M. Partitioning of chemical contaminants to microplastics: Sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation. Environ. Pollut. 2019, 252, 1246–1256. [Google Scholar] [CrossRef] [PubMed]
- Junaid, M.; Wang, J. Interaction of nanoplastics with extracellular polymeric substances (EPS) in the aquatic environment: A special reference to eco-corona formation and associated impacts. Water Res. 2021, 201, 117319. [Google Scholar] [CrossRef] [PubMed]
- Ritson, J.P.; Graham, N.J.D.; Templeton, M.R.; Clark, J.M.; Gough, R.; Freeman, C. The impact of climate change on the treatability of dissolved organic matter (DOM) in upland water supplies: A UK perspective. Sci. Total Environ. 2014, 473, 714–730. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, M.J.; Ansari, A.J.; Hai, F.I. Antibiotic sorption onto microplastics in water: A critical review of the factors, mechanisms and implications. Water Res. 2023, 233, 119790. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Chen, S.J.; Xu, Y.L.; Sun, M.X.; Yang, T.T.; Liang, L.; Xiong, X.Y. Reduced adsorption of norfloxacin on UV aging microplastics in anoxic environment. Environ. Sci. Pollut. Res. 2023, 30, 67174–67186. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.L.; Liu, F.; Brookes, P.C.; Xu, J.M. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter. Environ. Pollut. 2018, 240, 87–94. [Google Scholar] [CrossRef]
- Zhang, H.B.; Wang, J.Q.; Zhou, B.Y.; Zhou, Y.; Dai, Z.F.; Zhou, Q.; Christie, P.; Luo, Y.M. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. Environ. Pollut. 2018, 243, 1550–1557. [Google Scholar] [CrossRef]
- Meyer, E.E.; Rosenberg, K.J.; Israelachvili, J. Recent progress in understanding hydrophobic interactions. Proc. Natl. Acad. Sci. USA 2006, 103, 15739–15746. [Google Scholar] [CrossRef] [PubMed]
- Razanajatovo, R.M.; Ding, J.N.; Zhang, S.S.; Jiang, H.; Zou, H. Sorption and desorption of selected pharmaceuticals by polyethylene microplastics. Mar. Pollut. Bull. 2018, 136, 516–523. [Google Scholar] [CrossRef]
- Antony, A.; Fudianto, R.; Cox, S.; Leslie, G. Assessing the oxidative degradation of polyamide reverse osmosis membrane-Accelerated ageing with hypochlorite exposure. J. Membr. Sci. 2010, 347, 159–164. [Google Scholar] [CrossRef]
- Lin, L.J.; Tang, S.; Wang, X.S.; Sun, X.; Han, Z.X.; Chen, Y. Accumulation mechanism of tetracycline hydrochloride from aqueous solutions by nylon microplastics. Environ. Technol. Innov. 2020, 18, 100750. [Google Scholar] [CrossRef]
- Huffer, T.; Weniger, A.K.; Hofmann, T. Sorption of organic compounds by aged polystyrene microplastic particles. Environ. Pollut. 2018, 236, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Cran, M.J.; Bigger, S.W.; Gray, S.R. Degradation of polyamide reverse osmosis membranes in the presence of chloramine. Desalination 2011, 283, 58–63. [Google Scholar] [CrossRef]
- Torres, F.G.; Dioses-Salinas, D.C.; Pizarro-Ortega, C.I.; De-la-Torre, G.E. Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends. Sci. Total Environ. 2021, 757, 143875. [Google Scholar] [CrossRef] [PubMed]
- Mrozik, W.; Stefanska, J. Adsorption and biodegradation of antidiabetic pharmaceuticals in soils. Chemosphere 2014, 95, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.W.; Zheng, M.G.; Wang, L.; Ke, R.H.; Lou, Y.H.; Zhang, X.J.; Dong, X.F.; Zhang, Y. Sorption behaviors of tris-(2,3-dibromopropyl) isocyanurate and hexabromocyclododecanes on polypropylene microplastics. Mar. Pollut. Bull. 2018, 135, 581–586. [Google Scholar] [CrossRef]
- Wang, F.; Sun, H.W.; Ren, X.H.; Liu, Y.R.; Zhu, H.K.; Zhang, P.; Ren, C. Effects of humic acid and heavy metals on the sorption of polar and apolar organic pollutants onto biochars. Environ. Pollut. 2017, 231, 229–236. [Google Scholar] [CrossRef]
- Xin, J.; Liu, R.L.; Fan, H.B.; Wang, M.L.; Li, M.; Liu, X. Role of sorbent surface functionalities and microporosity in 2,2′,4,4′-tetrabromodiphenyl ether sorption onto biochars. J. Environ. Sci. 2013, 25, 1368–1378. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Wei, J.F.; Liu, K.; Liu, N.N.; Zhou, B. Adsorption of Bisphenol A Based on Synergy between Hydrogen Bonding and Hydrophobic Interaction. Langmuir 2014, 30, 13861–13868. [Google Scholar] [CrossRef] [PubMed]
- Yamate, T.; Kumazawa, K.; Suzuki, H.; Akazome, M. CH/pi Interactions for Macroscopic Interfacial Adhesion Design. ACS Macro Lett. 2016, 5, 858–861. [Google Scholar] [CrossRef] [PubMed]
- Mani, D.; Arunan, E. The X-C···π (X = F, Cl, Br, CN) carbon bond. J. Phys. Chem. A 2014, 118, 10081–10089. [Google Scholar] [CrossRef] [PubMed]
- Desiraju, G.R.; Ho, P.S.; Kloo, L.; Legon, A.C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Definition of the halogen bond (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1711–1713. [Google Scholar] [CrossRef]
- Wu, P.F.; Cai, Z.W.; Jin, H.B.; Tang, Y.Y. Adsorption mechanisms of five bisphenol analogues on PVC microplastics. Sci. Total Environ. 2019, 650, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhang, S.Y.; Zhang, X.J.; Lei, L.; Ma, W.; Ma, C.X.; Song, L.; Chen, J.W.; Pan, B.; Xing, B.S. Cation-Pi Interaction: A Key Force for Sorption of Fluoroquinolone Antibiotics on Pyrogenic Carbonaceous Materials. Environ. Sci. Technol. 2017, 51, 13659–13667. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Pignatello, J.J.; Wang, Y.Q.; Xing, B.S. New Insight into Adsorption Mechanism of Ionizable Compounds on Carbon Nanotubes. Environ. Sci. Technol. 2013, 47, 8334–8341. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.Z.; Pignatello, J.J.; Xing, B.S. Adsorption of Aromatic Carboxylate Ions to Black Carbon (Biochar) Is Accompanied by Proton Exchange with Water. Environ. Sci. Technol. 2011, 45, 9240–9248. [Google Scholar] [CrossRef]
- Gilli, P.; Pretto, L.; Bertolasi, V.; Gilli, G. Predicting Hydrogen-Bond Strengths from Acid-Base Molecular Properties. The pK(a) Slide Rule: Toward the Solution of a Long-Lasting Problem. Accounts Chem. Res. 2009, 42, 33–44. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Shao, W.; Zhao, W.; Zhu, H. The Occurrence, Distribution, Environmental Effects, and Interactions of Microplastics and Antibiotics in the Aquatic Environment of China. Water 2024, 16, 1435. https://doi.org/10.3390/w16101435
Guo Y, Shao W, Zhao W, Zhu H. The Occurrence, Distribution, Environmental Effects, and Interactions of Microplastics and Antibiotics in the Aquatic Environment of China. Water. 2024; 16(10):1435. https://doi.org/10.3390/w16101435
Chicago/Turabian StyleGuo, Yiping, Wanfei Shao, Weigao Zhao, and Hong Zhu. 2024. "The Occurrence, Distribution, Environmental Effects, and Interactions of Microplastics and Antibiotics in the Aquatic Environment of China" Water 16, no. 10: 1435. https://doi.org/10.3390/w16101435
APA StyleGuo, Y., Shao, W., Zhao, W., & Zhu, H. (2024). The Occurrence, Distribution, Environmental Effects, and Interactions of Microplastics and Antibiotics in the Aquatic Environment of China. Water, 16(10), 1435. https://doi.org/10.3390/w16101435