A New Concept of Flashboard Risers in Controlled Drainage Structures
Abstract
:1. Introduction
Overview of Water Control Structures in Drainage Systems
2. Materials and Methods
2.1. The Concept of a New Water Damming Solution
2.2. Main Patent Assumptions Regarding the Work of the Water Damming System
3. Results and Discussion
3.1. Effective Time Management during the Operation of Flashboard Risers
3.2. Cost of Implementation of CD Practice
4. Conclusions
5. Patents
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Wit, J.A.; van Huijgevoort, M.H.; van Dam, J.C.; van den Eertwegh, G.A.; van Deijl, D.; Ritsema, C.J.; Bartholomeus, R.P. Hydrological consequences of controlled drainage with subirrigation. J. Hydrol. 2024, 628, 130432. [Google Scholar] [CrossRef]
- Sojka, M.; Kozłowski, M.; Kęsicka, B.; Wróżyński, R.; Stasik, R.; Napierała, M.; Liberacki, D. The effect of climate change on controlled drainage effectiveness in the context of groundwater dynamics, surface, and drainage outflows. Central-western Poland case study. Agronomy 2022, 10, 625. [Google Scholar] [CrossRef]
- Feldman, D.L. Adaptation as a water resource policy challenge—Institutions and science. J. Water Resour. Prot. 2013, 5, 1–6. [Google Scholar] [CrossRef]
- International Commission on Irrigation and Drainage. Agricultural Water Management for Sustainable Rural Development-Annual Report 2020–2021; ICID: New Delhi, India, 2021. [Google Scholar]
- Wesström, I.; Joel, A.; Messing, I. Controlled drainage and subirrigation–A water management option to reduce non-point source pollution from agricultural land. Agric. Ecosyst. Environ. 2014, 198, 74–82. [Google Scholar] [CrossRef]
- van den Eertwegh, G.A.P.H.; van Bakel, P.J.T.; Stuyt, L.; van Iersel, A.; Kuipers, L.; Talsma, M.; Droogers, P. KlimaatAdaptieve Drainage—Een Innovatieve Methode om Piekafvoeren en Watertekorten te Verminderen—Samenvatting Resultaten Fase 2 ‘Onderzoek en Ontwikkeling’; FutureWater: Wageningen, The Netherlands, 2013. [Google Scholar]
- Lahdou, G.B.; Bowling, L.; Frankenberger, J.; Kladivko, E. Hydrologic controls of controlled and free draining subsurface drainage systems. Agric. Water Manag. 2019, 213, 605–615. [Google Scholar] [CrossRef]
- Youssef, M.A.; Abdelbaki, A.M.; Negm, L.M.; Skaggs, R.W.; Thorp, K.R.; Jaynes, D.B. DRAINMOD-simulated performance of controlled drainage across the US Midwest. Agric. Water Manag. 2018, 197, 54–66. [Google Scholar] [CrossRef]
- Drury, C.F.; Tan, C.S.; Reynolds, W.D.; Welacky, T.W.; Oloya, T.O.; Gaynor, J.D. Managing tile drainage, subirrigation, and nitrogen fertilization to enhance crop yields and reduce nitrate loss. J. Environ. Qual. 2009, 38, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- Lalonde, V.; Madramootoo, C.A.; Trenholm, L.; Broughton, R.S. Effects of controlled drainage on nitrate concentrations in subsurface drain discharge. Agric. Water Manag. 1996, 29, 187–199. [Google Scholar] [CrossRef]
- Schott, L.; Lagzdins, A.; Daigh, A.L.M.; Craft, K.; Pederson, C.; Brenneman, G.; Helmers, M.J. Drainage water management effects over five years on water tables, drainage, and yields in southeast Iowa. J. Soil Water Conserv. 2017, 72, 251–259. [Google Scholar] [CrossRef]
- Strock, J.S.; Sands, G.R.; Helmers, M.J. Subsurface drainage design and management to meet agronomic and environmental goals. In Soil Management: Building a Stable Base for Agriculture; Hatfield, J.L., Sauer, T.J., Madison, W.I., Eds.; American Society of Agronomy: Madison, MI, USA; Soil Science Society of America: Madison, MI, USA, 2011. [Google Scholar] [CrossRef]
- Carstensen, M.V.; Hashemi, F.; Hoffmann, C.C.; Zak, D.; Audet, J.; Kronvang, B. Efficiency of mitigation measures targeting nutrient losses from agricultural drainage systems: A review. Ambio 2020, 49, 1820–1837. [Google Scholar] [CrossRef]
- Kraatz, D.B.; Mahajan, I.K. Small Hydraulic Structures; Food & Agriculture Organization: Rome, Italy, 1982; Volume 1. [Google Scholar]
- Rampano, B. Water Control Structures: Designs for Natural Resource Management on Coastal Floodplains; NSW Department of Industry and Investment (Aquatic Habitat Rehabilitation): Port Stephens, Austrilia, 2009. [Google Scholar]
- Ghane, E.; Fausey, N.R.; Shedekar, V.S.; Piepho, H.P.; Shang, Y.; Brown, L.C. Crop yield evaluation under controlled drainage in Ohio, United States. J. Soil Water Conserv. 2012, 67, 465–473. [Google Scholar] [CrossRef]
- Delbecq, B.A.; Brown, J.P.; Florax, R.J.G.M.; Kladivko, E.J.; Nistor, A.P.; Lowenberg-DeBoer, J.M. The Impact of Drainage Water Management Technology on Corn Yields. Agron. J. 2012, 104, 1100–1109. [Google Scholar] [CrossRef]
- Satchithanantham, S.; Ranjan, R.S.; Bullock, P. Protecting water quality using controlled drainage as an agricultural BMP for potato production. Trans. ASABE 2014, 57, 815–826. [Google Scholar] [CrossRef]
- Chun, J.A.; Cooke, R.A.; Eheart, J.W.; Kang, M.S. Estimation of flow and transport parameters for woodchip-based bioreactors: I. laboratory-scale bioreactor. Biosyst. Eng. 2009, 104, 384–395. [Google Scholar] [CrossRef]
- Luo, W.; Sands, G.R.; Youssef, M.; Strock, J.S.; Song, I.; Canelon, D. Modeling the impact of alternative drainage practices in the northern Corn-belt with DRAINMOD-NII. Agric. Water Manag. 2010, 97, 389–398. [Google Scholar] [CrossRef]
- Pease, L.A.; Fausey, N.R.; Martin, J.F.; Brown, L.C. Projected climate change effects on subsurface drainage and the performance of controlled drainage in the Western Lake Erie Basin. J. Soil Water Conserv. 2017, 72, 240–250. [Google Scholar] [CrossRef]
- Ale, S.; Bowling, L.C.; Frankenberger, J.R.; Brouder, S.M.; Kladivko, E.J. Climate variability and drain spacing influence on drainage water management system operation. Vadose Zone J. 2010, 9, 43–52. [Google Scholar] [CrossRef]
- Ramoska, E.; Bastiene, N.; Saulys, V. Evaluation of controlled drainage efficiency in Lithuania. Irrig. Drain. 2011, 60, 196–206. [Google Scholar] [CrossRef]
- Christianson, L.E.; Christianson, R.D.; Lipka, A.E.; Bailey, S.; Chandrasoma, J.; McCoy, C.; Cooke, R.A. Calibration of stainless steel-edged V-notch weir stop logs for water level control structures. Appl. Eng. Agric. 2019, 35, 745–749. [Google Scholar] [CrossRef]
- Lavaire, T.; Gentry, L.E.; David, M.B.; Cooke, R.A. Fate of water and nitrate using drainage water management on tile systems in east-central Illinois. Agric. Water Manag. 2017, 191, 218–228. [Google Scholar] [CrossRef]
- Jouni, H.J.; Liaghat, A.; Hassanoghli, A.; Ritzma, H. Managing controlled drainage in irrigated farmers’ fields: A case study in the Moghan plain, Iran. Agric. Water Manag. 2018, 208, 393–405. [Google Scholar] [CrossRef]
- Nash, P.; Nelson, K.; Motavalli, P. Reducing nitrogen loss with managed drainage and polymer-coated urea. J. Environ. Qual. 2015, 44, 256–264. [Google Scholar] [CrossRef]
- Duffková, R.; Poláková, L.; Lukas, V.; Fučík, P. The Effect of Controlled Tile Drainage on Growth and Grain Yield of Spring Barley as Detected by UAV Images, Yield Map and Soil Moisture Content. Remote Sens. 2022, 14, 4959. [Google Scholar] [CrossRef]
- Tan, C.S.; Drury, C.F.; Gaynor, J.D.; Welacky, T.W.; Reynolds, W.D. Effect of tillage and water table control on evapotranspiration, surface runoff, tile drainage and soil water content under maize on a clay loam soil. Agric. Water Manag. 2002, 54, 173–188. [Google Scholar] [CrossRef]
- Jahani, B.; Soltani Mohammadi, A.; Nasseri, A.A.; Van Oel, P.R.; Sadeghi Lari, A. Reduction of sugarcane water footprint by controlled drainage, in Khuzestan, Iran. Irrig. Drain. 2017, 66, 884–895. [Google Scholar] [CrossRef]
- Allred, B.J.; Brown, L.C.; Fausey, N.R.; Cooper, R.L.; Clevenger, W.B.; Prill, G.L.; La Barge, G.A.; Thornton, C.; Riethman, D.T.; Chester, P.W.; et al. Water table management to enhance crop yields in a wetland reservoir subirrigation system. Appl. Eng. Agric. 2003, 19, 407–421. [Google Scholar] [CrossRef]
- Skaggs, R.W.; Fausey, N.R.; Evans, R.O. Drainage water management. J. Soil Water Conserv. 2012, 67, 167A–172A. [Google Scholar] [CrossRef]
- Napierała, M. Application of Simple Crested Weirs to Control Outflows from Tiles Drainage. Water 2023, 15, 3248. [Google Scholar] [CrossRef]
- Shokrana, M.S.B.; Ghane, E. An empirical V-notch weir equation and standard procedure to accurately estimate drainage discharge. Appl. Eng. Agric. 2021, 37, 1097–1105. [Google Scholar] [CrossRef]
- Hornbuckle, J.W.; Christen, E.W.; Ayars, J.E.; Faulkner, R.D. Controlled water table management as a strategy for reducing salt loads from subsurface drainage under perennial agriculture in semi-arid Australia. Irrig. Drain. Syst. 2005, 19, 145–159. [Google Scholar] [CrossRef]
- Dukhovny, V.; Kenjabaev, S.; Yakubov, S.; Umirzakov, G. Controlled subsurface drainage as a strategy for improved water management in irrigated agriculture of Uzbekistan. Irrig. Drain. 2018, 67, 112–123. [Google Scholar] [CrossRef]
- Bonaiti, G.; Borin, M. Efficiency of controlled drainage and subirrigation in reducing nitrogen losses from agricultural fields. Agric. Water Manag. 2010, 98, 343–352. [Google Scholar] [CrossRef]
- Karegoudar, A.V.; Vishwanath, J.; Anand, S.R.; Rajkumar, R.H.; Ambast, S.K.; Kaledhonkar, M.J. Feasibility of controlled drainage in saline vertisols of TBP com-mand area of Karnataka, India. Irrig. Drain. 2019, 68, 969–978. [Google Scholar] [CrossRef]
- Wahba, M.A.S.; El-Ganainy, M.; Abdel-Dayem, M.S.; Gobran, A.; Kandil, H. Controlled drainage effects on water quality under semi-arid conditions in the western delta of Egypt. Irrig. Drain. 2001, 50, 295–308. [Google Scholar] [CrossRef]
- Mahmoud, E.M.; El Din, M.M.N.; Riad, P. The effect of irrigation and drainage management on crop yield in the Egyptian Delta: Case of El-Baradi area. Ain Shams Eng. J. 2021, 12, 119–134. [Google Scholar] [CrossRef]
- Popek, Z.; Bajkowski, S.; Siwicki, P.; Urbański, J. Laboratory tests of new groundwater table level regulators in subsurface drainage systems. Water 2021, 13, 631. [Google Scholar] [CrossRef]
- Kitchen, A.; Kitchen, P. Controlled Tile Drainage in Ontario: Producer Costs and Benefits; Ontario Soil and Crop Improvement Association: Guelph, Canada, 2017. [Google Scholar]
- Lalonde, V.; Hughes-Games, G. BC Agricultural Drainage Manual; Ministry of Agriculture, Fisheries and Food: Londen, UK, 1997. [Google Scholar]
- Tan, C.S.; Drury, C.F.; Gaynor, J.D.; Ng, H.Y.F. Effect of controlled drainage and subirrigation on subsurface tile drainage nitrate loss and crop yield at the farm scale. Can. Water Resour. J. 1999, 24, 177–186. [Google Scholar] [CrossRef]
- Pelletier, V.; Gallichand, J.; Gumiere, S.; Pepin, S.; Caron, J. Water Table Control for Increasing Yield and Saving Water in Cranberry Production. Sustainability 2015, 7, 10602–10619. [Google Scholar] [CrossRef]
- Jia, X.; Scherer, T.F.; Steele, D.D.; DeSutter, T.M. Subirrigation system performance and evaluation in the Red River Valley of the North. Appl. Eng. Agric. 2017, 33, 811–818. [Google Scholar] [CrossRef]
- Van den Eertwegh, G.A.P.H.; van Bakel, P.J.T.; Stuyt, L.; van Iersel, A.; Kuipers, L.; Talsma, M.; Droogers, P. Climate Adaptive Drainage: An Innovative Method to Reduce Peak Discharges and Water Shortages—Summary and Conclusions Phase 2; Future Water Rapport 123; FutureWater: Wageningen, The Netherlands, 2013; 19p, Available online: https://www.futurewater.eu/publications/ (accessed on 5 March 2024).
- Bartholomeus, R.P.; Simons, G.W.H.; van den Eertwegh, G.A.P.H. Anticipating on Amplifying Water Stress: Optimal Crop Production Supported by Climate-Adaptive Water Management; KWR 2015.062; KWR: Nieuwegein, The Netherlands, 2015. [Google Scholar]
- Napierała, M.; Sojka, M.; Wróżyński, R. Diagonal Flashboard Regulator for Water Damming, in Particular in a Drainage Network. Polish Patent 242565, 24 November 2022. Available online: https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.430886 (accessed on 5 March 2024).
- Christianson, L.; Christianson, R.; Helmers, M.; Pederson, C.; Bhandari, A. Modeling and calibration of drainage denitrification bioreactor design criteria. J. Irrig. Drain. Eng. 2013, 139, 699–709. [Google Scholar] [CrossRef]
- Lowenberg-De Boer, J.; Moussa, B.; Frankenberger, J. Managed Drainage for Higher Yields: Don’t Let Tile Drains Run All Year Long. In Proceedings of the Indiana Certified Crop Adviser Conference, Indianapolis, IN, USA, 14–15 December 2004; Available online: https://www.agry.purdue.edu/CCA/2004/index.htm (accessed on 5 March 2024).
- Nistor, A.P.; Lowenberg-DeBoer, J. Drainage water management impact on farm proftability. J. Soil Water Conserv. 2007, 62, 443–446. [Google Scholar]
- Poole, C.A.; Skaggs, R.W.; Cheschier, G.M.; Youssef, M.A.; Crozier, C.R. Effects of drainage water management on crop yields in North Carolina. J. Soil Water Cons. 2013, 68, 429–437. [Google Scholar] [CrossRef]
- Christianson, L.; Tyndall, J.; Helmers, M. Financial comparison of seven nitrate reduction strategies for Midwestern agricultural drainage. Water Resour. Econ. 2013, 2, 30–56. [Google Scholar] [CrossRef]
- Crabbé, P.; Lapen, D.R.; Clark, H.; Sunohara, M.; Liu, Y. Economic benefits of controlled tile drainage: Watershed evaluation of beneficial management practices, South Nation river basin, Ontario. Water Qual. Res. J. Can. 2012, 47, 30–41. [Google Scholar] [CrossRef]
- Sunohara, M.D.; Craiovan, E.; Topp, E.; Gottschall, N.; Drury, C.F.; Lapen, D.R. Comprehensive nitrogen budgets for controlled tile drainage fields in eastern Ontario, Canada. J. Environ. Qual. 2014, 43, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Dring, C.; Devlin, J.F.; Boag, G.; Sunohara, M.D.; Fitzgibbon, J.; Topp, E.; Lapen, D.R. Incentives and disincentives identified by producers and drainage contractors/experts on the adoption of controlled tile drainage in eastern Ontario, Canada. Water Qual. Res. J. Can. 2016, 51, 1–16. [Google Scholar] [CrossRef]
- Melioration, K.N.R. Regulation of Rivers and Streams, as Well as Structures and Water Devices; Ministry of Spatial Management and Construction: Warsaw, Poland, 1995. [Google Scholar]
- Maxwell, B.M.; Christianson, R.D.; Arch, R.; Johnson, S.; Book, R.; Christianson, L.E. Applied denitrifying bioreactor cost efficiencies based on empirical construction costs and nitrate removal. J. Environ. Manag. 2024, 352, 120054. [Google Scholar] [CrossRef] [PubMed]
- Zajíček, A.; Hejduk, T.; Sychra, L.; Vybíral, T.; Fučík, P. How to Select a Location and a Design of Measures on Land Drainage—A Case Study from the Czech Republic. J. Ecol. Eng. 2022, 23, 43–57. [Google Scholar] [CrossRef]
- Napierała, M. Odpływ sterowany jako kompleksowe podejście do tradycyjnych melioracji. In Współczesne Uwarunkowania i Wyzwania Gospodarowania Wodą w Rolniczej Przestrzeni Produkcyjnej Wielkopolski; Bykowskiego, J., Ed.; Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2021; pp. 133–153. [Google Scholar]
Activity | WCS Settings [cm] b.g.l. * Data | Typical Flashboard Riser | New Type of Flashboard Riser | ||
---|---|---|---|---|---|
Installed (+)/Uninstalled (−) Stop-Logs | Average Operation Time [s] | Installed (+)/Uninstalled (−) Stop-Logs | Average Operation Time [s] | ||
Fallow | 30–48 | 4–6 (+) | 271–380 | 1 (+) | 54–55 |
Growth/Maturity | 48–61 | 4–6 (−) | 80–112 | 1 (−) | 14–17 |
Tillage/Planting | 61–108 | 3–4 (+) | 271–380 | 1 (+) | 54–55 |
Harvest | 61–108 | 4–6 (−) | 80–112 | 1 (−) | 14–17 |
Total time [s]: | 701–982 | Total time [s]: | 136–144 |
Literature | CICI [$·pc.−1] | CO&M [$·pc.−1] | CTCI [$·ha−1] | A [$·ha−1·year−1] |
---|---|---|---|---|
Nistor and Lowenberg-DeBoer, 2007 [52] | 2239 | 14.93 | 279.86 | 24.85 |
Christianson et al., 2013 [53] | 653–2612 | 6–20 | 240–949 | 19.28–76.13 |
Crabbé et al., 2012 [55] | 1311 | 24.19 | 323.77 | 22.46 |
Kitchen and Kitchen, 2017 [42] | 1288–1863 | 46.24 | 133–322 | 21.82–56.71 |
Zajíček et al., 2022 [60] | 1042 | 39.73 | 260.55 | 20.91 |
Napierała, 2021 [61] | 497–688 | 11.81 | 124–172 | 9.98–13.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napierała, M. A New Concept of Flashboard Risers in Controlled Drainage Structures. Water 2024, 16, 1436. https://doi.org/10.3390/w16101436
Napierała M. A New Concept of Flashboard Risers in Controlled Drainage Structures. Water. 2024; 16(10):1436. https://doi.org/10.3390/w16101436
Chicago/Turabian StyleNapierała, Michał. 2024. "A New Concept of Flashboard Risers in Controlled Drainage Structures" Water 16, no. 10: 1436. https://doi.org/10.3390/w16101436
APA StyleNapierała, M. (2024). A New Concept of Flashboard Risers in Controlled Drainage Structures. Water, 16(10), 1436. https://doi.org/10.3390/w16101436