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Abstract: Susurluk Basin is among the basins that may be most affected by drought risk due to
its agricultural, economic, and natural resources. In this study, regional hydrological drought
risk models were developed for water supply systems in the Susurluk Basin, Turkey. Twenty-
four flow observation sites with 25 years or more of data showing natural flow characteristics
as much as possible were converted into daily flow data with Q7, Q15, Q30, and Q60 low-flow
indexes. Regionalization was carried out by two-stage multivariate cluster and principal component
analysis using the basins’ physical and hydrological characteristics and low-flow statistics, and
two homogeneous regions were obtained due to the discordancy, heterogeneity, and goodness of
fit tests, which are L-moment approaches. Regional models were performed with ordinary and
principal component regression techniques using the physical and hydrological characteristics of
the watersheds and regional low-flow frequency analysis. The cross-validation procedure results
for ungauged basins show that ordinary regression models are more effective in the lowland first
region. In contrast, principal component regression models are more suitable for the mountainous
second region. This study’s findings, which are a first for the Susurluk Basin, will have important
results in terms of agricultural water management in the region and will help the water authority in
water allocation. To investigate whether human impact and climate change impact the prediction of
hydrological drought, we recommend seasonal non-stationary frequency analysis with the addition
of useful empirical hydrological drought indexes.

Keywords: extreme events; low-flow hydrology; multivariate analysis; ungauged basin; water
resources management; regionalization

1. Introduction

Low flow is the state of decreasing flow in a stream, and it is an extreme hydrological
process that is usually observed in the summer and changes randomly every year. On the
other hand, drought is a natural event that adversely affects land and resource production
systems and causes serious hydrological imbalances due to precipitation falling signifi-
cantly below the recorded normal levels [1]. While low flows may be observed during
dry periods, not all low flows indicate drought. However, drought can be observed due
to the overlapping of low flows over a period of time. Low-flow studies are important in
taking measures that can reduce the negative effects of dry periods. Low-flow analysis
studies can be used in water resources and water quality management, determining man-
agement strategies, regional analysis of surface water resources, designing water supply
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facilities within confidence limits, and calculating the minimum tail water that should be
left downstream in hydraulic structures [2,3].

Low-flow analyses can be made using two different analysis methods: hydrological
and statistical. In hydrological analysis, flow duration curves are drawn with the mean
lowest flow values obtained using d-day flow rates, and values corresponding to 90%,
95%, and 99% of the observation period are determined [4]. Statistical low-flow analysis
is performed by frequency analysis of d-day flow values and determining appropriate
probability distributions. These hydrological and statistical approaches can also combine
low-flow statistics with the physiographic–hydrological characteristics of watersheds to
transfer them to ungauged sites [5]. The frequency of occurrence of hydrological events
is determined by frequency analysis, and it is preferred that the flow data used in these
studies be as continuous and uninterrupted as possible. Low flow in a stream is generally
defined by the magnitude of flow and the frequency and duration of reductions in flow.
Determining the magnitude and duration of low flow with a given probability of occurrence
is important in hydrological modeling and water resource management. However, this
may not be the case in many cases because the data set is short or more sites are needed.
Regionalization techniques have been developed to augment limited data or to estimate
flow data at ungauged locations [6].

The concept of using minimum d-day low flows in the low-flow analysis was first
proposed by [7]. Generally, 7-day low flows are preferred for drought and water resource
management because they give better results. There are also studies related to low-flow
analysis, such as [8–13]. Ref. [14] is one of the main studies within the scope of low-flow
studies and touches on low-flow analysis and the regionalization of these analyses. The
study explains methods such as base flow index, flow duration curves, and flow-frequency
curves through flow measurements, and many of today’s methods have been developed
based on these studies. Ref. [15] conducted low-flow studies at 184 sites in southeastern
Australia. In this study, he tried to determine the link between low-flow parameters, climate,
and location data. On the other hand, by improving his previous studies, the author in [16]
tried to develop a methodology between low-flow characteristics in small-scale rural basins
that could not be measured and their reflections in the basin. In this study, a regionalization
was conducted to determine hydrologically similar properties and develop appropriate
equations. Another fundamental study related to low-flow analysis methods is [17]. He
evaluated the low-flow studies conducted in the 1980s and later and the techniques used
in these studies. He touched upon issues such as low-flow formation, estimation and
interpretation of low flows, and detection of low flows in basins without flow measurement.
Ref. [18] used the Wakeby probability distribution function to detect low-flow periods and
perform low-flow frequency analysis in ungauged basins in Colombia. This distribution
was chosen because it is flexible compared to other distribution functions and gives positive
returns at extreme values. Ref. [19] emphasized that low-flow estimation studies are of great
importance in assessing the availability of water resources. In their study, they investigated
the applicability of physiographic space-based interpolation techniques for the estimation
of low-flow indexes in ungauged basins. As the study area, they preferred a wide region to
cover 51 basins in central Italy. As a result of the study, they found that physiographic space-
based interpolation is a suitable approach for estimating low-flow indexes in ungauged
basins, and geostatistics techniques outperform deterministic techniques. Ref. [20] studied
the classification of low-flow regimes at a regional scale in semi-arid areas in Europe. They
conducted analyses using flow duration curves and monthly flow series in this context.
Ref. [21] carried out a series of studies, including quality analysis at metered sites, low-flow
frequency analysis, and creating a global model to evaluate the physical parameters of
the basin and low-flow indexes. They obtained four different homogeneous regions in
the study area. They emphasized that the study result could have been healthier due
to the limited number of sites with 20 years or more of data within the study’s scope.
It would be beneficial to update the study when data availability is ensured. Ref. [22]
studied principal component analysis with 13 dimensionless geomorphological parameters
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in 8 sub-basins of the Kanhiya Nala basin of India and grouped the parameters under
different components depending on their correlations. Principal component analysis results
revealed that 11 of these parameters were strongly related to the components. Ref. [23]
carried out a study in which possible changes in drought and low-flow rates in the future
were determined, considering the effects of climate change. The Netherlands, Switzerland,
Italy, Portugal, Spain, and some regions of Greece were defined as the study areas. The
study concludes that low flow will likely become excessive and more intense hydrological
droughts will develop.

Looking at the low-flow studies in Turkey, Ref. [4] discussed the basic conceptual issues
related to low flows. A low-flow statistical analysis was carried out by [24,25] in the Thrace
Region and [26] in the Sakarya [27] and Meriç Basins [28]. In addition, a low-flow statistical
analysis was carried out by [29] in the Aegean Region, by [30] in the Mediterranean Region,
by [31] in the Yeşilırmak Basin, and by [2] in the Tigris Basin. Ref. [32] examined the
frequency distributions of semi-dry and continuous streamflow. However, all of the studies
have been conducted on the at-site frequency of low flows, and a regional model has not
been developed. Ref. [27] tried to find the optimal distribution function for the minimum
d-day low flows for the Meriç and Sakarya river basins. For this purpose, WE and LN2
distribution functions were used. The study conducted based on sites determined that the
WE distribution function adapts better to the basins. Ref. [33] studied regional frequency
analysis and used the L-moments method in this context. As a result of the study in
which the precipitation in Ankara province was examined, Ankara was evaluated in three
different regions with cluster analysis. The most appropriate probability distribution was
determined separately for these three regions. As a result, possible precipitations for
different recurrence times were estimated using the L-moments method. Ref. [34] divided
the daily data of 83 flow observation sites in Turkey into percentiles and classified them.
Hydrologically homogeneous regions were obtained separately for each class’s high- and
low-flow variables. As a result of the study, it was determined that the homogeneous
regions were compatible with the previously determined number of climatic regions in
Turkey. Ref. [25] conducted a low-flow analysis in the Meriç Basin and found that the
two-parameter Weibull is the most compatible probability distribution with minimum
flows. Ref. [28] found that low-flow threshold values had a negative slope after the 1980s
in his study of the Porsuk Stream. He also determined that low flows can be observed
more clearly in parallel with dry years. Ref. [35] conducted low-flow frequency analyses in
Meriç-Ergene, Gediz, Seyhan, and Ceyhan Basins and determined that the GEV probability
distribution function is generally the most compatible distribution function for the basins.
Ref. [36] conducted a low-flow analysis study in the Gediz Basin. In this context, they
calculated 7-day average flows and used return periods of 2, 5, 10, 50, and 100 years for
low-flow estimates. As a result of the study, two homogeneous regions in the Gediz Basin
were determined as a result of Kolmogorov–Smirnov (K-S), and it was determined that
the GEV probability distribution was the most appropriate probability distribution for the
basin. In addition, after the Mann–Kendall test, no trend could be detected in the basin’s
low flows. Ref. [37] made a drought assessment in the Aegean region; Ref. [38] used the
Standardized Streamflow Drought and the Standardized Precipitation Index together in the
Aegean region; Ref. [39] investigated hydrological drought in the Yeşilırmak basin using the
Standardized Streamflow Drought Index and Innovative Trend Analysis methods; Ref. [40]
determined the response of hydrological drought to meteorological drought in the Eastern
Mediterranean Basin of Turkey; Ref. [41] developed low flow duration–frequency curves
with hybrid frequency analysis; Ref. [42] determined frequency curves of high and low
flows in intermittent river basins for hydrological analysis and hydraulic design. Susurluk
Basin, one of the 25 river basins of Turkey, is among the basins that can be greatly affected
by the risk of drought due to its agricultural, economic, and natural characteristics [43].
The detection of drought and low flows and their interpretation are important for efficient
water use in the basin since it has a drought-prone structure.
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In this study, it was aimed to develop regional hydrological drought models with
ordinary and principal component regression methods through L-moment approaches
using Q7, Q15, Q30, and Q60 low-flow indexes, which are important in water resources
management in the Susurluk River basin. This study also attempted to develop regional
models that help transfer low-flow statistics to ungauged basins throughout the Susurluk
River basin and identify important basin characteristics that affect low flows.

2. Materials and Methods
2.1. Study Area and Data Set

The Susurluk Basin, located in western Turkey, was chosen as the study area. The
Susurluk Basin is located between 39–40◦ North latitudes and 27–30◦ East longitudes. The
location of the Susurluk Basin is approximately 24,332 km2, corresponding to 3.11% of
Turkey’s area. The total precipitation area of the basin is approximately 22,399 km2, and its
annual average flow is 5.43 km3 [44]. The location of the Susurluk Basin in Turkey and the
streamflow and climate observation sites in the Susurluk Basin are shown in Figure 1.
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Figure 1. The location of the Susurluk Basin in Turkey and the streamflow and climate observation
sites in the Susurluk Basin.

Every streamflow observation site in the Susurluk Basin underwent a thorough evalu-
ation in terms of daily data availability. To ensure the most reliable and consistent estimates
in our analysis, we selected twenty-four streamflow observation sites with data spanning
25 years or more operated by General Directorate of State Hydraulic Works, Ankara, Turkey.
These sites were strategically located on nonregulated creeks, a deliberate choice to avoid
any anthropogenic consequences of water utilization and management. For a compre-
hensive overview, please refer to Table 1 for detailed information about the streamflow
observation sites used in the study and Table 2 for the seven climate observation sites where
monthly precipitation data were obtained.

Table 1. Characteristics of the streamflow observation sites in the Susurluk Basin.

No Site
Code

Site
Name Longitude–Latitude (◦) Drainage

Area (km2)
Elevation

(m)
Observation

Period
Sample

Size

1 D03A008 Kahve 27.54 East 39.61 North 741 190 1963–2016 54
2 D03A013 İkizcetepeler 27.92 East 39.50 North 467 128 1964–2017 54
3 D03A024 Ayaklı 27.36 East 39.52 North 115 250 1967–2016 50
4 D03A034 Osmanlar Köp. 28.32 East 39.25 North 1266 277 1970–2017 48
5 D03A038 Uludağ 29.14 East 40.12 North 26 1675 1972–2017 46
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Table 1. Cont.

No Site
Code

Site
Name Longitude–Latitude (◦) Drainage

Area (km2)
Elevation

(m)
Observation

Period
Sample

Size

6 D03A044 S.Saygı Brj. Gir. 29.00 East 40.08 North 377 341 1982–2017 36
7 D03A051 Değirmenboğazı 27.95 East 39.71 North 84 192 1980–2017 38
8 D03A052 Sinderler 28.72 East 39.62 North 965 294 1981–2017 37
9 D03A056 Sultaniye 28.94 East 40.09 North 50 368 1982–2017 36

10 D03A064 Gölecik 28.28 East 39.61 North 111 27 1984–2017 34
11 D03A081 Mürvetler 28.01 East 40.02 North 289 31 1986–2017 32
12 D03A082 Keçiler 28.18 East 40.30 North 21 65 1986–2017 32
13 D03A084 Eyüpbükü 28.23 East 39.65 North 241 945 1987–2017 31
14 D03A085 İnegazi 28.87 East 40.13 North 15 306 1988–2017 30
15 D03A086 Adalı 28.26 East 39.39 North 66 375 1988–2017 30
16 D03A087 Yeşilova 27.96 East 39.90 North 141 250 1989–2017 29
17 D03A096 Okçular 28.30 East 39.40 North 35 405 1991–2017 27
18 E03A002 Döllük 28.51 East 39.62 North 9617 40 1950–2017 68
19 E03A011 Küçükilet 29.86 East 39.12 North 1642 795 1950–2017 68
20 E03A016 Yahyaköy 28.17 East 39.98 North 6376 32 1953–2017 65
21 E03A017 Akçasusurluk 28.40 East 40.26 North 20 2 1953–2017 65
22 E03A024 Balıklı 28.02 East 39.63 North 244 94 1954–2017 60
23 E03A028 Dereli 29.25 East 39.46 North 1165 557 1965–2017 53
24 E03A031 Dağgüney 29.06 East 39.92 North 3493 365 1993–2017 25

Table 2. Characteristics of the climate observation sites in the Susurluk Basin.

No Site Code Site Name Elevation (m) Longitude (◦) Latitude (◦)

1 17114 Bandırma 51 27.99 40.32
2 17116 Bursa 101 29.02 40.23
3 17676 Uludağ 1877 29.13 40.12
4 17695 Keles 1063 29.23 39.91
5 17700 Dursunbey 639 28.62 39.58
6 17704 Tavşanlı 833 29.50 39.55
7 17748 Simav 809 28.98 39.08

2.2. Methods
2.2.1. Brief Methodology

The methods applied for the study were briefly given below:

• First, daily streamflow time series were obtained from streamflow observation sites in
the Susurluk Basin.

• 7-day, 15-day, 30-day, and 60-day low-flow time series were calculated using daily
flow time series to reflect the demand for water resources. Low-flow rates are annual
minimum d-day average flows.

• With the help of geographic information systems (GIS), the physical, morphologi-
cal, and hydrological characteristics of the Susurluk Basin were calculated, and the
watersheds were delineated.

• To check whether the data are suitable for statistical analysis, the discordancy measure
(Di) was first applied to the data, and discordant sites were determined. Frequency
distributions were applied to the d-day low-flow time series of each year. After
parameter estimation and a test of goodness-of-fit with distributions, d-day low-flows
between the basin’s physical, morphological, and hydrological features at different
probability levels (risk) and return periods were estimated at the site.

• Various frequency distribution functions such as Exponential (EXP), 2-parameter ex-
ponential (EXP2), Frechet (FRE), 3-parameter Frechet (FRE3), Gamma (G), 3-parameter
gamma (G3), Generalized extreme values (GEVs), Generalized gamma (GG), 4-parameter
generalized gamma (GG4), Generalized logistic (GLO), Generalized Pareto (GPA),
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Logarithmic logistic (LLO), 3-parameter logarithmic logistic (LLO3), 3-parameter
logarithmic Pearson (LP3), Logistic (LO), Logarithmic normal (LN), 3-parameter loga-
rithmic normal (LN3), Normal (N), Weibull (WE), 3-parameter Weibull (WE3) were
used for the estimation of at-site quantities.

• Before regionalization, cluster analysis (CA) and principal component analysis (PCA)
were performed on group sites to identify homogeneous regions. To determine
whether the regions are homogeneous, the discordancy, heterogeneity test, and
goodness-of-fit measure tests for each homogeneous region provided were deter-
mined with the L-moment approach, and frequency analysis was performed.

• For each homogeneous region obtained, regional models indicating the relationship
between d-day low flows and the basin’s physical, morphological, and hydrological
characteristics were developed using ordinary univariate and multivariate linear or
univariate non-linear regression and principal component regression analyses [44].

2.2.2. Determination of Watershed Physiographic Parameters

Determining the physiographic features based on the basin is very important in
understanding the drainage characteristics. These features can be used to develop rainfall–
runoff models, obtain flow duration curves, apply regional models, and analyze floods
and droughts. The correct interpretation of the physiographic features, together with the
hydrological variables, helps to determine the hydrological characteristics of the basin
correctly. First, a hydrological analysis must be performed in the study area to determine
the physiographic features. The geographic information system ArcGIS Desktop 10.8 and
ArcHydroTools (10.8.0.34) softwares were used to determine the physiographic features of
the Susurluk Basin, and a digital elevation model (DEM) with a resolution of 10 × 10 m
was used, as shown in Figure 2. After the hydrological analysis study was completed,
catchments were determined separately for 24 streamflow observation sites used within the
scope of the study, and physiographic characteristics were determined for each catchment.
The Thiessen polygon method was applied to calculate the average annual precipitation
amount of the catchment [44].
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2.2.3. Data Completion

There are many methods for completing the deficiencies in the data sets. Within
the scope of this study, correlation analysis was performed first between the streamflow
data sets. Then, among the data sets with the highest correlation, the monthly averages
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were multiplied by the available data, and the completed data sets were obtained. The
“Python–Spyder 5.1.5” application was used for data completion [44].

2.2.4. Detection of Annual Minimum d-Day Low Flows

D-daily or d-monthly flows can be used in low-flow analysis. However, n-daily flow
rates are generally used in drought analyses and studies of river hydrology. It should be
noted that 7-day low flows are mostly used in drought studies. ((Q1 + Q2 + . . . + Qn)/n),
((Q2 + Q3 + . . . + Qn+1)/n), . . ., ((Qm + Qm+1 + . . . + Qm+n−1)/n) process steps are repeated
sequentially, and the data set is created [13].

2.2.5. At-Site Frequency Analysis

At-site frequency analysis is the statistical method that gives the lowest average flow
over the d-day period with a y-year recurrence period for each site. It helps determine
the low flow regime of the basin. Qd,y denotes it. For example, the most common low
flow index corresponding to a 7-day, 10-year recurrence period is Q7days, 10years. Other
low-flow indexes, such as the Q7,2, Q30,10, and Q30,2, also are used [45]. In Canada, Q30,5
is a common index [5]. Ref. [13] introduces the Q15;7 and Q60;2 as new indexes for 15- and
60-day low flows in addition to the common Q7,10 and Q30,5 low-flow indexes for the Tigris
and Euphrates basins, and they state that these new indexes are useful for medium- and
long-term requirements in the region and beyond, such as industrial and agricultural needs,
as well as the environmental flow of downstream rivers.

Low flow indexes of Q7days,10years, Q15days,7years, Q30days,5years, and Q60days,2years are
frequently preferred within the scope of hydrological studies since they reflect hydrological
studies better. In this study, various frequency distribution functions (see Section 2.2.1) for
at-site frequency analysis were used, and the Kolmogorov–Smirnov test was applied as a
goodness-of-fit test.

2.2.6. Regional Analysis
L-Moments and L-Moment Ratios

In this study, the L-moment approach was applied to low-flow indexes to determine
discordancy and heterogeneity measures and the probability distributions that provide the
best fit to hydrologically homogeneous regions [46].

The L-moment approach, with its precision in expressing linear functions calculated
by the probability-weighted moments method, can accurately reveal the character of
hydrological data and determine the shape of probability distributions. It also provides
precise information about a distribution’s location, scale, and shape. Probability-weighted
moments are obtained with the help of Equation (1), where X represents the statistical data
and F (X) represents the cumulative distribution function of X.

Mp,r,s = E [Xp{F (X)}r{1 − F (X)}s] (1)

The probability-weighted moment βr is used if the data are an increasing sequence,
and in Equation (2), the probability-weighted moment βr is equal to the multiplication
of the data X by the powers (r) of the cumulative distribution function F (X). Here, the F
(X) function represents the probability function in which X is given different weights for
different r values.

βr = E [X {F (X)} r] r = 0, 1, 2, . . . (2)

After the probability-weighted moments are obtained, the first four sample L-moments,
denoted by ℓr (r = 1, 2, ...), are given as a linear combination in Equation (3).

ℓ1 = b0,
ℓ2 = 2b1 − b0,
ℓ3 = 6b2 − 6b1 + b0,
ℓ4 = 20b3 − 30b2 + 12b1 − b0,

(3)
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Then, dimensionless sample L-moment ratios (t) are expressed as in Equation (4) with
the help of L-moments of ℓ1 and ℓ2, and higher order ℓ3 and ℓ4;

t = ℓ2/ℓ1 (L-coefficient of variation, L-Cv)
t3 = ℓ3/ℓ2 (L-skewness, L-Cs)
t4 = ℓ4/ℓ2 (L-kurtosis, L-Ck)

(4)

Two-parameter or three-parameter distribution functions can be used in low-flow
calculations, and the L-moment method, which gives less bias compared to ordinary
product moments and maximum likelihood methods, can be considered a useful and
reliable method in calculating the values of distribution functions.

Discordancy Measure (Di)

The discordancy measure is applied to detect completely discordant sites in a proposed
group. In this context, when determining discordant sites, the L-moment values of that site
are used. In the case of discordant sites, the site is first either completely removed from
the data set or outlier values are detected in the data set, and the data set is updated and
re-analyzed. If any site appears completely out of order, it may be possible to shift that
site to another area. The discordancy measure is the determination of the discordant sites
within a region, which is explained by [47] as in Equations (5)–(7).

u = N−1
N

∑
i=1

ui (5)

K =
N

∑
i=1

(ui − u)(ui − u)T (6)

Di =
1
3

N(ui − u)TK−1(ui − u) (7)

where ui is the vector of L-moment ratios of site i, K is the covariance matrix of this vector,
and u is the mean of the vector. For a site to be considered discordant, the discordancy
measure must be greater than the critical table value of 3.0, which varies depending on the
number of sites in the region [47].

Basin Classification

The cluster analysis (CA) classification method was used. The heterogeneity measure
was applied to the regions obtained due to the clustering, and a dendrogram was obtained
as a tree graph in which the areas were separated. CA is a collection of methods that help
divide units, variables, or units and variables whose natural groupings are not known
precisely into subgroups similar to each other in the X data matrix. Ward’s connection
method (Equation (8)), one of the hierarchical clustering methods, was used, and the
Euclidean square distance measure (Equation (9)) was used to determine the similarities
between units. Average streamflow discharges for all years were used to reflect the at-
site characteristics and hydrological and physiographic attributes of the basin for cluster
vectors [48].

dmj =
(Nj + Nk)dkj + (Nj + Nl)dl j − Njdkl

Nj + Nm
(8)

The symbols Nj, Nk, Nl, and Nm represent the numbers of observations in clusters j, k,
l, and m.

d(i, k) =
√

∑
j

(
xij − xkj)2 (9)

where d (i, k) indicates the distance between observations i and k. Small values of d (i, k)
suggest that the basins exhibit more similar site attributes.
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Heterogeneity Measure (H)

After specifying a suitable region according to the discordancy measure, the hetero-
geneity measure was applied to evaluate whether the region was homogeneous. Hetero-
geneity measure: It was calculated for three different L-statistics: L-coefficient of variation
and H1, L-coefficient of variation and combination of L-skewness ratios, H2, and combina-
tion of L-kurtosis and L-skewness ratios, and H3. From here, the H statistic for all three
cases is written as in Equation (10).

H =
(Vobs − µv)

σv
(10)

where Vobs is the weighted standard deviation obtained from the regional data according to
the L-moment ratios µv and σv. It shows the mean and standard deviation of the number
of simulations of the Vobs statistics. This study used the four-parameter Kappa probability
distribution, which is strong while performing the simulation since it represents many
distributions in the frequency analysis of extreme hydrological events. According to this
test, if H < 1, the region is considered acceptably homogeneous; if 1 ≤ H < 2, it is probably
heterogeneous and if H ≥ 2, it is heterogeneous. A negative H value indicates that the
separation between the at-site sample L-coefficient of variation values is greater than
expected. If the H value is lower than −2, it suggests too many cross-correlations between
sites and excessive discordancy [49].

The Goodness-of-Fit Measure (ZDIST)

In regional frequency analyses, a single probability distribution best fits the data
obtained from sites in the selected homogeneous region. A method called the ZDIST statistic
has been proposed for the fit criterion given in Equation (11), and depending on the
L-kurtosis ratio and any probability distribution,

ZDIST =
(

τDIST
4 − tR

4 + B4

)
/σ4 (11)

In Equation (9), tR
4 represents the regional average L-kurtosis ratio of the sample in

B4 and σ4, respectively, the bias value and standard deviation of the regional average
L-kurtosis ratio, and is expressed in Equations (12) and (13), respectively,

B4 = N−1
sim

Nsim

∑
m=1

(
t(m)
4 − tR

4

)
(12)

σ4 =

[
(Nsim − 1)−1

{
Nsim

∑
m=1

(
t(m)
4 − tR

4

)2
− NsimB2

4

}]0.5

(13)

In Equations (12) and (13), Nsim refers to the number of simulations performed with the
help of Kappa distribution, and m refers to the number of simulated regions. Simulations
were carried out using the Monte Carlo technique. The three parameters, Generalized
logistic, Generalized extreme values, Generalized normal, Pearson type 3, and General-
ized Pareto distributions, were used in this study for regional analysis. If the absolute
ZDIST ≤ 1.64 in any distribution, this distribution is considered suitable for regional distri-
bution. However, among the distributions considered, the one that provides the absolute
value closest to zero is selected as the most appropriate.

2.2.7. Principal Component Analysis (PCA)

PCA analysis is applied to reduce dimensions (reduce the number of variables),
eliminate the relationship structure between variables, and prepare data for other statistical
analyses. In PCA analysis, linear combinations of variables related to each other can be
determined, and there must be a relationship between the variables defined in the initial
system [50]. Although it is not possible for all correlations between variables to be zero,
correlations very close to zero mean that the similarity of the principal components to the
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initial variables increases. The covariance matrix for the random variable vector X: px1 is
Cov (X)= ∑, and the eigenvalues of this matrix are as follows:

|Σ − λIp| = 0 (14)

The roots of Equation (14) are the λj of the form λ1 > λ2 >· · ·>λp > 0. The principal
components are written as linear functions of the original or standard variables. So, the
basic components are as follows:

Y1 = t1
′X = t11 X1 + t21 X2 + · · · + tp1 Xp

Y2 = t2
′X = t12 X1 + t22 X2 + · · · + tp2 Xp

Yp = tp
′X = t1p X1 + t2p X2 + · · · + tpp Xp

(15)

Variances and covariances can be calculated for each principal component. Here, the
variance for the principal component of Yj is calculated as given in Equation (16), and the
covariance between the principal components of Yj and Yk (j ̸= k = 1, 2, . . ., p) is calculated
as given in Equation (17).

Var (Yj) = Var (tj′X) = tj′Var (X) tj = tj′Σtj (16)

Cov (Yj, Yk) = Cov (tj′X, tk′X) = tj′Cov (X) tk = tj′Σtk (17)

Equations (18) and (19) give the total variance of the initial system and j—the variance
explanation ratio (VER) of the principal component.

σ2
top = iz(Σ) = σ11 + · · ·+ σpp = λ1 + · · ·+ λp (18)

VER =
Var

(
Yj
)

σ2
top

=
λj

σ2
top

(19)

This study used a data set of 13 physiographic watershed (drainage basin) variables
for cluster and principal component analysis. These variables: elevation (E), latitude (X),
longitude (Y), watershed area (WA), watershed highest elevation (WHE), watershed lowest
elevation (WLE), watershed slope (WS), long-term average flow (LAF), longest stream path
(LSP), longest stream path slope (LSPS), largest stream elevation (LSE), smallest stream
elevation (SSE), and long-term average precipitation (LAP) were obtained from the digital
elevation model [44].

2.2.8. Development of Regional Hydrological Drought Models

The regression technique is the most commonly used approach for relating low-flow
magnitudes at different return periods to a watershed’s physical and hydro-climatological
characteristics. The regional drought model developed in this study is an ordinary uni-
variate and multivariate linear or univariate non-linear regression model and principal
component regression (PCR) that also includes watershed characteristics [51]. Multivari-
ate linear regression can define watershed characteristics and low-flow index (Qd,T) for
hydrologically homogeneous regions, as shown in Equation (20).

Qd,T = β0 + β1X1 + β2X2 + . . . + βnXn + ε (20)

where β0 intercept parameter, β1, . . ., βn slope parameters, X1, . . ., Xn is the basin charac-
teristics, and ε: error term. If the model is established using a low-flow index and only
one independent variable, it is a univariate model; if more than one independent variable
is used, it is a multivariate linear regression model. Univariate non-linear models were
constructed to include logarithmic, quadratic, and cubic types. A statistically significant
model is selected as the best among these regression models. If more than one statistically
significant regression model is found, the best model with the highest coefficient of deter-
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mination (R2) is selected. R2 describes the proportion of the statistical variance in observed
low flows that the regression model can explain.

On the other hand, in ordinary regression, the problem of high variance in the test set
may be encountered even though it fits the model well. To minimize these problems, one
can reduce the multicollinearity of a data set by using the PCR algorithm. PCR uses PCA
score coefficients and then performs linear regression on these new principal components.
In PCR, the principal components of the independent variables are used instead of directly
regressing the dependent variable onto the independent variables. The PCR model has
important advantages, such as reducing the number of features, being useful in data sets
facing multicollinearity problems, being useful in data sets with highly correlated and even
collinear features, and reducing the problem of overfitting. The PCR technique is unbiased
because all the components used as new predictors are orthogonal. The PCR algorithm can
be explained by the following Equations (21)–(23), [52,53]:

Qd,T = β0 + β1ξ1 + β2ξ2 + . . . + βKξK K ≤ i (21)

Qd,T is the dependent variable (low-flow index), ξK is the Kth principal component,
and i is the total number of variables. If Z variables are substituted for the X variables in the
ordinary regression (Equation (20)) and the principal components are linear combinations
of the original data and are defined as;

ξ1 = l11Z1 + l21Z2 + . . . + li1Zi
ξ2 = l12Z1 + l22Z2 + . . . + li2Zi
ξK = l1iZ1 + l2KZ2 + . . . + liKZi

(22)

Combining Equations (21) and (22) will provide a PCR equation in which independent
variables replace the principal components;

Qd,T = β0 + β1(l11Z1 + l21Z2 + . . . + li1Zi) + β2(l12Z1 + l22Z2 + . . . + li2Zi)
+βK(l1iZ1 + l2KZ2 + . . . + liKZi)

(23)

3. Results

The hydrological analysis study determined 24 micro-drainage basins (watersheds) in
the Susurluk Basin, and the physiographic and hydrological parameters of these watersheds
are given in Table S1.

Daily data sets at the sites were correlated to complete the missing flow data. The
data sets with the highest correlation between the sites were determined and matched with
each other for data completion. The monthly average flow data were calculated separately
for each data set for each month, and the data completion process was carried out by
multiplying their averages with the original data. The trend graphs of the original data
and the completed data are given in Figure S1.

3.1. At-Site Frequency Distribution and Relevant Low-Flow Discharges

Before developing regional low-flow frequency models in homogeneous basins, at-site
frequency analysis results are given in Table S2 by applying different frequency distribu-
tions to different low-flow indexes. Table S2 shows that the most dominant distributions
for low flows throughout the basin are the Generalized extreme values and Generalized
Pareto distributions.

3.2. Determination of Homogeneous Regions

Within the scope of L-moment analyses, 7, 15, 30, and 60-day flow data containing the
lowest flow of each year were created, and calculations were made using routines written
by [54] with FORTRAN 77 source codes (L-moments, version 3.04).

The first step in finding the regional frequency distribution for low flows in the
Susurluk basin is to calculate the L-moments of the low-flow indexes determined at the
sites, including the L-Cv, L-Cs, and L-Ck ratios for considering the whole basin as a
region. Figure 3 presents the L-moment ratio diagrams for different low-flow indexes. It
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is seen that the region is not homogeneous since the L-Cv and L-Cs ratios at the sites are
distributed over a wide area around the weighted mean. However, discordancy measures
were also calculated for low-flow indexes in the Susurluk basin to make a better decision
about the level of discordancy. Table 3 provides discordancy measures for all sites and all
low-flow indexes. According to Table 3, the D03A085 site is seen as discordant for 7-day
and 60-day low-flows, and the E03A017 site is discordant for all low-flow indexes. At
the same time, all heterogeneity measures (H1, H2, and H3 > 2) were calculated, and the
results showed that the Susurluk basin, as a single region, is not a homogeneous region in
terms of discordancy and heterogeneity measures. Therefore, a two-stage cluster analysis
was carried out to identify areas within the basin with homogeneous characteristics. The
analyses continued until the most appropriate clustering for the basin was found, using
physiographic, statistical, and hydrological parameters determined specifically for the
basin. According to the site locations in the dendrogram, as a result of the cluster analysis,
the effect of the physiographic features of the basin is evident. The southeastern region,
where the elevation is significantly higher, and the northwestern region, where the elevation
is relatively lower, have formed two separate areas of the basin. However, in this case,
while the results of Region-2 were homogeneous, the E03A017 site in Region-1 became a
discordant site again. Suppose a discordance or heterogeneity is observed in the obtained
regions. In that case, that site(s) are either completely removed from the data set or outlier
values are detected in the data set, updated, and subjected to re-analysis.

The E03A017 site was not removed from the data set because it has long-term regular
flow data and was highly representative as it remained downstream of the basin, and
a Grubbs–Beck outlier test was applied to the E03A017 site’s data. As a result of the
discordancy measure analysis applied after updating the outliers, Region-1 could finally
be described as homogeneous. The locations of the sites according to the hydrologically
homogeneous regions are given in Figure 4, the discordancy measures of the homogeneous
Region-1 and Region-2 are shown in Table 4, and the heterogeneity measures are presented
in Table 5. Tables 4 and 5 show that all H1 and H2 values are less than 1, indicating that
the proposed regions are completely homogeneous and have no discordant sites. At this
study stage, regional frequency candidate distribution functions with goodness-of-fit tests
were determined for each homogeneously defined low-flow region (Table 6). According
to Table 6, the GNO distribution is generally the most suitable for homogeneous regions.
The PE3 and GEV distributions, respectively, follow this distribution. GLO and GPA
distributions were not appropriate for any low-flow data set.
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Table 3. Discordancy measures (Di) for different low-flow indexes.

Site Code
Low-Flow Index

7-Day 15-Day 30-Day 60-Day

D03A008 0.23 0.46 0.58 0.84
D03A013 0.08 0.04 0.08 0.27
D03A024 0.12 0.20 0.14 0.26
D03A034 0.63 0.99 0.89 0.80
D03A038 0.21 0.28 0.08 0.20
D03A044 1.70 2.43 1.02 0.05
D03A051 0.56 0.07 1.00 0.63
D03A052 0.11 0.16 0.17 0.39
D03A056 0.51 0.24 0.27 0.30
D03A064 0.81 1.19 2.37 0.90
D03A081 0.45 0.69 0.78 0.84
D03A082 0.78 1.22 1.49 0.65
D03A084 0.55 0.46 0.90 0.26
D03A085 3.50 * 1.72 2.35 3.36 *
D03A086 0.17 1.86 0.18 0.61
D03A087 0.08 0.26 0.42 1.30
D03A096 0.94 0.09 0.29 0.18
E03A002 1.27 1.26 1.25 1.22
E03A011 1.02 0.78 1.02 1.08
E03A016 1.88 1.62 0.99 0.98
E03A017 6.13 * 6.04 * 5.82 * 5.94 *
E03A024 0.44 0.14 0.10 0.52
E03A028 0.28 0.33 0.39 0.38
E03A031 1.55 1.45 1.42 2.03

Note: * Discordant site.

Table 4. Discordancy measures (Di) of different low-flow indexes for homogeneous Region-1
and Region-2.

Site Code
Region-1

Site Code
Region-2

7-Day 15-Day 30-Day 60-Day 7-Day 15-Day 30-Day 60-Day

D03A008 0.37 1.79 1.03 1.79 D03A034 1.26 1.35 1.16 1.17
D03A013 0.12 0.09 0.18 0.58 D03A038 0.24 0.44 0.31 0.57



Water 2024, 16, 1473 14 of 23

Table 4. Cont.

Site Code
Region-1

Site Code
Region-2

7-Day 15-Day 30-Day 60-Day 7-Day 15-Day 30-Day 60-Day

D03A024 0.33 0.42 0.26 0.42 D03A044 1.08 1.94 1.67 0.33
D03A051 1.34 0.11 1.33 0.74 D03A052 0.15 0.29 0.34 0.93
D03A064 0.75 0.88 1.59 0.63 D03A056 0.52 0.91 0.89 1.11
D03A081 1.22 1.61 1.47 1.09 D03A084 1.96 1.28 1.86 0.62
D03A082 0.92 1.08 0.98 0.68 D03A085 2.25 1.12 1.87 2.44
D03A087 0.18 0.50 0.52 0.93 D03A086 0.46 1.20 0.26 0.55
E03A002 0.68 0.68 0.57 0.59 D03A096 0.70 0.21 0.23 0.45
E03A016 2.16 1.66 1.29 1.32 E03A011 0.85 0.70 0.82 0.84
E03A017 2.74 2.75 2.73 2.75 E03A028 0.44 0.43 0.51 0.85
E03A024 1.01 0.26 0.05 0.41 E03A031 2.08 2.14 2.07 2.15

Table 5. Heterogeneity measures for low-flow regions in the Susurluk basin.

Low-Flow Index Region Number of Sites
Heterogeneity Measure

H1 H2 H3

7-day 1 12 −0.1747 −0.1772 5.5933
2 12 −0.1811 −0.1790 7.0201

15-day 1 12 −0.1701 −0.2000 4.8446
2 12 −0.2500 −0.2605 6.7792

30-day 1 12 −0.2245 −0.2235 5.1790
2 12 −0.3302 −0.3677 6.9218

60-day 1 12 −0.0520 −0.0538 4.1992
2 12 −0.4101 −0.4158 5.7555

Table 6. Appropriate probability distributions according to homogeneous regions for each low-
flow index.

Low-Flow Index Region Number of Sites
ZDIST (Goodness-of-Fit Measure)

GLO GEV GNO PE3 GPA

7-day 1 12 2.15 0.70 * 0.10 ** −1.50 * 2.98
2 12 2.19 0.77 * 0.02 ** −1.32 * −2.82

15-day 1 12 3.45 1.74 0.95 * −0.47 ** −2.47
2 12 2.67 1.19 * 0.42 ** −0.94 * −2.54

30-day 1 12 3.62 1.80 1.06 * −0.31 ** −2.61
2 12 2.28 0.67 * 0.01 ** −1.19 * −3.24

60-day 1 12 3.62 1.44 * 0.78 * −0.51 ** −3.66
2 12 2.07 0.28 * −0.24 ** −1.28 * −3.90

Notes: GLO: Generalized logistic; GEV: Generalized extreme values; GNO: Generalized normal; PE3: Pearson
Type 3; and GPA: Generalized Pareto. * Appropriate distribution; ** Best-fit distribution.

3.3. Regional Hydrological Models for Ungauged Basins via Regression Approaches

PCA was performed separately for both regions before developing regional models
via ordinary univariate and multivariate linear or univariate non-linear regression and prin-
cipal component regression (PCR). PCA results show that the physiographic–hydrological
characteristics of the selected watersheds can be divided into five principal components,
which describe 97.9% and 96.4% of the variance between the selected watersheds by two
regions, respectively (Table S3). However, since 12 sites were located in both regions,
PCA analysis was carried out using 11 basin physiographic–hydrological characteristics
by removing the longest stream path and the longest stream path slope instead of the
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13 basin characteristics mentioned due to the number of variable-site discordancies in the
PCA technique.

Table S3 shows the cumulative variance and the variance accounted for by each compo-
nent. The VARIMAX rotation technique was used to improve PCA performance—the scree
plot graphs indicate each principal component’s eigenvalues for each region in Figure S2.
The importance of the first five principal components is high for both regions. Therefore,
according to the scree plot graph, the first five principal components were taken as the
basic components for both regions. According to the correlation between variables and
component numbers, variables that are significant at the probability of p < 0.05 are shown
in bold numbers in Table S4.

According to Tables S3a and S4a, for Region-1, it is seen that the highest weight in
the first component is the watershed area, the watershed’s highest elevation, the largest
stream elevation, and long-term average precipitation. These variables describe the highest
variance/difference, 47.5%, between the selected watersheds. In the second component,
elevation, the watershed’s lowest elevation and the smallest stream’s elevation have the
highest eigenvalues. This component defines 33.0% of the variance/difference between
watersheds. The third component has a single value in the long-term average flow, defin-
ing 8.9% of the variance/difference between watersheds. A single value for the fourth
component is in the longitude, defining 5.2% of the highest variance/difference. For
the fifth component, a single value is at a watershed slope and 3.3% of the highest vari-
ance/difference.

According to Tables S3b and S4b, for Region-2, it can be seen that the highest weight
in the first component is the watershed area, the long-term average flow, and the long-term
average precipitation. These variables describe the highest variance/difference of 40.5%
between the selected watersheds. In the second component, latitude, the watershed’s
lowest elevation and the smallest stream elevation have the highest eigenvalues. This
component describes 21.1% of the variance/difference between watersheds. The variables
with the highest eigenvalues in the third component are the watershed’s highest elevation
and the largest stream elevation, which define 15.9% of the variance/difference between
watersheds. As a single value for the fourth and fifth components, elevation and longitude
have high eigenvalues and describe 11.1% and 7.8% of the highest variance/difference.
After PCA, correlation analysis was carried out for each region separately to determine the
relationship between watershed-specific physiographic and hydrological parameters and
low-flow indexes. Table S5 shows all correlation coefficients, and those significant at the
α: 0.05 significance level are in bold. It is seen that the highest correlation is between the
elevation, latitude, watershed lowest elevation, long-term average flow, and smallest stream
elevation variables for Region-1, and the highest correlation is between the watershed area,
long-term average flow, the longest stream path, the longest stream path slope, and long-
term average precipitation variables for Region-2 (Table S5). Regional models are developed
via univariate and multivariate linear or univariate non-linear regression in two stages.
The first is the ordinary univariate/multivariate regression model developed according
to the correlation coefficients between basin physiographic–hydrological characteristics,
and the second is the principal components regression (PCR) model using the component
score coefficients in the PCA. This method has an advantage over the ordinary model with
an original independent variable, such as including all data sets into regression models,
possibly increasing the model accuracy as the components do not have collinearity among
themselves. The parameters of each model were estimated using the ordinary least squares
method and were considered significant parameters if the p < 0.05 according to the t
statistics. Many trial-and-errors were made, and the search for the correct equation model
continued until equations in which the R2 value was as high as possible and the probability
values of all parameters assigned as independent variables (predictors) were significant at
p < 0.05 were obtained.

When Q7,10, Q15,7, Q30,5, and Q60,2 are given as predictans (responses) for both regions,
the developed equations of the regional ordinary univariate/multivariate regression model
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and principal component regression model with their average coefficients of determination
(R2) and the regional model performance accuracy measures (cross-validation) (RMSE,
MRE, and R2) are given in Tables 7a and 7b, respectively.

Table 7. Ordinary (a) and principal component (b) regression models and their average R2 and
accuracy measures for each low-flow index and each region.

Low-Flow
Index Region Ordinary Regression Model (a) R2 p-Value

Cross-Validation

RMSE MRE R2

Q7,10
1 Q7,10 = 0.2666 − 0.1192LAF + 0.01208LAF2 − 0.000091LAF3 95.64 0.0001 1.13 1.58 93.53

2 Q7,10 = −0.411268 − 0.0051575WA − 0.932308LAF +
0.048948LSPS + 0.396897LAP 98.92 0.0002 0.16 7.63 96.84

Q15,7
1 Q15,7 = −100.386 + 0.0074322E + 3.55112X + 0.1835LAF 97.31 0.0001 0.92 −16.31 95.14

2 Q15,7 = −0.0188402 − 0.00505061WA − 0.927826LAF +
0.390254LAP 98.47 0.0001 0.19 10.96 96.38

Q30,5
1 Q30,5 = −0.4996 + 0.2636LAF − 0.000632LAF2 96.70 0.0001 1.19 0.32 93.83

2 Q30,5 = −0.00670212 − 0.00526292WA − 0.956042LAF +
0.404939LAP 98.66 0.0001 0.19 9.47 96.48

Q60,2
1 Q60,2 = −65.3312 + 2.33149X + 0.21396LAF 97.20 0.0003 1.11 −1.36 94.99

2 Q60,2 = 0.0142909 − 0.0056536WA − 0.996297LAF +
0.429326LAP 98.90 0.0001 0.18 6.23 96.58

Low-Flow
Index Region Principal Component Regression Model (b) R2 p-Value

Cross-Validation

RMSE MRE R2

Q7,10
1 Q7,10 = 2.85024 − 2.01963PC2 + 4.77548PC3 83.97 0.0003 2.17 29.67 82.12
2 Q7,10 = [0.590891 + 0.624979PC1 − 0.272818PC2]2 95.01 0.0001 0.15 −0.32 91.83

Q15,7
1 Q15,7 = 2.98478 − 2.11063PC2 + 4.96447PC3 + 1.37115PC5 89.70 0.0003 1.81 14.17 87.69
2 Q15,7 = [0.606588 + 0.63404PC1 − 0.280948PC2]2 94.88 0.0001 0.15 −0.32 91.72

Q30,5
1 Q30,5 = 3.18191 + 1.24506PC1 − 2.2412PC2 + 5.255PC3 +

1.43846PC5
93.71 0.0002 1.49 32.04 91.58

2 Q30,5 = [0.633935 + 0.645009PC1 − 0.286274PC2]2 94.74 0.0001 0.16 −0.35 91.49

Q60,2
1 Q60,2 = 3.55864 − 2.5025PC2 + 5.87477PC3 84.83 0.0002 2.59 19.79 82.91
2 Q60,2 = [0.676954 + 0.659337PC1 − 0.292911PC2]2 94.40 0.0001 0.17 −0.38 96.73

Notes: E: elevation; X: latitude; Y: longitude; WA: watershed area; WHE: watershed highest elevation; WLE: wa-
tershed lowest elevation; WS: watershed slope; LAF: long-term average flow; LSP: longest stream path;
LSPS: longest stream path slope; LSE: largest stream elevation; SSE: smallest stream elevation; LAP: long-term
average precipitation. PC1–PC5 = Principal components 1–5.

Ordinary regression and principal component regression models were compared with
root mean squared error (RMSE), mean relative error (MRE), and coefficient of determina-
tion (R2) metrics based on the jackknife procedure. In this procedure, each gauged site is
considered an ungauged site, and the regional model is used to predict the low flow at that
site. The RMSE measure determines the level of general agreement between the observed
and estimated low flows. MRE is an error measure often used in regression problems.
MRE measures the mean relative error, i.e., how much the model’s predictions differ in
percentage from the ground truth. R2 defines the proportion of the statistical variance the
model can express in the observed low flows [55].

In the first stage of regression models for the Q7,10 index, the first region containing
near zero low-flow sites, no statistically significant (univariate or multivariate) linear
relationship was obtained between Q7,10 and watershed characteristics. However, the cubic
relationship was important, showing the long-term average flow as the predictor for Q7,10
in the region. In other words, the cubic non-linear relationship of the long-term average
flow can be characterized by 95.64% of the base flow in the region. A statistically significant
multivariate linear relationship was obtained in the second region between Q7,10 and
watershed characteristics. In this region, four physiographic–hydrological features, such
as watershed area, long-term average flow, the longest stream path slope, and long-term
average precipitation, represented low flows by 98.92%.
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The elevation, latitude, and long-term average flow predictors were the main deter-
minants, linearly defining the 15-day minimum flows by 97.31% for the first region. In
Region-2, watershed area, long-term average flow, and long-term average precipitation
described 98.47% of the Q15,7 low flows.

Q30,5 was non-linearly (quadratically) related to the long-term average flow, which
described 96.70% of the variation in low-flows for Region-1, whereas for Region-2, long-
term average flow and long-term average precipitation predictors determined the low-flows
with the watershed area as a multivariate linear relationship with a rate of 98.66%.

In the case of Q60,2, latitude and long-term average flow explained the low-flow
variation in Region-1 at a level of 97.20%, while in Region-2, watershed area, long-term
average flow, and long-term average precipitation variables were determined as the main
predictors at a level of 98.90% to estimate longer duration minimum flows.

When cross-validation results were examined to evaluate the performance of ordinary
regression models, it was shown that regression models had a small amount of lower
accuracy if the gauged site was considered an ungauged site. This is explained by the
fact that the average R2 percentages decrease by approximately 2–3% for each index after
the cross-validation procedure. However, the MRE criterion slightly underestimates and
overestimates the low flows in homogeneous regions of ordinary regression models. This
deviation was lower in the 1st region estimates of 7-day, 30-day, and 60-day low flows and
slightly higher in the 2nd region estimates. There is a somewhat higher deviation in the
estimation of 15-day low flows. In addition, the RMSE criterion showed that the accuracy
of the estimations was quite good in terms of being close to zero (Table 7a).

In the second stage, PCR models were developed to test whether more precise results
could be obtained by removing collinearity from the predictors and how the combination
of predictors could identify low flows in the Susurluk River basin. Using the principal
components in PCA, principal component scores were calculated for sites in each region,
and various PCR models were developed. The second (PC2) and third (PC3) components
were effective at 83.97% for Q7,10, with low flows near zero in Region-1, the lowland plain
part of the Susurluk Basin.

These two components express the importance of the elevation, watershed smallest
elevation, smallest stream elevation, and long-term average flows in low-flows near zero.
For Q7,10 index predictions, it was determined that the first (PC1) and second (PC2) compo-
nents were effective at 95.01% in Region 2, which is the highland mountainous region of the
basin. However, minimum flows can be estimated by squaring the determined equation.
The watershed area, long-term average flow, long-term average precipitation, latitude,
watershed largest elevation, and smallest stream elevation were found to be important in
estimating Q7,10 minimum flows.

While Q15,7 low-flows were estimated, the second (PC2), third (PC3), and fifth (PC5)
components showed a weight of 89.70% in the low-elevation first region of the basin. The
elevation, watershed lowest elevation, smallest stream elevation, long-term average flow,
and watershed slope factors affected the estimation of these flows.

The 30-day minimum flows, which are longer-term low-flows, were affected by many
components, such as the first (PC1), second (PC2), third (PC3), and fifth (PC5) factors at
a level of 93.71%, unlike other low-flows in the first regions. In the second region, as in
other low-flow indexes, Q7,10 and Q15,7, the first and second components were explanatory
with 94.74% accuracy for 30-day flows. Similarly, in other second regions, the square of the
equation calculates the flow estimates.

In estimating the Q60,2 index, which is the longest-term low-flows used in this study,
the second component was found to be negative, and the third component was positive
at an accuracy level of 84.83% in Region-1. The first and second components contributed
positively and negatively, respectively, at 94.40% in Region-2.

When evaluating the performance of principal component regression models, cross-
validation results showed that principal component regression models had slightly lower
accuracy in other indexes, except for the mountainous Region-2 60-day low-flow estima-
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tions, relative to the average R2, if the gauged site was considered an ungauged site. This
is explained by the fact that the average R2 percentages, excluding the Region-2 60-day
low-flow estimations, decrease by approximately 2–3% for other indexes after the cross-
validation procedure. This situation is important for the study, as in ordinary regression
models, and it is stated that the models established by using the principal components cre-
ated as a combination of basin physiographic and hydrological features are quite effective
and can be used for hydrological drought estimations. However, according to the MRE
criterion, it is seen that the principal component regression models overestimate the low
flows in homogeneous regions for all indexes in the lowland first region and estimate al-
most unbiasedly in the mountainous second region. On the other hand, the RMSE criterion
gave very good results with reasonable values (Table 7b).

4. Discussion

In this study, at-site and regional frequency distributions were estimated using Q7,10,
Q15,7, Q30,5, and Q60,2 low-flow indexes, which are important in terms of hydrological
drought in the Susurluk Basin, and regional hydrological drought risk models were devel-
oped using ordinary and principal component regression techniques.

At-site frequency analyses of the study results showed that the most dominant dis-
tributions for low-flow risk and probability throughout the basin are the 3-parameter
Generalized extreme values (GEVs) and Generalized Pareto (GPA) distributions, which fit
hydrological extreme events. Different studies have reported that both distributions are
suitable for low flows [56,57]. Typical hierarchical cluster analysis showed that using only
physiographic features to classify and group basins alone is not appropriate. Therefore,
physiographic, hydrological, and statistical vectors were combined to define the groups.
Thus, two-stage clustering showed an advantage over simple clustering. The regions
obtained with the new approach were homogeneous and free of discordant sites. Ref. [58]
emphasized the importance of the two-stage cluster in their study. Regional frequency
analysis of low flows showed that the GNO distribution is generally the best fit for ho-
mogeneous regions. The PE3 and GEV distributions, respectively, follow this distribution.
However, an interesting result was that the GLO and GPA distributions were unsuitable
for any low-flow data set. This showed that it would only sometimes be compatible
with the results of at-site frequency analysis. Ref. [59] obtained similar results. However,
regional frequency analysis is superior to at-site frequency analysis, even if the regions
are heterogeneous.

The principal component variables obtained for estimating regional drought risk mod-
els describe the differences between watersheds and indicate the best variables for spatial
analysis of low-flow characteristics in the Susurluk Basin. Linear and non-linear regression
models were developed to predict ungauged basins with ordinary and principal compo-
nent regression techniques. Physiographic–hydrological variables selected as independent
predictors for low-flow indexes described low-flow in watersheds relatively well according
to different criteria. Regression models also revealed some non-linear relationships between
watershed characteristics and low-flow indexes.

According to the ordinary regression model, the long-term average flow affected the
7-day low-flows negatively from the first and third powers and positively from the second
power in Region-1. Additionally, 7-day low flows increase as the second region’s watershed
area and long-term average flow decrease. As the longest stream path slope and long-term
average precipitation increase, 7-day low flows increase. Elevation, latitude, and long-term
average flow predictors can cause 15-day low flows to increase in the stream bed in the
first region. As the watershed area and long-term average flow decrease, 15-day low flows
increase; as long-term average precipitation increases, 15-day low flows increase for the
second region. The long-term average flow 30-day low-flows were affected positively by
the first power and negatively by the second power in the first region. In the second region,
as the watershed area and long-term average flow decrease, 30-day low-flows increase,
and as long-term average precipitation increases, 30-day low-flows increase. In the first
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region, latitude and long-term average flows can cause 60-day low flows to increase in the
stream bed.

In contrast, in the second region, watershed area and long-term average flows can
decrease 60-day flows, and long-term average precipitation can increase them. In summary,
in the high-elevation mountainous second region, the length and slope of the stream bed
and the annual average precipitation parameters can significantly impact all low-flow
indexes. In the first region, which has a low-elevation plain, low flows can generally be
compatible with the average flows in the stream. This situation is important for the study
and indicates that the models established using basin physiographic and hydrological
features are quite effective and can be used to estimate regional hydrological drought
detection. Ref. [60] argues that regional estimations obtained with basin characteristics are
more effective.

According to the principal component regression model, the elevation, the watershed’s
smallest elevation, and the smallest stream elevation negatively affected the estimation
of the Q7,10 index. In contrast, long-term average flows positively affected the analysis
of the Q7,10 index. The watershed area, long-term average flow, and long-term average
precipitation positively affected the prediction of the shortest-term minimum flows in
Region-2. In contrast, latitude, watershed largest elevation, and smallest stream elevation
negatively affected the mountainous part of the Susurluk Basin for the second region. The
second component negatively affected the prediction of Q15,7 flows, while the third and fifth
components had a positive effect. In mountainous Region-2, an equation consisting of the
first and second components was obtained, similar to Q7,10. However, it is seen that Q15,7
low-flow discharges can be estimated by squaring this equation. In the 15-day low-flow
estimation equation in Region-2, while the first component parameters, watershed area,
long-term average flow, and long-term average precipitation, were positive, the second
component parameters, latitude, watershed lowest elevation, and smallest stream elevation,
were negatively included. A larger number of watershed physiographic–hydrological
characteristics explain 30-day low flows. These characteristics in the second component
express the 30-day flows in a negative direction, while the attributes in the other first, third,
and fifth components express them positively. The longest-term low flows, the 60-day
flows used in this study, were negatively and positively affected by the first, second, and
third component parameters.

The Susurluk River flows into the Marmara River, an inland sea in Turkey. The length
of the Susurluk River and its tributaries is short, depending on the landforms, and their
basins are narrow. The Susurluk River is formed by the merger of Kocaçay, coming from
Kuş (Bird) Lake, and Mustafa Kemalpaşa and Nilüfer streams, coming from Ulubat Lake,
located in the downstream parts of the basin. The Susurluk River collects most of the waters
of Southern Marmara. Therefore, it can be said that the natural Kuş (Bird) Lake and Ulubat
Lake, located at the downstream and outlet points of the basin, positively affect streamflow
discharges. This situation is especially effective in the northern and northwestern parts of
the first region [44].

On the other hand, 23 dams/ponds on the Susurluk River tributaries cause pressure by
regulating water resources, and eight hydroelectric power plants are used for agricultural,
urban, or industrial purposes. Water withdrawals can alter water flow and sediment move-
ments and have significant consequences downstream and at the river mouth. Additionally,
regulating the hydraulic regime changes the natural regime of the river by increasing flows
in the summer and decreasing flows in the winter. However, the study used streamflow
data from flow observation sites upstream of these hydraulic structures whenever possible.
However, these structures significantly reduce the flow rate by regulating the stream [43].

The performance of the ordinary regression technique was increased by adding factor
scores to the principal component regression technique. However, according to the coef-
ficient of determination (R2), the PCR model can only improve the ordinary regression
performance for some indexes. The accuracy level of the ordinary regression technique is
higher than that of the principal component regression in all indexes and regions. However,
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although it may seem like this, the MRE cross-validation criteria in the PCR model showed
that the model estimations were quite strong, especially in the mountainous second region
for all indexes, and it was determined that the ordinary regression made stronger estima-
tions in all other indexes except 15-day low flows in the lowland first region. Therefore,
ordinary and principal component regression regional models are relatively better than
at-site models and can be applied to estimate ungauged catchments for short-, medium-,
and long-term low flows. Ref. [61] states that regional estimates are superior to at-site
estimates for unmeasured basins.

Furthermore, cross-validation showed that it is necessary to consider other watershed
characteristics, such as vegetation and land use types, geological formations, and soil
types, to regionalize low flow. This explains hydrological drought better than the existing
features used in this study. Additionally, two advantages of this research are that it uses
the most common low-flow indexes, presents a new set of low-flow indexes for regional
agricultural water resources management for the Susurluk Basin (Q15,7 and Q60,2), and
is the first time regional low-flow analyses are calculated for the basin. These low-flow
studies are very useful and critical for further water resources management, especially
state water resources planning in Turkey. Another important advantage of this study is the
combination of regional L-moment algorithms, two-stage cluster analysis, and different
regression techniques for estimating regional hydrological drought in ungauged basins.
Ref. [62] performed low flow analysis with more than one method and advocated the mixed
probability distribution approach.

5. Conclusions

Low-flow frequency analysis studies are important in taking measures that can reduce
the negative effects of dry periods. Susurluk Basin is among the basins that can be highly
affected by drought risk due to its agricultural, economic, and natural resources. Problems
such as decreasing water resources in the basin, increasing water demand due to increasing
population, and more frequent and severe drought disasters due to climate change may
pose major problems in ensuring sustainable water management. In this study, regional
hydrological drought models were developed for water supply systems in the Susurluk
Basin. Regional models were performed with ordinary and principal component regression
techniques using regional low-flow frequency analysis with L-moment approaches, and
the physical and hydrological characteristics of watersheds were identified as important.

Our study’s findings, the first of their kind for the Susurluk Basin, hold significant
implications for water management in the region. The results, which reveal the effectiveness
of ordinary regression models in the lowland first region and the suitability of principal
component regression models for the mountainous second region, can revolutionize our
approach to managing hydrological drought in these areas.

The approaches proposed in this study have been applied for the first time to the
Susurluk Basin, and the results obtained can be improved and applied to other basins
affected by drought. In future studies, using different empirical hydrological drought
indexes and considering seasonal low-flows and their probabilities and relationships with
watershed characteristics is highly recommended to paint a better picture of hydrological
drought in the Susurluk Basin. Finally, the main limitation of this research is anthropogenic
effects and intense water withdrawal from wells in the basin, which prevents the use of a
larger and more extensive database. We also suggest that investigating human impact and
climate change on hydrological drought should be analyzed in a non-stationary way.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w16111473/s1, Figure S1: Trend graphs of the original and the
completed data; Figure S2: The scree plot graphs of the principal component analysis for Region-1
(a) and Region-2 (b); Table S1: Physiographic and hydrological parameters of 24 micro-drainage
basins (watersheds); Table S2: At-site frequency analysis and relevant return period discharges
for different low-flow index; Table S3: Eigenvalue, variance, and cumulative variance values for
each component for Region-1 (a) and Region-2 (b); Table S4: Eigenvalues for each physiographic,
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hydrological, and meteorological variable and principal component (PC) for Region-1 (a) and Region-
2 (b); Table S5: Pearson product correlation coefficients between watershed physiographic and
hydrological characteristics and low flow indexes according to homogeneous Region-1 (a) and
Region-2 (b).
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Türkiye, 2000. (In Turkish)
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34. Şen, O. Determination of Hydrological Homogeneous Regions of Türkiye Flow Variables. Master’s Thesis, Istanbul Technical
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