Spatial and Temporal Assessment of Baseflow Based on Monthly Water Balance Modeling and Baseflow Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
2.3.1. Baseflow Separation Using Digital Filtering Method
2.3.2. Baseflow Index
2.3.3. The Low-Flow Index Method
2.3.4. ABCD Model
2.3.5. Model Performance Evaluation
2.3.6. Mann–Kendall Test
3. Results and Discussions
3.1. Streamflow Simulation Using ABCD Model
3.2. Baseflow Simulation Applying Eckhardt Digital Filtering Method
3.3. Division of Wet and Dry Periods by BFI Value
3.4. Spatial and Temporal Distribution Characteristics of Baseflow
4. Conclusions
- (1)
- The simulated findings show that the NSE values for the BZA and SD stations are 0.82 and 0.83, and the Pbias values are 9.2% and 8.61%. According to available data, the ABCD model generally replicates monthly hydrological processes but overestimates the streamflow at the BZA and SD basins.
- (2)
- Using the Eckhardt method to separate baseflow, the NSE values of baseflow simulations at the BZA and SD stations were 0.81 and 0.85, respectively. The Pbias values were 8.65% and 5.90%, respectively, which indicates that the model slightly overestimates baseflow in the BZA and SD stations. According to the BFI spatial distribution, there is a trend toward greater values in the upstream regions and lower values in the downstream regions. The BFI rises yearly, and the monthly hydrological model’s baseflow exhibits a relatively fast expansion pattern.
- (3)
- The increasing trends of baseflow were relatively small during the wet season but more significant during the dry season, highlighting the impact of seasonal variations on baseflow simulation in the monthly-scale hydrological model. The baseflow modulus in the upstream regions shows a broader range of fluctuations from 140–220 (L/km·s) and 100–180 (L/km·s) at the BZA and SD stations, respectively. Geological conditions and hydrological processes in the upstream areas may have influenced the spatial differences in the baseflow modulus.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Huang, S.; Xu, Y.P.; Teegavarapu, R.S.V.; Guo, Y.; Nie, H.; Xie, H. Using baseflow ensembles for hydrologic hysteresis characterization in humid basins of Southeastern China. Water Resour. Res. 2024, 60, e2023WR036195. [Google Scholar] [CrossRef]
- Tallaksen, L.M. A review of baseflow recession analysis. J. Hydrol. 1995, 165, 349–370. [Google Scholar] [CrossRef]
- Singh, S.K.; Pahlow, M.; Booker, D.J.; Shankar, U.; Chamorro, A. Towards BFI characterisation at national scale in New Zealand. J. Hydrol. 2019, 568, 646–657. [Google Scholar] [CrossRef]
- Miller, M.P.; Buto, S.G.; Susong, D.D.; Rumsey, C.A. The importance of Baseflow in sustaining surface water flow in the Upper Colorado River Basin. Water Resour. Res. 2016, 52, 3547–3562. [Google Scholar] [CrossRef]
- Niazi, A.; Bentley, L.R.; Hayashi, M. Estimation of spatial distribution of groundwater recharge from stream baseflow and groundwater chloride. J. Hydrol. 2017, 546, 380–392. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Pendergrass, A.G.; Knutti, R.; Lehner, F.; Deser, C.; Sanderson, B.M. Precipitation variability increases in a warmer climate. Sci. Rep. 2017, 7, 17966. [Google Scholar] [CrossRef] [PubMed]
- Milly, P.C.; Dunne, K.A. Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation. Science 2020, 367, 1252–1255. [Google Scholar] [CrossRef] [PubMed]
- Vano, J.A.; Udall, B.; Cayan, D.R.; Overpeck, J.T.; Brekke, L.D.; Das, T.; Lettenmaier, D.P. Understanding uncertainties in future Colorado River streamflow. Bull. Am. Meteorol. Soc. 2014, 95, 59–78. [Google Scholar] [CrossRef]
- Eltahir, E.A.B.; Yeh, P. On the asymmetric response of aquifer water level to floods and droughts in Illinois. Water Resour. Res. 1999, 35, 1199–1217. [Google Scholar] [CrossRef]
- Peters, E.; Torfs, P.; Van Lanen, H.A.J.; Bier, G. Propagation of drought through groundwater—A new approach using linear reservoir theory. Hydrol. Process. 2003, 17, 3023–3040. [Google Scholar] [CrossRef]
- Ciampittiello, M.; Dresti, C.; Saidi, H. Water resource management through understanding of the water balance components: A case study of a Sub-Alpine Shallow Lake. Water 2021, 13, 3124. [Google Scholar] [CrossRef]
- Fan, Y.; Li, H.; Miguez-Macho, G. Global patterns of groundwater table depth. Science 2013, 339, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Poff, L.R.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Ebrahim, G.Y.; Villholth, K.G. Estimating shallow groundwater availability in small catchments using streamflow recession and instream flow requirements of rivers in South Africa. J. Hydrol. 2016, 541, 754–765. [Google Scholar] [CrossRef]
- Sophocleous, M. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J. 2002, 10, 52–67. [Google Scholar] [CrossRef]
- Ahiablame, L.; Sheshukov, A.Y.; Rahmani, V.; Moriasi, D. Annual baseflow variations as influenced by climate variability and agricultural land use change in the Missouri River Basin. J. Hydrol. 2017, 551, 188–202. [Google Scholar] [CrossRef]
- Beck, H.E.; Van Dijk, A.I.; Miralles, D.G.; De Jeu, R.A.; Bruijnzeel, L.A.; McVicar, T.R.; Schellekens, J. Global patterns in BFI and recession based on streamflow observations from 3394 catchments. Water Resour. Res. 2013, 49, 7843–7863. [Google Scholar] [CrossRef]
- George, P.M.; Sekhar, M. Base flow simulation using a physically based subsurface model–The case of a tropical basin in the Western Ghats, India. J. Hydrol. 2022, 613, 128451. [Google Scholar] [CrossRef]
- Luo, Z.; Shao, Q. A modified hydrologic model for examining the capability of global gridded PET products in improving hydrological simulation accuracy of surface runoff, streamflow and baseflow. J. Hydrol. 2022, 610, 127960. [Google Scholar] [CrossRef]
- Longobardi, A.; Villani, P. Baseflow index characterization in typical temperate to dry climates: Conceptual analysis and simulation experiment to assess the relative role of climate forcing features and catchment geological settings. Hydrol. Res. 2023, 54, 136–148. [Google Scholar] [CrossRef]
- Rumsey, C.A.; Miller, M.P.; Sexstone, G.A. Relating hydroclimatic change to streamflow, baseflow, and hydrologic partitioning in the Upper Rio Grande Basin, 1980 to 2015. J. Hydrol. 2020, 584, 124715. [Google Scholar] [CrossRef]
- Welty, C.; Moore, J.; Bain, D.J.; Talebpour, M.; Kemper, J.T.; Groffman, P.M.; Duncan, J.M. Spatial heterogeneity and temporal stability of baseflow stream chemistry in an urban watershed. Water Resour. Res. 2023, 59, e2021WR031804. [Google Scholar] [CrossRef]
- Fillo, N.K.; Bhaskar, A.S.; Jefferson, A.J. Lawn irrigation contributions to semiarid urban baseflow based on water-stable isotopes. Water Resour. Res. 2021, 57, e2020WR028777. [Google Scholar] [CrossRef]
- Delesantro, J.M.; Duncan, J.M.; Riveros-Iregui, D.; Blaszczak, J.R.; Bernhardt, E.S.; Urban, D.L.; Band, L.E. The Nonpoint Sources and Transport of Baseflow Nitrogen Loading Across a Developed Rural-Urban Gradient. Water Resour. Res. 2022, 58, e2021WR031533. [Google Scholar] [CrossRef]
- Song, J.H.; Her, Y.; Guo, T. Quantifying the contribution of direct streamflow and baseflow to nitrogen loading in the Western Lake Erie Basins. Sci. Rep. 2022, 12, 9216. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.; Ayers, J.; Brookfield, A. The impact of climate change on monthly baseflow trends across Canada. J. Hydrol. 2023, 618, 129254. [Google Scholar] [CrossRef]
- Milly, P.C.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity is dead: Whither water management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef]
- Thomas, H. Improved Methods for National Water Assessment: Final Report; U.S. Geological Survey: Reston, VA, USA, 1981; Volume 44. [Google Scholar] [CrossRef]
- Wang, X.; Gao, B.; Wang, X. A modified ABCD model with temperature-dependent parameters for cold regions: Application to reconstruct the changing streamflow in the headwater catchment of the Golmud River, China. Water 2020, 12, 1812. [Google Scholar] [CrossRef]
- Zou, Y.; Yan, B.; Feng, B.; Zhang, J.; Tang, Y.A. Three-Parameter Hydrological Model for Monthly Runoff Simulation—A Case Study of Upper Hanjiang River Basin. Water 2023, 15, 474. [Google Scholar] [CrossRef]
- Leng, J.; Ma, K.; Gu, S.; Zhang, K.; He, D. A non-stationary impactquant framework for assessing the human activity impacts on hydrological drought in the Upper Red River. Atmos. Res. 2024, 304, 107419. [Google Scholar] [CrossRef]
- Ghiggi, G.; Humphrey, V.; Seneviratne, S.I.; Gudmundsson, L. G-RUN ENSEMBLE: A multi-forcing observation-based global streamflow reanalysis. Water Resour. Res. 2021, 57, e2020WR028787. [Google Scholar] [CrossRef]
- Do, H.X.; Gudmundsson, L.; Leonard, M.; Westra, S. The Global Streamflow Indices and Metadata Archive (GSIM)–Part 1: The production of a daily streamflow archive and metadata. Earth Syst. Sci. Data 2018, 10, 765–785. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Savenije, H.H.G.; Blöschl, G.; McDonnell, J.J.; Sivapalan, M.; Pomeroy, J.W.; Arheimer, B.; Blume, T.; Clark, M.P.; Ehret, U.; et al. A decade of Predictions in Ungauged Basins (PUB)—A review. Hydrol. Sci. J. 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- Chen, H.; Huang, S.; Xu, Y.-P.; Teegavarapu, R.S.V.; Guo, Y.; Nie, H.; Xie, H.; Zhang, L. River ecological flow early warming forecasting using baseflow separation and machine learning in the Jiaojiang River Basin, Southeast China. Sci. Total Environ. 2023, 882, 163571. [Google Scholar] [CrossRef] [PubMed]
- Eckhardt, K. How to construct recursive digital filters for baseflow separation. Hydrol. Process. 2005, 19, 507–515. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Chapman, T.G. Comment on “Evaluation of automated techniques for Baseflow and recession analyses” by RJ Nathan and TA McMahon. Water Resour. Res. 1991, 27, 1783–1784. [Google Scholar] [CrossRef]
- Lyne, V.; Hollick, M. Stochastic Time-Variable Rainfall-Streamflow Modelling; Institute of Engineers Australia: Barton, Australia, 1979; Volume 79, pp. 89–93. Available online: https://www.researchgate.net/publication/272491803_Stochastic_TimeVariable_Rainfall-Streamflow_Modeling (accessed on 1 June 2022).
- Chen, H.; Teegavarapu, R.S.V.; Xu, Y.-P. Oceanic-Atmospheric Variability Influences on Baseflows in the Continental United States. Water Resour. Manag. 2021, 35, 3005–3022. [Google Scholar] [CrossRef]
- Ayers, J.R.; Villarini, G.; Jones, C.; Schilling, K. Changes in monthly baseflow across the US Midwest. Hydrol. Process. 2019, 33, 748–758. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Y.P.; Teegavarapu, R.S.; Guo, Y.; Xie, J. Assessing different roles of baseflow and surface streamflow for long-term streamflow forecasting in southeastern China. Hydrolog. Sci. J. 2021, 66, 2312–2329. [Google Scholar] [CrossRef]
- Baseri, M.; Mahjoobi, E.; Rafiei, F.; Baseri, M. Evaluation of ABCD water balance conceptual model using remote sensing data in ungauged watersheds (a case study: Zarandeh, Iran). Environ. Earth Sci. 2023, 82, 126. [Google Scholar] [CrossRef]
- Martinez, G.F.; Gupta, H.V. Toward improved identification of hydrological models: A diagnostic evaluation of the “abcd” monthly water balance model for the conterminous United States. Water Resour. Res. 2010, 46, W08507. [Google Scholar] [CrossRef]
- Bloomfield, J.P.; Gong, M.; Marchant, B.P.; Coxon, G.; Addor, N. How is Baseflow Index (BFI) impacted by water resource management practices? Hydrol. Earth Syst. Sci. 2021, 25, 5355–5379. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, Z.; Ye, A.; Liu, K.; Wang, X.; Wang, L. Hydrological characteristic-based methodology for dividing flood seasons: An empirical analysis from China. Environ. Earth Sci. 2019, 78, 399. [Google Scholar] [CrossRef]
- Chen, S.; Ruan, X. A hybrid Budyko-type regression framework for estimating baseflow from climate and catchment attributes. J. Hydrol. 2023, 618, 129118. [Google Scholar] [CrossRef]
- Saedi, J.; Sharifi, M.R.; Saremi, A.; Babazadeh, H. Assessing the impact of climate change and human activity on streamflow in a semiarid basin using precipitation and baseflow analysis. Sci. Rep. 2022, 12, 9228. [Google Scholar] [CrossRef] [PubMed]
- Aboelnour, M.A.; Engel, B.A.; Frisbee, M.D.; Gitau, M.W.; Flanagan, D.C. Impacts of watershed physical properties and land use on baseflow at regional scales. J. Hydrol. Reg. Stud. 2021, 35, 100810. [Google Scholar] [CrossRef]
- Hellwig, J.; Stoelzle, M.; Stahl, K. Groundwater and baseflow drought responses to synthetic recharge stress tests. Hydrol. Earth Syst. Sci. 2021, 25, 1053–1068. [Google Scholar] [CrossRef]
- Tan, X.; Liu, B.; Tan, X. Global changes in baseflow under the impacts of changing climate and vegetation. Water Resour. Res. 2020, 56, e2020WR027349. [Google Scholar] [CrossRef]
- Mo, C.; Ruan, Y.; Xiao, X.; Lan, H.; Jin, J. Impact of climate change and human activities on the baseflow in a typical karst basin, Southwest China. Ecol. Indic. 2021, 126, 107628. [Google Scholar] [CrossRef]
Station | A | B (mm) | C | D | Soil Water Storage (mm) | Groundwater Storage (mm) |
---|---|---|---|---|---|---|
BZA | 0.98 | 220.43 | 0.37 | 0.72 | 50.64 | 578.29 |
SD | 0.96 | 283.69 | 0.30 | 0.60 | 27.50 | 675.55 |
Station | Average Daily Streamflow (m3/s) | Average Daily Baseflow (m3/s) | Maximum Daily Baseflow (m3/s) | Median Daily Baseflow (m3/s) | Average Monthly Streamflow (m3/s) | Average Monthly Baseflow (m3/s) | Monthly Maximum Baseflow (m3/s) | Median Monthly Baseflow (m3/s) |
---|---|---|---|---|---|---|---|---|
BZA | 71.55 | 35.92 | 396.14 | 22.73 | 70.99 | 35.82 | 158.42 | 28.48 |
SD | 39.33 | 21.81 | 195.80 | 15.31 | 41.36 | 21.72 | 85.72 | 16.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.; Hu, H.; Xie, D.; Xu, B.; Chen, Y.; Zhou, Z.; Zhang, F.; Nie, H. Spatial and Temporal Assessment of Baseflow Based on Monthly Water Balance Modeling and Baseflow Separation. Water 2024, 16, 1437. https://doi.org/10.3390/w16101437
Xie H, Hu H, Xie D, Xu B, Chen Y, Zhou Z, Zhang F, Nie H. Spatial and Temporal Assessment of Baseflow Based on Monthly Water Balance Modeling and Baseflow Separation. Water. 2024; 16(10):1437. https://doi.org/10.3390/w16101437
Chicago/Turabian StyleXie, Huawei, Haotian Hu, Donghui Xie, Bingjiao Xu, Yuting Chen, Zhengjie Zhou, Feizhen Zhang, and Hui Nie. 2024. "Spatial and Temporal Assessment of Baseflow Based on Monthly Water Balance Modeling and Baseflow Separation" Water 16, no. 10: 1437. https://doi.org/10.3390/w16101437
APA StyleXie, H., Hu, H., Xie, D., Xu, B., Chen, Y., Zhou, Z., Zhang, F., & Nie, H. (2024). Spatial and Temporal Assessment of Baseflow Based on Monthly Water Balance Modeling and Baseflow Separation. Water, 16(10), 1437. https://doi.org/10.3390/w16101437