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Abstract: Powerlines are strategic infrastructures for the Italian electro-energetic network, and
natural threats represent a potential risk that may influence their operativity and functionality. Geo-
hydrological hazards triggered by heavy rainfall, such as shallow landslides, have historically affected
electrical infrastructure networks, causing pylon failures and extensive blackouts. In this work, an
application of the reworked version of the model proposed by Borga et al. and Tarolli et al. for
rainfall-induced shallow landslide hazard assessment is presented. The revised model is called SLEM
(Shallow Landslide Express Model) and is designed to merge in a closed-from equation the infinite
slope stability with a simplified hydrogeological model. SLEM was written in Python language to
automatise the parameter calculations, and a new strategy for evaluating the Dynamic Contributing
Area (DCA) and its dependence on the initial soil moisture condition was included. The model was
tested for the case study basin of Trebbia River, in the Emilia-Romagna region (Italy) which in the
recent past experienced severe episodes of geo-hydrological hazards. The critical rainfall ratio (rcrit)
able to trigger slope instability prediction was validated against the available local rainfall threshold
curves, showing good performance skills. The rainfall return time (TR) was calculated from rcrit

identifying the most hazardous area across the Trebbia basin with respect to the position of powerlines.
TR was interpreted as an index of the magnitude of the geo-hydrological events considering the
hypothesis of iso-frequency with precipitation. Thanks to its fast computing, the critical rainfall
conditions, the temporal recurrence and the location of the most vulnerable powerlines are identified
by the model. SLEM is designed to carry out risk analysis useful for defining infrastructure resilience
plans and for implementing mitigation strategies against geo-hazards.

Keywords: heavy rainfall; shallow landslide; powerlines; hazard assessment; SLEM

1. Introduction

Geo-hydrological phenomena triggered by rainfall represent a serious threat to build-
ings, infrastructures, and human lives [1–11]. Floods and landslide episodes are often
triggered across the mountain and impervious areas where strategic infrastructures are set-
tled down and may be exposed to these types of hazards [10,12–15]. Italy is a country where
geo-hydrological phenomena are rather diffused across the entire territory [16,17]. Recently,
databases and censuses have been provided for planning purposes to help municipalities
and governments, taking into consideration geo-hydrological hazards and relative exposed
facilities and communities. Among them, the PAI maps (Piano di Assetto Idrogeologico)
and the IFFI census (Inventario Fenomeni Franosi Italiano) are the reference data adopted
at the Italian national scale for geo-hydrological risk evaluation and prevention [18,19].
Together with the analyses conducted at European levels, they represent the state-of-art for
geo-hydrological studies [20,21].

Considering these datasets, Italian Civil Protection has defined emergency plans
that indicate the strategies to deal with the effects of geo-hazards at different regulation
levels (municipalities, provinces, and regions) [8,22–24]. Following these indications,
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infrastructure stakeholders are starting to provide “resilience plans”. The former are
documents where strategies against threats are involved in potentially increasing infras-
tructure resilience [25–29]. The partial failure of the electrical system may have a lot of
repercussions on several sectors of human lives, especially during post-disaster emer-
gency phases where power supply is a fundamental resource for local community recov-
ery [22,30]. Geo-hydrological threats are, therefore, currently under investigation because
they could seriously undermine the operativity and functionality of electro-energetic in-
frastructures [31–33], as highlighted by several episodes recorded in the past across Italian
territory [2,15,16,34]. Severe floods may affect the operativity of dams and reservoirs be-
cause they have a crucial role in balancing extreme hydrological conditions and protecting
downstream areas [8,28,35,36]. On the other hand, powerlines and power plants may be
hit by landslides, causing local infrastructure failures and blackouts that may propagate
through the whole electrical network [27,37–40] (Figure 1). In particular, rainfall-induced
shallow landslides have been reported to be a common and rather destructive threat to
powerline pylons [27]. These types of landslides are characterized by shallow depth (up
to 2 m, reaching the bedrock) but with a significant planimetric extension [41]. They are
triggered by terrain saturation due to the rainfall infiltration processes [42] and include
soil slips and earth flow, which, in the presence of large amounts of water (i.e., terrain
saturation and overland flow), may evolve into debris flows [43].
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meteorological and climate forcing, i.e., heavy rains. Among others, the SHALSTAB 
(SHALlow slope STABility) model from [46] computes the critical rainfall intensity able to 
perturb shallow groundwater recharge as a measure for relative shallow slope stability. 
This tool combines a steady-state hydrological model (a topographic wetness index [47]) 
with an infinite slope stability model and identifies conditionally stable areas by 
reconstructing a susceptibility map of the territory. This model has been implemented, 
revised and extended by other authors [48–50] trying to overcome its limitations 
regarding the steady-state hydrological model and including a more complete slope 
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pylon collapse, causing blackouts.

Shallow landslides exhibit rapid kinematics and have a predominantly two-dimensional
geometry, so it is possible to make simplifications for modelling their ignition and dy-
namics by adopting distributed models in which the three-dimensional component is
neglected [23,42]. In the literature, some examples refer to the scheme of the infinitely
extended slope [12,42,44,45] where landslide triggering is evaluated in function of meteo-
rological and climate forcing, i.e., heavy rains. Among others, the SHALSTAB (SHALlow
slope STABility) model from [46] computes the critical rainfall intensity able to perturb
shallow groundwater recharge as a measure for relative shallow slope stability. This tool
combines a steady-state hydrological model (a topographic wetness index [47]) with an
infinite slope stability model and identifies conditionally stable areas by reconstructing
a susceptibility map of the territory. This model has been implemented, revised and
extended by other authors [48–50] trying to overcome its limitations regarding the steady-
state hydrological model and including a more complete slope stability routine. However,
these solutions have not always considered the influence of the terrain’s partial saturation
conditions on slope stability which is a determinant for accurate failure prediction [51,52].

Frequency ratio methods are commonly used for assessing landslide susceptibility [53],
and in the literature, there are several examples of applications [7,54–57]. In order to apply
them, it is necessary to evaluate the probability of slope failure over the investigated
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area, which is not trivial in the absence of a detailed census [53,58]. Therefore, other
strategies have been proposed to infer the probability of rainfall-induced landslides, starting
from the analysis of the triggering precipitation intensities and evaluating their temporal
frequency or their return period [2,43,59]. Under the hypothesis of iso-frequency among
critical rainfall and slope failure is also possible to infer the magnitude of the landslide
event [2,7,59–62]. Namely, a rare event has a greater magnitude with respect to a more
frequent one. Event magnitude estimation is necessary for carrying out a proper risk
assessment and for defining the best strategies for increasing infrastructure resilience [27].
This is particularly true under the projected future climate change scenario where extreme
events intensification is expected with high confidence [32,63,64]. This topic is currently
a research frontier where several authors have started to define new methodologies for
hazard assessment looking at predisposing factors (i.e., local territory susceptibility) and
triggering factors (i.e., intense rainfalls) [23,24,56,57,65–69].

Taking inspiration from these literature works, the following paragraphs will present
a revisited formulation of the model proposed by Borga et al. and successively improved
by Tarolli et al. [50,70,71] The goal of our analysis was to find, improve, test, and validate a
tool able to estimate slope stability failure under different critical rainfall conditions across
remote mountain areas where powerlines are generally located. This model was developed
for shallow landslide hazard assessment, considering the role of precipitation (with a given
duration d and intensity r) as the main triggering factor. The revised version is called SLEM
(Shallow Landslide Express Model) and includes some parameterization novelties, bringing
a Python-based automatization of the analysis. Compared with the spatially distributed
models in which the hydrological cycle is reproduced in all its components, SLEM incorpo-
rates an expeditious methodology for fast geo-hydrological hazards assessment [3,8,72–74].
The need to adopt these types of models arose from the necessity to provide a more quan-
titative landslide hazard evaluation for planning purposes with respect to the classical
qualitative landslide susceptibility models [30,57,75,76]. From a stakeholder’s viewpoint, a
first approximation powerlines risk analysis represents a valuable propaedeutic activity to
direct subsequent detailed investigations to the most hazardous areas.

In the following paragraphs, the analysis conducted with SLEM is presented. In
Section 2, SLEM’s new features are presented, highlighting the modifications adopted. In
Section 3, the powerline hazard assessment using SLEM applied to the case study of the
Trebbia basin (Emilia-Romagna region, Italy) is presented. In Section 4, SLEM performances
and limitations are commented referring to the risk analysis results while in Section 5, the
main outcomes of the methodology are reassumed.

2. Materials and Methods

This paragraph presents the methodology proposed by [50,70,71], where an analytical
solution for the critical rainfall triggering a shallow landslide failure is obtained by coupling
a subsurface hydrological model with a slope stability model. Equation (1) shows the model
proposed by Borga et al. [50] (derived from SHALSTAB) and then successively improved
by Tarolli et al. [70,71]:

rcrit(d) =
TBsinβ

a(d)

[
Cr + Cs

ρwghtcos βtan ϕ
+

(
ρs

ρw
+

W
ρwght

)(
1− tanβ

tan ϕ

)]
(1)

Within the square bracket are all the presented parameters related to the stability
model of the infinitely extended slope, generally adopted for assessing rainfall-induced
shallow landslide failures, as described by Iverson [42] and Harp [12]:
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Continuity equation f or soil water content
n ∂hw

∂t + ∂q
∂x = i

(2)

q = V ∗ hw → n
∂hw

∂t
+

∂V
∂x

hw +
∂hw

∂x
V = i (3)

I f V = Ksat
∂hw
∂x ≈ Ksat

∂ht
∂x = Ksattan(β) f rom Dupuit→

considering f or steep slopes f low line parallel to the bed slope

V ≈ Ksat
∂htcos(β)

∂x = Ksat cos(β)tan(β) = Ksatsin(β)

∂V
∂x = 0→ n ∂hw

∂t + ∂hw
∂x V = i→ n ∂hw

∂t + ∂hw
∂x Ksat sin(β) = i

(4)

Hp o f stationary process→ ∂hw

∂t
= 0→ ∂hw

∂x
Ksat sin(β) = i (5)
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Integrated in space along f low path→
∫

∂hw
∂x Ksatsin(β)dx =

∫
i dx →

hw Ksatsin(β) = i a
B

(6)

Considering i = r0 and ∂r0
∂t = 0→ hw Ksatsin(β) = r0

a
B →

hw = r0 a
Ksatsin(β)B → hw(d) =

r0 a(d)
Ksatsin(β)B
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An analogue interpretation of this process was given by [46,48]. Their model divides a
catchment into non-regular topographic elements defined by the intersection of elevation
contours and orthogonal subsurface flow tubes. The rainfall completely infiltrates, forming
shallow subsurface flow, which is routed downstream within the flow tubes. At any point
on the slope and at any instant from the precipitation starts (d), the flow rate from the
upstream portion of the basin qin(d) is given by the product of the precipitation intensity
ratio r0 (supposed constant) for the corresponding contributing area a(d) (Equation (8)).
For water mass continuity, the inflow rate must be equal to the local downstream outflow
qout(d) which is regulated by Darcy’s law. Considering again the Dupuit approximation,
the hydraulic gradient of the aquifer can be approximated by the tangent of the topographic
slope β [47], giving the Equation (9). Under steady conditions, inflow and outflow equations
could be merged by deriving the continuity equation of subsurface inflows-outflows
(Equation (10)) that determines the fluctuation of the soil water height hw at a certain point
along the slope. The hydrological model reduces similarly to Equation (7), where the
dependence on rainfall duration d is again embedded in the term of a(d).

qin(d) = r0 a(d) (8)

qout(d) = hw(d)Ksat sin(β)B (9)

when qin(d) = qout(d)→ hw(d) =
r0

B Ksatsin(β)
a(d) (10)

2.2. Slope Stability Model

The second key part of the model described in Equation (1) is the slope stability equation
for shallow landslide failure. Shallow landslides are distinguished from complex types such
as roto-translational slips and gravitational slope deformations. For those types, the local
geological component has a second-order effect with respect to the topography (slopes), and
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the geotechnical characteristics of the soil layers (angle of friction and cohesion) are responsi-
ble for their movement [12,42,44]. According to the literature [12,42,44,45,52,79], the most
common approach to assess terrain stability follows the limit equilibrium equation applied
on the infinite slope (Figure 3a). Here, each piece of terrain is subjected to mobilizing (M,
in [N]) and resisting (R, in [N]) forces, which are derived by [50,70] for a cohesionless con-
dition as reported in Equation (11). The factor of safety (FS) represents the ratio between R
and M, and it is usually considered for assessing the slope stability conditions: if FS > 1, the
slope is in safe conditions, while if FS < 1, a landslide may occur. By imposing the critical
condition FS = 1 for the landslide ignitions, it is possible to determine explicitly the critical
soil water height hw that can trigger the failure. The ratio hw

ht
among soil water and soil

depth represents the critical soil moisture ratio Sr_crit, which depends on five parameters
that are related to the terrain stability characteristics: soil ρs and water ρw densities, slope
inclination β, and terrain friction angle ϕ.
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Following the work of [71], Equation (11) is reworked, adding two terms that are
generally required for assessing slope stability for natural slopes: the cohesion and the
vegetation surcharge [52,71] (Figure 3b). The cohesion represents the additional resistance
given by the soil and tree roots and is a significant contribution to terrain stability, especially
over steep slopes. Soil cohesion Cs is generally comprised between 0–20 kPa [52], which
could be neglected for coarse and sandy soils, while it tends to increase for clay soils.
Tree root cohesion Cr is related to the presence of forest above the slopes and is generally
comprised between 0–10 kPa [52]. The presence of vegetation can also contribute to the
stability through the surcharge W, which is consistent in a dense and mature forest up to
values of 2–5 kPa [52]. The complete formulation shown in Equation (12) was considered
under limit equilibrium FS = 1 for assessing the critical soil water content hw.

For cohesionless and slope parallel seepage→

M = ρshttan(β)

R = ρshttan(ϕ)− ρwhwtan(ϕ)

FS = 1→ M = R→ hw
ht

= ρs
ρw

(
1− tan(β)

tan(ϕ)

)
= Sr_crit

where Sr_crit is the critical soil moisture ratio

(11)

Adding soil cohesion Cs, root cohesion Cr and vegetation surcharge W →
hw
ht

=
(

ρs
ρw

+ W
ρwght

)(
1− tan(β)

tan(ϕ)

)
+ Cs+Cr

ρwghtcos(β) tan(ϕ)
= Sr_crit

(12)
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2.3. Coupling Hydrological Model with Slope Stability Model

Following the approach proposed by [50,70,71], starting from Equation (7) or (10) (the
hydrological continuity equation), it is possible to combine with Equation (12) (the slope
stability equation) under a few assumptions:
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The transmissivity T is obtained as the product of Ksat and ht under the hypothesis of
a free surface (not confined) aquifer formed within shallow soils.

T = Ksatht (13)

Considering these statements, the value of the critical precipitation intensity could
be explicitly derived by reworking Equation (14) to Equation (15), which is the same as
Equation (1).

Imposing the rain f all duration dependency to hw through a(d)→ hw(d)

considering the critical steady rain f all f or slope instability→ r0 = rcrit

coupling the Hydrological and Slope Stability equations→
rcrit a(d)

KsathtB sin(β)
=
(

ρs
ρw

+ W
ρwght

)(
1− tan(β)

tan(ϕ)

)
+ Cs+Cr

ρwghtcos(β) tan(ϕ)

(14)

Substituting the transmissivity term T = Ksatht and explicit rcrit →

rcrit(d) =
TBsin(β)

a(d)

[(
ρs
ρw

+ W
ρwght

)(
1− tan(β)

tan(ϕ)

)
+ Cs+Cr

ρwghtcos(β)tan(ϕ)

] (15)

Equation (15) presents in a closed form a practical solution for rapidly quantifying
the critical rainfall that is able to trigger slope instability, simply specifying the possible
duration of that precipitation. This equation is similar to the SHALSTAB model except
for the DCA term (which is not constant or equal to amax but it is dependent on d) and
the additional terms of the shallow landslide stability model (Cs, Cr and W). Keeping the
strength of this analytical and compact form, the application of Equation (15) for territorial
susceptibility analysis should be carried out with care, bearing in mind the simplifications
adopted for retrieving rcrit values:
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The first one concerns the intensity of the critical rain rcrit, which is considered con-
stant for a defined duration d. This hypothesis is unlikely when compared with the
rainfall data collected by meteorological stations (rain is strongly intermittent [2,15]),
but it is generally accepted for statistical analysis on extremes, such as the evaluation
of the corresponding return time through the use of Intensity Duration Frequency
curve (IDF) [80,81]. Using local valid IDF curves, the relation between critical pre-
cipitation intensity rcrit and the return time (TR) is uniquely determined. However,
a shallow landslide is not a repetitive phenomenon that follows the cyclicity of pre-
cipitation, especially when investigated at the very local scale of the single slope
portion [2,9,34,61,62,82]. Looking at the watershed basin scale, this assumption could
be more accepted, admitting that adjacent areas may experience similar behaviour
under the same triggering factors [52].
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The second one concerns the determination of the contributing area a(d) as a function
of time (namely rainfall duration d). As a precautionary measure, the contributing
area could be considered as a constant that corresponds to the maximum upstream
area amax at each point of the basin [50]. The contributing area can be evaluated in
a fairly simple way using a GIS (Geographic Information System) software through
the determination of flow accumulation [77,83]. However, this parameter may evolve
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with time because of the downstream propagation of subsurface water flow in the
soil ground and across the basin so that it is a dynamic quantity and not a stationary
one [84]. The authors [50,70,71] have assumed the stationary hypothesis with a = amax,
not providing a unique analytical approach for expressing it as a function of d. To
overcome this limitation, our study investigated this problem by proposing a closed
formulation of the dynamic contributing area a(d) (DCA), recalling some similarities
with surface hydrology, as presented in the next paragraph.

2.4. Determination of the Dynamic Contributing Area (DCA) for Subsurface Flow

Within a catchment area, the time that a water drop takes to reach the closing section
from any point of the basin is defined as the corrivation time Tc [72,85]. This parameter de-
scribes the average time with which superficial runoffs originate as a result of precipitation.
Many formulas have been proposed in the literature for its evaluation as a function of the
morphological and geometric parameters of the basin upstream of the closure point [85].
In this study, the formulas investigated were proposed by these authors [85]: Kirpich
(1940), Rowe-Thomas (1943), Chow (1962), Watt-Chow (1985), Sezen (1990), Ventura (2008),
Passini (2008), and Bransby (2010). The corrivation time is spatially variable and increases
considerably along the main river reach and is reduced in the secondary branches and on
the slopes (Figure 4). The Tc is a local property of the watershed basin [72]; therefore, the
average value among the eight formulas investigated has been calculated for the entire
domain to estimate a representative value of Tc.
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Figure 4. Evaluation of surface corrivation time (normalized with respect to the maximum value
of 1 h) using some formulas from the literature [85]: Kirpich 1940, Rowe-Thomas 1943, Chow 1962,
Watt-Chow 1985, Sezen 1990, Ventura 2008, Passini 2008, and Bransby 2010.

The corrivation time can be interpreted as a time threshold when the entire area settled
upstream of the considered closing point (amax) contributes to the outflow: for times less
than Tc, the superficial contributing area asup(d) is <asup(Tc) = amax; for times greater than
Tc, the superficial contributing area asup(d) = asup(Tc) = amax. Because the function asup(d) is
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strictly monotonic increasing, it is possible to model the growth curve using the time by a
simple linear function (Equations (16) and (17)).

asup(d) =
amaxd

Tc
f or d < Tc (16)

asup(d) = amax f or d ≥ Tc (17)

Generally speaking, the growth curve asup (d) should be determined uniquely for
each river basin considering its geometric and geomorphological characteristics that, by
definition, are not uniform [47,84]. More complex models for describing asup (d) fall outside
the goal of making this methodology simple to apply straightforwardly. The method has
been extended in a similar way considering the subsurface flow following the elaborations
proposed by [49,86], evaluating a(d) as a function of the corrivation time of the subsurface
flow Tc_sub (Equation (18)). This second case is one of interest for the application of SLEM,
and the following considerations were taken into account:
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The average saturated permeability Ksat of the surface terrain is variable across broad
ranges, but for the loam soil type, which is one of the prevalent across the Italian
landscape [88], a representative value may be around 10−5–10−6 m/s. Because the
surface runoff velocity Vsup has an order of magnitude around 1 m/s, it is reasonable
to increase the corrivation time of the subsurface flow Tc_sub as a function of the ratio
of the two flow velocities (Equation (18)).

Tc_sub = Tc ∗
(

Vsup

Ksat

)
→ Tc_sub ≈ K−1

sat ∗ Tc (18)

a(d) =
amaxd
Tc_sub

f or d < Tc_sub (19)

a(d) = amax f or d ≥ Tc_sub (20)

As a result, the term a(d) was determined by converting Tc into Tc_sub and applying
Equations (19) and (20), giving a representation of the time variation of the DCA as a func-
tion of the kinematic and geomorphological parameters of the catchment. Implementing
the DCA formulation of Equation (21) in Equation (15), the model dependency on Ksat could
be discarded, at least for those areas where the d < Tc_sub condition is satisfied. Therefore,
Equation (15) reduces to Equations (22) and (23), which represent the constitutive equations
of the revised SLEM model.

a(d) =
amaxd
Tc_sub

=
amaxd

Tc/Ksat
=

amaxd
Tc

Ksat f or d < Tc_sub (21)

rcrit(d) =
KsathtB sin(β)

amaxd
Tc Ksat

∗ [stability model]→

rcrit = rcrit(d) =
htB sin(β)

amaxd
Tc

∗ [stability model] f or d < Tc_sub

(22)

rcrit = rcrit(d) =
TB sin(β)

amax
∗ [stability model] f or d ≥ Tc_sub (23)

2.5. Initial Soil Moisture Influence on DCA

The SLEM model does not explicitly consider the dependence on initial soil mois-
ture because a complete saturation of the watershed basin is assumed. These condi-
tions, although precautionary, are not representative of the partial saturation of the soils
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that, in many cases, guarantee their stability [41,71,73–75]. The terrain imbibition is time-
dependent, and the complete saturation can only be reached in the long term and only for
those areas morphologically predisposed to collect subsurface waters such as troughs and
impluvium. In this regard, the condition of partial saturation of the slopes depending on
soil moisture should be taken into consideration. Several authors [48,49,86] have proposed
solutions to include the soil moisture dependency within the model. Taking inspiration
from these analyses, the DCA parameter has been further reworked by including the rel-
ative permeability term Kr_ini for reducing the Ksat [89,90]. As reported in Equation (24),
Kr_ini is non-linear dependent on initial soil moisture, and it is approximately 0 for very dry
soils, while it tends to be 1 for saturated conditions. Through Equation (25), it is possible
to correct Ksat simply by multiplying for Kr_ini and then using Ksat_ini to evaluate Tc_sub
and a(d). The macro effect of partial saturation is a reduction of soil permeability, increas-
ing the subsurface flow corrivation times and reducing for a fixed duration d the DCA
term. This correction is analogous to the one implemented within the Soil Conservation
Service—Curve Number method [72] where the antecedent soil imbibition is taken into
account for setting infiltration fluxes.

Kr_ini = (Srini)
3− 2

λ (24)

where λ from [89]
Ksat_ini = Kr_ini ∗ Ksat (25)

As reported in Table 1, a soil moisture scale is specified with a “code” from 0 to 4
covering the VERY_DRY up to VERY_WET conditions for the initial soil moisture Sr_ini. In
the next paragraphs, the simulations reported were conducted considering an intermediate
initial condition for the soil moisture, corresponding to Sr_ini = 0.5.

Table 1. Soil moisture scale adopted in the revised model.

Soil Moisture Type Code Sr_ini Value

VERY_DRY 0 0.0–0.2
DRY 1 0.2–0.4

MILD 2 0.4–0.6
WET 3 0.6–0.8

VERY_WET 4 0.8–1.0

2.6. Case Study Description

The SLEM has been tested across the Trebbia watershed basin, located in the northern
part of the Apennines in the Emilia-Romagna region (Italy) (Figure 5). In the recent past,
this catchment was hit by severe geo-hydrological issues (i.e., flash floods, debris flows,
and diffuse landslide failures) triggered by heavy rain events. In October 2015, the Trebbia
River was affected by a flood caused by a convective storm that triggered over the basin
several episodes of shallow landslides and debris flow that hit main roads and town
buildings and interrupted local infrastructures [65,66,91]. Across the Trebbia basin, several
electrical infrastructures are exposed to geo-hydrological hazards because they are located
in the proximities of landslide polygons mapped by the IFFI (Inventario Fenomeni Franosi
Italiano) census [16] (Figure 5). In particular, due to their spread across impervious slopes,
the high-voltage powerlines represent a vulnerable element of the regional electro-energetic
network. The SLEM model was adopted to quantify the pylons at risk within the Trebbia
basin using an automatized routine written in Python programming language.
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Figure 5. Location of the case study conducted within the Trebbia watershed basin in Emilia-Romagna
region (Italy). The high voltage powerlines settled across the basin are shown compared to the location
of rainfall-induced landslides from the IFFI census (red polygons).

2.7. Python Scripts and Model Parameters Derivation

The model described in Equations (22) and (23) has been automatized to work with
spatially distributed GIS data in raster format. The main goal was to create a set of “hazard
maps” using the critical rainfall ratio rcrit varying the precipitation duration d. In this
regard, four scripts written in Python language were created: 1_SOIL_Elaboration.py,
2_DCA_Elaboration.py, 3_SLEM_Model.py, and 4_TR_Evaluation.py.

1_SOIL_Elaboration.py:

Preparatory processing of the soil data was carried out to evaluate the key parameters
required for rcrit computation: the saturated permeability Ksat, the soil thickness ht, the
friction angle ϕ, the soil and root cohesion Cs and Cr, and the vegetation surcharge W.
Worldwide and national databases and literature studies [88,90,92,93] were investigated
to retrieve these parameters for the investigated area, as depicted in Figure 6. More
precisely, the Soil Grids database [88] was considered for retrieving soil texture distribution
across the investigated area, assessing the % of fine (sand, silt, and clay) and coarse soils,
and extracting the predicted shallow soil thickness ht. Conversely, Ksat distribution and
unsaturated soil parameters were obtained from [89,90]. For friction angle and cohesion
stability parameters, reference values and ranges [43,55] were considered for the main soil
classes and then spatially distributed using the Soil Grids texture data. All the data were
converted to a common raster format, “.map” [94].

Biomass influence on soil stability was taken into account, including the root cohesion
Cr and the vegetation surcharge W according to [95,96]. Because these parameters are
related to vegetation coverage, the Corine Land Cover (CLC) [93] map was included in the
model to spatially distribute these quantities across the catchment. The contingency Table 2
reports the relation between some CLC categories and the Cr and W values retrieved from
the literature.
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Figure 6. Representation of the soil parameters Ksat, soil cohesion Cs, friction angle ϕ, and CLC for
the Trebbia watershed basin located in Emilia-Romagna region (Italy) using the databases provided
by [88,90,92,93].

Table 2. Representation of the root cohesion Cs and the vegetation surcharge W as a function of CLC
categories.

ID CLC Categories Cr [kPa] W [kPa]

1 City 0 0
2 Agriculture 2 0
3 Deciduous 10 1
4 Evergreen 20 2
5 Grassland 3 0
6 Bare soil 0 0
7 Water body 0 0
8 Scarce vegetation 2 0

2_DCA_Elaboration.py:

All of the hydrological and geomorphological parameters needed are evaluated start-
ing from the manipulations of the digital elevation model (DEM) called “dem.map”. The
Python PCRaster [94] and PYSHED libraries [97] were used to carry out and speed up some
operations on DEM:

1. The HydroSHED DEM [92] was considered in this study. This DEM has a nominal
spatial resolution of 90 m at the equator (~70 m at 45◦ latitude), and it has been con-
ditioned (void-filled) and made hydrologically continuous to be easily implemented
within hydrological and hydraulic models. Other high-resolution DEMs are advisable
to improve computation performances, but accurate preprocessing is recommended;

2. Using PCRaster and PYSHED libraries [94,97], the flow direction, the flow accumu-
lation and the slope and slope accumulation are calculated. These data are required
for computing the river network and the relative distance to the river of each cell of
the domain;
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3. Considering the formulae listed in [85] and the computed hydrological data, the
surface corrivation time Tc is calculated, and the subsurface corrivation time Tc_sub is
calculated using the approximations described by Equation (18) (Figure 7).
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Figure 7. Representation of the soil thickness ht, slope angle β, superficial corrivation time Tc, and
the subsurface corrivation time Tc_sub for the Trebbia watershed basin located in Emilia-Romagna
region (Italy) obtained from the HydroSHED DEM and [85].

3_SLEM_Model.py:

The script contains the implementation of the SLEM model shown in Equations (22) and (23),
in which all the hydrogeological and stability parameters previously evaluated are ingested.
The program evaluates the “hazard maps”, showing that the critical rainfall ratio rcrit is
able to trigger slope failure for a series of reference rainfall durations, typically 1 h, 3 h, 6 h,
12 h, 24 h, 48 h, 72 h, and 120 h. For a fixed duration, the areas which admit lower rcrit are
more prone to shallow landslide failure.

4_TR_Evaluation.py:

Following the applications made by [70,71], the return time of the critical precipitation
(TR) is evaluated considering the rcrit and duration d in the function of the parameters
a1, n, w, k, α, and ε (Equations (26)–(28)) of the local IDF curves calculated using the
Generalized Extreme Value (GEV) theory [80]. According to [2,7,9], the TR quantity is
significant and represents a measure of the magnitude of the critical rainfall event, which
is directly correlated to the shallow landslide magnitude. This is valid considering the
hypothesis of iso-frequency among rainfalls and slope failures, which is generally accepted
in the scientific literature, especially for explaining the recurrence of some rainfall-induced
geo-hydrological phenomena such as flash floods and debris flow [7,9,43,72]. Namely,
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high rainfall return times correspond to lower probabilities of occurrence of landslides
and vice-versa. The frequency-magnitude laws characterize geo-hydrological phenomena,
so high TR also corresponds to significant landslide magnitude [7,9,98]. At the basin
scale, the number of shallow landslides that occurred in the investigated area, their spatial
density per km2 or their cumulative volume or area represent valid indexes for assessing
a magnitude measure. According to [34,82], events of significant magnitude can present
several landslides > 10 per km2.

w =
rcrit(d)

a1dn (26)

Freq = exp

(
−
(

1− k
α
(w− ε)

) 1
k
)

(27)

TR =
1

1− Freq
(28)

3. Results

Figure 8 shows the Normalized Dynamic Contributing Area (NDCA = a(d)/amax, be-
tween 0–1) and the value of the critical precipitation intensity rcrit for durations of 1 h, 6 h,
24 h, 48 h, 72 h, and 120 h. As can be noticed, the NDCA obtained from DCA (Equation (19))
tends to progressively increase as the duration of the rain increases. Looking at Equations
(22) and (23), the DCA term a(d) becomes predominant, increasing d, causing a reduction
of the rcrit. Considering similar velocities of the subsurface flow, with increasing time,
the NDCA tends to the maximum asymptotic value amax, following a monotonic func-
tion. In fact, if the picture of duration 1 h is compared with the one of duration 120 h,
a drastic reduction of rcrit can be observed (from 50 mm/h to 5 mm/h, about 1 order of
magnitude). This result has a physical meaning: increasing the duration of precipitation,
watershed terrain tends to saturate, and the upper areas start to progressively contribute to
the subsurface flow, reaching a regime condition when a(d) = amax.

The power of the SLEM model consists of predicting not only when the failure may
happen (i.e., the duration of the critical landslide triggering) but also individuating those
areas where instabilities occur. Closely looking at the NDCA graph of Figure 8 with d = 1 h,
only the slope areas placed at the ridges, where the saturated conditions are reached faster,
are highlighted as critical. Gradually, these areas widen to the surrounding downstream
slopes until, for a duration of 120 h, almost all the slopes, except the river, present a
comparable lower rcrit. This result agrees with what has been observed in natural slopes
where widespread shallow landslides often occur after prolonged rains that persist in an
area for several days [99]. Conversely, if rain showers happen, only the steepest areas (the
ridges) could experience localized instability, evolving sometimes into a debris flow [65].

The influence of the initial soil moisture has been detected in rcrit results through a
brief sensitivity analysis. Considering Table 1, SLEM was run under different soil moisture
conditions from VERY_DRY to VERY_WET and for durations of 1 h, 6 h, 24 h, 48 h, 72 h,
and 120 h. As can be appreciated from Figure 9, progressively increasing the soil moisture
means a visible reduction of rcrit. This decrease is not uniform across the landscape, and
it depends on the duration of the critical precipitation. On average, the rcrit reduction
from a VERY_DRY to a VERY_WET condition is around 90% for a short duration (d < 6 h),
while for long-lasting rainfalls (d > 24 h), the decrease is around 50%. The SLEM model is,
therefore, rather sensible to the Sr_ini parameter. The areas with medium slopes (comprised
between 20◦ and 40◦, close to the typical soil friction angle values) are those that experience
the main variation of the stability condition. These results are in accordance with geological
and geotechnical studies [42,43,52,55,72], which predict soil moisture as one of the main
drivers of natural slope stabilities.
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Figure 9. Representation of the critical precipitation intensity rcrit, in mm/h, for increased initial
soil moisture condition for rainfall duration of 120 h. A reduction of rcrit is visible due to increased
soil moisture.

3.1. Determination of the Return Time of the rcrit

Once the value of the critical rainfall intensity has been obtained, the return time (TR) of
that rain was evaluated using the IDF curves available for the Trebbia River basin [100,101].
The TR of precipitation represents an indirect estimate of the magnitude of the expected
landslide phenomenon [2]. Using local IDF parameters listed in Table 3, the TR was
assessed from the critical intensity rcrit and duration d pairs to retrieve information about
the event magnitude. Six maps were obtained for the duration of 1 h, 6 h, 24 h, 48 h, 72 h,
and 120 h. Then, to estimate the variation of the expected critical TR with the duration d of
the precipitation, the difference between the TR maps relative to 120 h (“long-lasting rain”)
and to 1 h (“short rain”) was carried out.

Table 3. Parameters of the IDF considered for return time TR evaluation in the Trebbia River basin,
from [100].

a1 n α k ε Duration Range

24.56 0.3212 0.2804 −0.0898 0.8108 1–24 h
24.64 0.3305 0.2552 −0.0533 0.8310 1–5 days

Figure 10 shows the variation in the critical TR for landslide triggering as a function
of precipitation duration d. In red (Figure 10a) are the highlighted areas where the return
time of critical rain rate rcrit is greater for prolonged rain (120 h) than for short rain (1 h). In
blue (Figure 10b) are the highlighted areas where the return time of critical rain is lower for
prolonged rain (120 h) than for short rain (1 h). The TR anomaly was evaluated in a range
scale of ± 10 years. The distribution of red areas compared to blue ones is distinguished
as follows: the red areas (Figure 10a) show the mountain ridges characterized by high
gradients and low values of the subsurface contributing area, which are highlighted as
mostly susceptible to intense but short rains (TR1h < TR120h); the blue areas (Figure 10b)
highlight slopes characterized by lower gradients and higher values of the subsurface
contributing area (TR120h < TR1h); the grey areas (Figure 10c) are those in which there is not
such a significant tendency to vary the return time of critical rain as a function of duration
(TR1h ≈ TR120h).
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Figure 10. Spatial variation of the critical TR with respect to the duration of precipitation in the
Trebbia River basin. The maps are obtained by evaluating the difference between the TR for a duration
of 120 h (long events) and a duration of 1 h (short events). The red areas (a) are those for which
short events have lower TR than longer ones (TR1h < TR120h). The blue areas (b) are those for which
persistent events have lower TR than shorter ones (TR120h < TR1h). The third figure (c) shows the
combination of the two previous maps where the grey areas show a non-significant variation in the
TR as a function of the rainfall duration.

Considering the frequency-magnitude theory [2], the most destructive shallow land-
slide episodes are expected from rainfall events with larger TR. These rare and catastrophic
events have a relatively low frequency. However, from a probabilistic hazard perspective,
electro-energetic stakeholders are interested mainly in coping with high-frequency failures
because possible power outage needs to be reduced to the minimum during non-extreme
events [27]. Therefore, for ridges, short and intense rains such as showers or thunder-
storms represent the most hazardous trigger (TR1h < TR120h), while for slopes, these are
represented by prolonged and low-intense precipitation (TR120h < TR1h). These results are
confirmed by historical surveys [15,99] and could be explained in these terms: intense and
short rains can saturate of faster the thin soil covers across ridge areas while prolonged
rains can have a greater impact on the local hydrogeology, which contributes significantly
to progressive (but slower) terrain saturation of the terrain slope over time. According
to [46,47,50,78], this dynamic is directly imputed to the characteristic of the hydrological
model chosen for simulating subsurface flow.

3.2. Threshold Curves Comparison for a Quantitative Validation of the Model

The SLEM model has been compared against the local rainfall threshold curves to
address its reliability in predicting terrain failures for rainfall duration d. Rainfall thresholds
(Equation (29)) are commonly used for determining the critical condition for shallow
landslide collapse, simply considering only the rainfall as a trigger, i.e., the precipitation
intensity and the duration [59,67,102] through empirical coefficients athrs and nthrs. Recently,
in the Emilia area, there were several curves published [24,65,103] and, among them, we
chose the most representative ones to validate the proposed model (Table 4).

Ithrs = athrsd−nthrs (29)

Table 4. Threshold curves were considered for the validation.

Author athrs nthrs

Ceriani 20.1 −0.55
Segoni 22.46 −0.64

Ciccarese_1 21.25 −0.403
Ciccarese_2 35.68 −0.403
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The Ceriani curve was developed in 1994, and it is generally adopted for the Lombardy
region [102], which is located on the border of the Trebbia basin (Figure 5). This curve was
considered one of the most affordable and representative for rainfall-induced phenomena
such as debris flow and soil slips because it was retrieved from a quite large database
containing several episodes that occurred across the Italian Alpine environment [103].
However, from a geological and lithological point of view, the Apennines and Alpine have
different characteristics, so other authors (Segoni [24] and Ciccarese [65]) have reported the
rainfall thresholds valid for the Northern Apennines. Segoni has established a threshold
considering some critical rainfall events that occurred across the Emilia and Tuscany
regions, while Ciccarese has defined two thresholds starting from two heavy rainfall events
that occurred in the Emilia area in 2014 and 2015. The parameter athrs of Segoni and
Ciccarese_1 threshold is very close to the Ceriani one while the nthrs parameter differs by
about ±20%. On the other hand, Ciccarese_2 is higher than the previous and represents a
sort of upper limit threshold where, according to the author, the probability of having a
shallow landslide triggering after rain episodes above the threshold is almost certain.

The validation of the model against the local threshold curves has been carried out
through the MaskDynamic index and its combinations defined by Equations (30)–(32). In
Figure 11, the MaskDynamic index calculation is reported for different rainfall durations d
and is interpreted as follows:
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For assessing the hydrological model of the subsurface flow, the kinematic wave 
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soil water hw * n [m] (where n is the terrain porosity [-]) depends on the advection term డడ௫ [m2/s] and the source term 𝑖 [m/s]. The first term describes the subsurface water flow 
variation along the slope element while the second represents the rainfall infiltration 
(Figure 2a). If the slopes are characterized by shallow soils, temporary aquifers may form 
after a period of rainfall. Considering the Dupuit approximation for the subsurface water 
flow velocity [50,78] (Equation (4), where hydraulic gradient డೢడ௫  is approximated by local 
terrain slope assuming the flow parallel to the bedrock), a stationary process (Equation 
(5), where డೢడ௧ = 0) and, integrating along the flow path coordinate x, the hydrological 
model reduces to Equation (6). In Equation (6), the quantity a represents the upslope 
contributing area for the subsurface flow while B is the width of the slope element 
(contour length) perpendicular to the subsurface flux. Neglecting any infiltration 
mechanism addressed to the rainfall rate 𝑟 (namely 𝑖 =  𝑟) and assuming a constant 
rainfall rate డబడ௧ = 0, the soil water hw could be expressed as Equation (7). If the terrain 
slope β and the Ksat are constant and independent from time, the only quantity that could 
perturb hw depending on the rainfall duration d is the term a(d), the Dynamic Contributing 
Area (DCA) (Figure 2b).  

 

The index value is 0 (blue) when the critical rainfall for slope instability rcrit is equal to
or above the correspondent rainfall threshold intensity;
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The index value is 1 (red) when the calculated critical rainfall rcrit is settled below the
threshold curve.

From the MaskDynamic index, the number of False Alarms (FA) and the Correct Predic-
tions (CP) detected by the model can be derived. According to [104], FA and CP correspond
to the FN (False Negative) and the TP (True Positive) indexes in the ROC (Receiver Op-
erating Characteristic) methodology, respectively [105]. The latter is frequently adopted
for assessing the performances of binary classification, such as the slope stability models
that evaluate failure and non-failure conditions. The ROC methodology is completed if
the other two categories (TN True Negative and FP False Positive) are also determined.
However, for the SLEM model, imposing the limit equilibrium condition (which admits
that failure surely happens) can reduce the ROC assessment, posing TN = FP = 0. In other
words, the possibility that the model predicts a no-failure condition is neglected. The
performance of SLEM was assessed both from graphical inspection (Figure 11) and using
ROC performance indexes.

MaskDynamic = 1× (rcrit < Ithrs) (30)

FA (False Alarm) = sum(MaskDynamic) (31)

CP (Correct Prediction) = sum(1−MaskDynamic) (32)

Looking at the four thresholds examined in Figure 11, it can be appreciated that Segoni
and Ceriani behave quite similarly, varying the critical rainfall duration d. For short but
intense rainfalls, SLEM gives rcrit below these thresholds, especially across ridges where
high topographic gradients and fast hydrology can perturb the terrain stability faster. Here,
the dynamic contributing area can reach its maximum value in a relatively short time (due
to lower subsurface corrivation times), and steep slopes contribute to reducing the rcrit,
which are settled below the rainfall thresholds. Similar behaviour is confirmed by other
rainfall thresholds proposed by Ciccarese.
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Figure 11. Graphical representation of the MaskDynamic index for SLEM validation with respect to
the local threshold curves of Segoni, Ceriani, and Ciccarese and for different durations of 1 h, 6 h,
24 h, 48 h, 72 h, and 120 h.

Conversely, for long-lasting events, the rcrit evaluated by SLEM has performed differ-
ently depending on the threshold chosen. For Segoni and Ceriani thresholds, the model
performed less conservatively, giving rcrit above them. On the other hand, Ciccarese’s
thresholds behave quite differently, especially for long-duration events (>48 h), showing a
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large number of areas where rcrit is settled significantly below (red areas). This is particu-
larly true for Ciccarese_2, which is a higher threshold if compared with the others (Table 3).
These results were partially expected because, according to the author [65], these thresholds
best fit intense events that have triggered shallow landslides in a few hours or at least 1 or
2 days.

From the graphical analysis was noticed that that SLEM is rather in accordance with
the Ceriani and Segoni rainfall thresholds, which represent the suggested curves for that
area. However, our analysis has highlighted how their variability is not negligible, so
SLEM performance may be affected depending on the threshold choice. To overcome
this fact, the ROC analysis was conducted. According to [67,106], a rainfall threshold is
determined by admitting a probability of 5–10% that a real landslide could not be detected
by thresholds. In other words, there is a probability of 5–10% that a critical rainfall for
triggering failure is settled below the threshold. This concept is inherited from statistical
analysis and represents the probability of rejecting the null hypothesis that states that the
threshold proposed is corrected for classifying critical and non-critical events in that specific
area. Following this idea, that probability could be easily calculated using the performance
index FAlr (False Alarms Rate) expressed in Equation (33). Conversely, the PPow (Predictive
Power) of the model is calculated using Equation (34). To validate SLEM was our interest
to try to verify the FAlr within the acceptable range of 5–10%.

PPow =
CP

CP + FA
(33)

FAlr =
FA

CP + FA
(34)

As can be appreciated from Figure 12, the FAlr is around the value of 10% but tends to
vary increasing the rainfall duration. In particular, the model prediction becomes worse if
Ciccarese thresholds are considered for validation, rising FAlr up to 20–25% for d > 72 h.
On the contrary, using Ceriani and Segoni thresholds FAlr reduces sensibly to values
around 5%. The same consideration can be appreciated using the PPow index, which is
higher for Segoni and Ceriani thresholds and lower for Ciccarese thresholds. Keeping
the current parameterization, the SLEM validation is retained valid considering Segoni
and Ceriani thresholds, confirming the results of the graphical analysis. SLEM validation
against threshold curves permits to assessment of the reliability of the predicted instability
in function of the critical rainfall, precisely describing local slope behaviour. According
to [50], threshold curves inform about the predisposition of the area to trigger shallow
landslides, while SLEM could zoom into the physical behaviour of the process, highlighting
the location where critical situations may potentially occur.
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3.3. Powerline Hazard Estimation

After model validation, two ways for assessing the powerline’s hazard across the
Trebbia watershed were tested. The rainfall intensity rcrit is a key parameter for defining
the powerline hazards because lower values correspond to areas where instabilities may
occur with higher frequency. As a result, those areas that admit a lower critical rainfall
ratio are the ones where a slope failure is much more probable to occur during slightly
intense precipitation, so they are the most vulnerable from an infrastructure viewpoint [34].
Critical rainfall is, therefore, a quantitative indicator that could be considered to prioritize
the maintenance or relocation of the most vulnerable pylon.

Different rainfall durations led to different critical intensities. Table 5 reports the
statistics calculated for each pylon located in the Trebbia watershed (total number = 408).
The mean rcrit is very high for low rainfall durations (<6 h) and tends to decrease to a
more realistic value for higher d. Similar trends are confirmed by the variance. However,
using rcrit is quite difficult to highlight the most vulnerable pylons simply comparing the
maps shown in Figure 13, where rainfall durations of 1 h and 120 h are reported. Another
possibility is to try to convert rcrit in terms of the TR of precipitation which is a measure
of the temporal frequency of the critical rainfall event. In Equation (33), the critical TR
period is assumed to be equal to the TR of the landslide failure (under the hypothesis of
iso-frequency), which is equal to the TR of powerline failure if the landslide is triggered in
the proximity of a pylon. Starting from these assumptions, the powerline failure could be
directly related to the magnitude of the critical precipitation (Equation (35)), giving a better
representation of critical areas across the Trebbia basin (Figure 14).

TRcritical rain f all = TRlandslide f ailure = TRpowerline f ailure (35)

Table 5. Statistics on rcrit for the 408 pylons located in Trebbia watershed basin.

Statistics on rcrit 1 h 6 h 24 h 48 h 72 h 120 h

Mean [mm/h] 533.66 89.49 22.80 11.69 7.98 5.02
Median [mm/h] 516.49 86.12 21.53 10.77 7.18 4.31

Variance [mm/h]2 288,845.36 7962.67 479.65 114.24 48.46 16.00
Mean Square Error [mm/h] 537.44 89.23 21.90 10.69 6.96 4.00
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each threshold are in agreement. Conversely, for long-lasting events (d > 24 h), the results 
are quite variable: using the Ceriani and Segoni threshold, the number of the pylons at 
risk is projected to increase up to 350–360, while using the Ciccarese curves, the number 
of pylons at risk tends to reduce progressively to 200 or below. This technique strongly 
depends on the choice of the rainfall thresholds; therefore, the same analysis has been 
carried out using the TR quantity. Because slope failure recurrence is critical for assessing 
the infrastructure at risk, five classes of TR were defined in order to group rare and 
frequent events:  
 TR > 100 yrs, very rare; 
 50 < TR < 100 yrs, rare; 
 25 < TR < 50 yrs, fairly rare (range of the span life of powerlines); 
 10 < TR < 25 yrs, frequent; 
 TR < 10 yrs, very frequent. 

In Figure 15 the pylon classification in the function of the failure TR is presented. As 
can be noticed, this classification is dependent on the duration of the rainfall: 
 For short but intense rainfall, the pylons are mainly classified into two groups, the 

stable pylons (where the failure is “rare”, around 270, 65% of the total) and the 
unstable pylons (where the failure is “very frequent”, around 130, 30% of the total). 
These clusters are also confirmed by Figure 16, where rcrit and TR were plotted against 
the topographical slope, which is a predisposing factor of slope instability. As can be 

Figure 14. Pylon ranking using the information of TR, expressed in yrs and subdivided into 10 classes,
for different rainfall durations (1 h and 120 h) located within the Trebbia watershed basin.

As can be appreciated in Figure 14, different durations (d = 1 h and d = 120 h) led to
different rcrit and TR of failure. To highlight this aspect in the map, red colours were selected
for lower return time (i.e., more frequent landslide failure) and green colours for higher
return time (i.e., less probable). Then, the TR was sampled in correspondence with the
location of each powerline pylon, calculating some statistics reported in Table 6. By looking
at the pylon points, mean TR varies with d within the range of 60–80 yr with a significant
variability around ±40 yr. The maps highlight those areas prone to failure for a short
duration and intense precipitation, and others where failure occurs for long-lasting events.

Table 6. Statistics on TR for the 408 pylons located in the Trebbia watershed basin.

Statistics on TR 1 h 6 h 24 h 48 h 72 h 120 h

Mean [yrs] 67.43 67.24 66.88 68.02 72.04 81.29
Median [yrs] 100.00 100.00 100.00 100.00 100.00 100.00

Variance [yrs2] 2199.27 2200.61 2180.22 2003.10 1735.91 1305.46
Mean Square Error [yrs] 46.90 46.91 46.69 44.76 41.66 36.13

Elaborating on the maps of Figures 13 and 14, it is possible to extract the number of
pylons at risk. A first extraction was carried out considering the pylons with rcrit values
above the rainfall thresholds of Ceriani, Segoni, and Ciccarese. In Figure 15 it can be seen
that for d = 1 h, the number of pylons detected at risk is 275, and the results computed
for each threshold are in agreement. Conversely, for long-lasting events (d > 24 h), the
results are quite variable: using the Ceriani and Segoni threshold, the number of the
pylons at risk is projected to increase up to 350–360, while using the Ciccarese curves, the
number of pylons at risk tends to reduce progressively to 200 or below. This technique
strongly depends on the choice of the rainfall thresholds; therefore, the same analysis has
been carried out using the TR quantity. Because slope failure recurrence is critical for
assessing the infrastructure at risk, five classes of TR were defined in order to group rare
and frequent events:
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Within the square bracket are all the presented parameters related to the stability 
model of the infinitely extended slope, generally adopted for assessing rainfall-induced 
shallow landslide failures, as described by Iverson [42] and Harp [12]: 
 Cr and Cs: the cohesion of plant roots and soil [kPa] on vegetated terrain slopes; 
 ρw and ρs: the density of water and sediment under saturated conditions [kg/m3]; 
 g, ht, and B: the acceleration of gravity (9.81 m/s2), depth of the ground [m], and 

contour length [m]; 
 β and φ: slope and ground friction angle [°]; 
 W: additional weight of plant biomass [kPa] on vegetated terrain slopes. 

The innovative part of the model resides within the first three terms T, a(d), and rc(d), 
where hydrological quantities are combined as follows: 
 T: the transmissivity of the shallow soil [m2/s], obtained as a product of soil thickness 

ht for the saturated hydraulic permeability Ksat [m/s]; 
 a(d): the Dynamic Contributing Area (DCA) [m2] of the upstream subsurface runoff, 

which can evolve (increase or decrease) depending on the rainfall duration d up to 
the maximum contributing area amax; 

 rcrit(d) is the critical intensity of precipitation [mm/h] of duration d that solves 
Equation (1). 
In the next paragraph, the key passages described in [50,70,71] adopted to retrieve 

Equation (1) are reported. The hydrological model, the slope stability model and their 
coupling are reported in Sections 2.1–2.3. Then, the strategy adopted for evaluating DCA 
and for including initial soil moisture dependence is described in Sections 2.4 and 2.5. In 
Section 2.6, the case study of the Emilia-Romagna region taken into consideration for the 
analysis is presented, while the description of the model implementation and initial data 
investigation is reported in Section 2.7. 

2.1. Hydrological Model 
For assessing the hydrological model of the subsurface flow, the kinematic wave 

theory developed by [46,47,77] was considered. Starting from the continuity equation of 
the subsurface water flow (Equations (2) and (3)), the temporal variation of the effective 
soil water hw * n [m] (where n is the terrain porosity [-]) depends on the advection term డడ௫ [m2/s] and the source term 𝑖 [m/s]. The first term describes the subsurface water flow 
variation along the slope element while the second represents the rainfall infiltration 
(Figure 2a). If the slopes are characterized by shallow soils, temporary aquifers may form 
after a period of rainfall. Considering the Dupuit approximation for the subsurface water 
flow velocity [50,78] (Equation (4), where hydraulic gradient డೢడ௫  is approximated by local 
terrain slope assuming the flow parallel to the bedrock), a stationary process (Equation 
(5), where డೢడ௧ = 0) and, integrating along the flow path coordinate x, the hydrological 
model reduces to Equation (6). In Equation (6), the quantity a represents the upslope 
contributing area for the subsurface flow while B is the width of the slope element 
(contour length) perpendicular to the subsurface flux. Neglecting any infiltration 
mechanism addressed to the rainfall rate 𝑟 (namely 𝑖 =  𝑟) and assuming a constant 
rainfall rate డబడ௧ = 0, the soil water hw could be expressed as Equation (7). If the terrain 
slope β and the Ksat are constant and independent from time, the only quantity that could 
perturb hw depending on the rainfall duration d is the term a(d), the Dynamic Contributing 
Area (DCA) (Figure 2b).  

 

TR > 100 yrs, very rare;
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Within the square bracket are all the presented parameters related to the stability 
model of the infinitely extended slope, generally adopted for assessing rainfall-induced 
shallow landslide failures, as described by Iverson [42] and Harp [12]: 
 Cr and Cs: the cohesion of plant roots and soil [kPa] on vegetated terrain slopes; 
 ρw and ρs: the density of water and sediment under saturated conditions [kg/m3]; 
 g, ht, and B: the acceleration of gravity (9.81 m/s2), depth of the ground [m], and 

contour length [m]; 
 β and φ: slope and ground friction angle [°]; 
 W: additional weight of plant biomass [kPa] on vegetated terrain slopes. 

The innovative part of the model resides within the first three terms T, a(d), and rc(d), 
where hydrological quantities are combined as follows: 
 T: the transmissivity of the shallow soil [m2/s], obtained as a product of soil thickness 

ht for the saturated hydraulic permeability Ksat [m/s]; 
 a(d): the Dynamic Contributing Area (DCA) [m2] of the upstream subsurface runoff, 

which can evolve (increase or decrease) depending on the rainfall duration d up to 
the maximum contributing area amax; 

 rcrit(d) is the critical intensity of precipitation [mm/h] of duration d that solves 
Equation (1). 
In the next paragraph, the key passages described in [50,70,71] adopted to retrieve 

Equation (1) are reported. The hydrological model, the slope stability model and their 
coupling are reported in Sections 2.1–2.3. Then, the strategy adopted for evaluating DCA 
and for including initial soil moisture dependence is described in Sections 2.4 and 2.5. In 
Section 2.6, the case study of the Emilia-Romagna region taken into consideration for the 
analysis is presented, while the description of the model implementation and initial data 
investigation is reported in Section 2.7. 

2.1. Hydrological Model 
For assessing the hydrological model of the subsurface flow, the kinematic wave 

theory developed by [46,47,77] was considered. Starting from the continuity equation of 
the subsurface water flow (Equations (2) and (3)), the temporal variation of the effective 
soil water hw * n [m] (where n is the terrain porosity [-]) depends on the advection term డడ௫ [m2/s] and the source term 𝑖 [m/s]. The first term describes the subsurface water flow 
variation along the slope element while the second represents the rainfall infiltration 
(Figure 2a). If the slopes are characterized by shallow soils, temporary aquifers may form 
after a period of rainfall. Considering the Dupuit approximation for the subsurface water 
flow velocity [50,78] (Equation (4), where hydraulic gradient డೢడ௫  is approximated by local 
terrain slope assuming the flow parallel to the bedrock), a stationary process (Equation 
(5), where డೢడ௧ = 0) and, integrating along the flow path coordinate x, the hydrological 
model reduces to Equation (6). In Equation (6), the quantity a represents the upslope 
contributing area for the subsurface flow while B is the width of the slope element 
(contour length) perpendicular to the subsurface flux. Neglecting any infiltration 
mechanism addressed to the rainfall rate 𝑟 (namely 𝑖 =  𝑟) and assuming a constant 
rainfall rate డబడ௧ = 0, the soil water hw could be expressed as Equation (7). If the terrain 
slope β and the Ksat are constant and independent from time, the only quantity that could 
perturb hw depending on the rainfall duration d is the term a(d), the Dynamic Contributing 
Area (DCA) (Figure 2b).  

 

50 < TR < 100 yrs, rare;
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Within the square bracket are all the presented parameters related to the stability 
model of the infinitely extended slope, generally adopted for assessing rainfall-induced 
shallow landslide failures, as described by Iverson [42] and Harp [12]: 
 Cr and Cs: the cohesion of plant roots and soil [kPa] on vegetated terrain slopes; 
 ρw and ρs: the density of water and sediment under saturated conditions [kg/m3]; 
 g, ht, and B: the acceleration of gravity (9.81 m/s2), depth of the ground [m], and 

contour length [m]; 
 β and φ: slope and ground friction angle [°]; 
 W: additional weight of plant biomass [kPa] on vegetated terrain slopes. 

The innovative part of the model resides within the first three terms T, a(d), and rc(d), 
where hydrological quantities are combined as follows: 
 T: the transmissivity of the shallow soil [m2/s], obtained as a product of soil thickness 

ht for the saturated hydraulic permeability Ksat [m/s]; 
 a(d): the Dynamic Contributing Area (DCA) [m2] of the upstream subsurface runoff, 

which can evolve (increase or decrease) depending on the rainfall duration d up to 
the maximum contributing area amax; 

 rcrit(d) is the critical intensity of precipitation [mm/h] of duration d that solves 
Equation (1). 
In the next paragraph, the key passages described in [50,70,71] adopted to retrieve 

Equation (1) are reported. The hydrological model, the slope stability model and their 
coupling are reported in Sections 2.1–2.3. Then, the strategy adopted for evaluating DCA 
and for including initial soil moisture dependence is described in Sections 2.4 and 2.5. In 
Section 2.6, the case study of the Emilia-Romagna region taken into consideration for the 
analysis is presented, while the description of the model implementation and initial data 
investigation is reported in Section 2.7. 

2.1. Hydrological Model 
For assessing the hydrological model of the subsurface flow, the kinematic wave 

theory developed by [46,47,77] was considered. Starting from the continuity equation of 
the subsurface water flow (Equations (2) and (3)), the temporal variation of the effective 
soil water hw * n [m] (where n is the terrain porosity [-]) depends on the advection term డడ௫ [m2/s] and the source term 𝑖 [m/s]. The first term describes the subsurface water flow 
variation along the slope element while the second represents the rainfall infiltration 
(Figure 2a). If the slopes are characterized by shallow soils, temporary aquifers may form 
after a period of rainfall. Considering the Dupuit approximation for the subsurface water 
flow velocity [50,78] (Equation (4), where hydraulic gradient డೢడ௫  is approximated by local 
terrain slope assuming the flow parallel to the bedrock), a stationary process (Equation 
(5), where డೢడ௧ = 0) and, integrating along the flow path coordinate x, the hydrological 
model reduces to Equation (6). In Equation (6), the quantity a represents the upslope 
contributing area for the subsurface flow while B is the width of the slope element 
(contour length) perpendicular to the subsurface flux. Neglecting any infiltration 
mechanism addressed to the rainfall rate 𝑟 (namely 𝑖 =  𝑟) and assuming a constant 
rainfall rate డబడ௧ = 0, the soil water hw could be expressed as Equation (7). If the terrain 
slope β and the Ksat are constant and independent from time, the only quantity that could 
perturb hw depending on the rainfall duration d is the term a(d), the Dynamic Contributing 
Area (DCA) (Figure 2b).  

 

25 < TR < 50 yrs, fairly rare (range of the span life of powerlines);
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Within the square bracket are all the presented parameters related to the stability 
model of the infinitely extended slope, generally adopted for assessing rainfall-induced 
shallow landslide failures, as described by Iverson [42] and Harp [12]: 
 Cr and Cs: the cohesion of plant roots and soil [kPa] on vegetated terrain slopes; 
 ρw and ρs: the density of water and sediment under saturated conditions [kg/m3]; 
 g, ht, and B: the acceleration of gravity (9.81 m/s2), depth of the ground [m], and 

contour length [m]; 
 β and φ: slope and ground friction angle [°]; 
 W: additional weight of plant biomass [kPa] on vegetated terrain slopes. 

The innovative part of the model resides within the first three terms T, a(d), and rc(d), 
where hydrological quantities are combined as follows: 
 T: the transmissivity of the shallow soil [m2/s], obtained as a product of soil thickness 

ht for the saturated hydraulic permeability Ksat [m/s]; 
 a(d): the Dynamic Contributing Area (DCA) [m2] of the upstream subsurface runoff, 

which can evolve (increase or decrease) depending on the rainfall duration d up to 
the maximum contributing area amax; 

 rcrit(d) is the critical intensity of precipitation [mm/h] of duration d that solves 
Equation (1). 
In the next paragraph, the key passages described in [50,70,71] adopted to retrieve 

Equation (1) are reported. The hydrological model, the slope stability model and their 
coupling are reported in Sections 2.1–2.3. Then, the strategy adopted for evaluating DCA 
and for including initial soil moisture dependence is described in Sections 2.4 and 2.5. In 
Section 2.6, the case study of the Emilia-Romagna region taken into consideration for the 
analysis is presented, while the description of the model implementation and initial data 
investigation is reported in Section 2.7. 

2.1. Hydrological Model 
For assessing the hydrological model of the subsurface flow, the kinematic wave 

theory developed by [46,47,77] was considered. Starting from the continuity equation of 
the subsurface water flow (Equations (2) and (3)), the temporal variation of the effective 
soil water hw * n [m] (where n is the terrain porosity [-]) depends on the advection term డడ௫ [m2/s] and the source term 𝑖 [m/s]. The first term describes the subsurface water flow 
variation along the slope element while the second represents the rainfall infiltration 
(Figure 2a). If the slopes are characterized by shallow soils, temporary aquifers may form 
after a period of rainfall. Considering the Dupuit approximation for the subsurface water 
flow velocity [50,78] (Equation (4), where hydraulic gradient డೢడ௫  is approximated by local 
terrain slope assuming the flow parallel to the bedrock), a stationary process (Equation 
(5), where డೢడ௧ = 0) and, integrating along the flow path coordinate x, the hydrological 
model reduces to Equation (6). In Equation (6), the quantity a represents the upslope 
contributing area for the subsurface flow while B is the width of the slope element 
(contour length) perpendicular to the subsurface flux. Neglecting any infiltration 
mechanism addressed to the rainfall rate 𝑟 (namely 𝑖 =  𝑟) and assuming a constant 
rainfall rate డబడ௧ = 0, the soil water hw could be expressed as Equation (7). If the terrain 
slope β and the Ksat are constant and independent from time, the only quantity that could 
perturb hw depending on the rainfall duration d is the term a(d), the Dynamic Contributing 
Area (DCA) (Figure 2b).  

 

10 < TR < 25 yrs, frequent;
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Within the square bracket are all the presented parameters related to the stability 
model of the infinitely extended slope, generally adopted for assessing rainfall-induced 
shallow landslide failures, as described by Iverson [42] and Harp [12]: 
 Cr and Cs: the cohesion of plant roots and soil [kPa] on vegetated terrain slopes; 
 ρw and ρs: the density of water and sediment under saturated conditions [kg/m3]; 
 g, ht, and B: the acceleration of gravity (9.81 m/s2), depth of the ground [m], and 

contour length [m]; 
 β and φ: slope and ground friction angle [°]; 
 W: additional weight of plant biomass [kPa] on vegetated terrain slopes. 

The innovative part of the model resides within the first three terms T, a(d), and rc(d), 
where hydrological quantities are combined as follows: 
 T: the transmissivity of the shallow soil [m2/s], obtained as a product of soil thickness 

ht for the saturated hydraulic permeability Ksat [m/s]; 
 a(d): the Dynamic Contributing Area (DCA) [m2] of the upstream subsurface runoff, 

which can evolve (increase or decrease) depending on the rainfall duration d up to 
the maximum contributing area amax; 

 rcrit(d) is the critical intensity of precipitation [mm/h] of duration d that solves 
Equation (1). 
In the next paragraph, the key passages described in [50,70,71] adopted to retrieve 

Equation (1) are reported. The hydrological model, the slope stability model and their 
coupling are reported in Sections 2.1–2.3. Then, the strategy adopted for evaluating DCA 
and for including initial soil moisture dependence is described in Sections 2.4 and 2.5. In 
Section 2.6, the case study of the Emilia-Romagna region taken into consideration for the 
analysis is presented, while the description of the model implementation and initial data 
investigation is reported in Section 2.7. 

2.1. Hydrological Model 
For assessing the hydrological model of the subsurface flow, the kinematic wave 

theory developed by [46,47,77] was considered. Starting from the continuity equation of 
the subsurface water flow (Equations (2) and (3)), the temporal variation of the effective 
soil water hw * n [m] (where n is the terrain porosity [-]) depends on the advection term డడ௫ [m2/s] and the source term 𝑖 [m/s]. The first term describes the subsurface water flow 
variation along the slope element while the second represents the rainfall infiltration 
(Figure 2a). If the slopes are characterized by shallow soils, temporary aquifers may form 
after a period of rainfall. Considering the Dupuit approximation for the subsurface water 
flow velocity [50,78] (Equation (4), where hydraulic gradient డೢడ௫  is approximated by local 
terrain slope assuming the flow parallel to the bedrock), a stationary process (Equation 
(5), where డೢడ௧ = 0) and, integrating along the flow path coordinate x, the hydrological 
model reduces to Equation (6). In Equation (6), the quantity a represents the upslope 
contributing area for the subsurface flow while B is the width of the slope element 
(contour length) perpendicular to the subsurface flux. Neglecting any infiltration 
mechanism addressed to the rainfall rate 𝑟 (namely 𝑖 =  𝑟) and assuming a constant 
rainfall rate డబడ௧ = 0, the soil water hw could be expressed as Equation (7). If the terrain 
slope β and the Ksat are constant and independent from time, the only quantity that could 
perturb hw depending on the rainfall duration d is the term a(d), the Dynamic Contributing 
Area (DCA) (Figure 2b).  

 

TR < 10 yrs, very frequent.
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appreciated, failure can happen at whatever slope inclination, but there is a consistent 
number of pylons that do not experience any instability. 

 For long-lasting precipitation (d > 24 h), the overall pylons at risk are reduced to 20–
25% of the total, increasing the ones in safer conditions from 270 (d = 48 h) to 310 (d = 
120 h). The pylons located in always unstable areas reduce to ~70–60 (around 15% of 
the total). The TR is more uniformly distributed for classes with TR < 100 yrs, showing 
a consistent reduction of the “very frequent” event (located across the ridges), while 
an increasing number of pylons within the “middle” TR classes is observed. Figure 
16 also highlights how the rcrit is not able to distinguish safe and unsafe pylons, while 
with the TR data, stable pylons are clearly detected with respect to unstable ones.  

 
Figure 15. Pylon statistics using the information of rcrit above the rainfall thresholds and TR 
evaluation for different rainfall durations (1 h and 120 h) located within the Trebbia watershed basin. 

 
Figure 16. Pylon statistics using the information of rcrit and TR against the slope inclination 
predisposing factor evaluated for different rainfall durations (1 h and 120 h) located within the 
Trebbia watershed basin. 

  

Figure 15. Pylon statistics using the information of rcrit above the rainfall thresholds and TR evalua-
tion for different rainfall durations (1 h and 120 h) located within the Trebbia watershed basin.

In Figure 15 the pylon classification in the function of the failure TR is presented. As
can be noticed, this classification is dependent on the duration of the rainfall:
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Within the square bracket are all the presented parameters related to the stability 
model of the infinitely extended slope, generally adopted for assessing rainfall-induced 
shallow landslide failures, as described by Iverson [42] and Harp [12]: 
 Cr and Cs: the cohesion of plant roots and soil [kPa] on vegetated terrain slopes; 
 ρw and ρs: the density of water and sediment under saturated conditions [kg/m3]; 
 g, ht, and B: the acceleration of gravity (9.81 m/s2), depth of the ground [m], and 

contour length [m]; 
 β and φ: slope and ground friction angle [°]; 
 W: additional weight of plant biomass [kPa] on vegetated terrain slopes. 

The innovative part of the model resides within the first three terms T, a(d), and rc(d), 
where hydrological quantities are combined as follows: 
 T: the transmissivity of the shallow soil [m2/s], obtained as a product of soil thickness 

ht for the saturated hydraulic permeability Ksat [m/s]; 
 a(d): the Dynamic Contributing Area (DCA) [m2] of the upstream subsurface runoff, 

which can evolve (increase or decrease) depending on the rainfall duration d up to 
the maximum contributing area amax; 

 rcrit(d) is the critical intensity of precipitation [mm/h] of duration d that solves 
Equation (1). 
In the next paragraph, the key passages described in [50,70,71] adopted to retrieve 

Equation (1) are reported. The hydrological model, the slope stability model and their 
coupling are reported in Sections 2.1–2.3. Then, the strategy adopted for evaluating DCA 
and for including initial soil moisture dependence is described in Sections 2.4 and 2.5. In 
Section 2.6, the case study of the Emilia-Romagna region taken into consideration for the 
analysis is presented, while the description of the model implementation and initial data 
investigation is reported in Section 2.7. 

2.1. Hydrological Model 
For assessing the hydrological model of the subsurface flow, the kinematic wave 

theory developed by [46,47,77] was considered. Starting from the continuity equation of 
the subsurface water flow (Equations (2) and (3)), the temporal variation of the effective 
soil water hw * n [m] (where n is the terrain porosity [-]) depends on the advection term డడ௫ [m2/s] and the source term 𝑖 [m/s]. The first term describes the subsurface water flow 
variation along the slope element while the second represents the rainfall infiltration 
(Figure 2a). If the slopes are characterized by shallow soils, temporary aquifers may form 
after a period of rainfall. Considering the Dupuit approximation for the subsurface water 
flow velocity [50,78] (Equation (4), where hydraulic gradient డೢడ௫  is approximated by local 
terrain slope assuming the flow parallel to the bedrock), a stationary process (Equation 
(5), where డೢడ௧ = 0) and, integrating along the flow path coordinate x, the hydrological 
model reduces to Equation (6). In Equation (6), the quantity a represents the upslope 
contributing area for the subsurface flow while B is the width of the slope element 
(contour length) perpendicular to the subsurface flux. Neglecting any infiltration 
mechanism addressed to the rainfall rate 𝑟 (namely 𝑖 =  𝑟) and assuming a constant 
rainfall rate డబడ௧ = 0, the soil water hw could be expressed as Equation (7). If the terrain 
slope β and the Ksat are constant and independent from time, the only quantity that could 
perturb hw depending on the rainfall duration d is the term a(d), the Dynamic Contributing 
Area (DCA) (Figure 2b).  

 

For short but intense rainfall, the pylons are mainly classified into two groups, the
stable pylons (where the failure is “rare”, around 270, 65% of the total) and the unstable
pylons (where the failure is “very frequent”, around 130, 30% of the total). These
clusters are also confirmed by Figure 16, where rcrit and TR were plotted against the
topographical slope, which is a predisposing factor of slope instability. As can be
appreciated, failure can happen at whatever slope inclination, but there is a consistent
number of pylons that do not experience any instability.
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Within the square bracket are all the presented parameters related to the stability 
model of the infinitely extended slope, generally adopted for assessing rainfall-induced 
shallow landslide failures, as described by Iverson [42] and Harp [12]: 
 Cr and Cs: the cohesion of plant roots and soil [kPa] on vegetated terrain slopes; 
 ρw and ρs: the density of water and sediment under saturated conditions [kg/m3]; 
 g, ht, and B: the acceleration of gravity (9.81 m/s2), depth of the ground [m], and 

contour length [m]; 
 β and φ: slope and ground friction angle [°]; 
 W: additional weight of plant biomass [kPa] on vegetated terrain slopes. 

The innovative part of the model resides within the first three terms T, a(d), and rc(d), 
where hydrological quantities are combined as follows: 
 T: the transmissivity of the shallow soil [m2/s], obtained as a product of soil thickness 

ht for the saturated hydraulic permeability Ksat [m/s]; 
 a(d): the Dynamic Contributing Area (DCA) [m2] of the upstream subsurface runoff, 

which can evolve (increase or decrease) depending on the rainfall duration d up to 
the maximum contributing area amax; 

 rcrit(d) is the critical intensity of precipitation [mm/h] of duration d that solves 
Equation (1). 
In the next paragraph, the key passages described in [50,70,71] adopted to retrieve 

Equation (1) are reported. The hydrological model, the slope stability model and their 
coupling are reported in Sections 2.1–2.3. Then, the strategy adopted for evaluating DCA 
and for including initial soil moisture dependence is described in Sections 2.4 and 2.5. In 
Section 2.6, the case study of the Emilia-Romagna region taken into consideration for the 
analysis is presented, while the description of the model implementation and initial data 
investigation is reported in Section 2.7. 

2.1. Hydrological Model 
For assessing the hydrological model of the subsurface flow, the kinematic wave 

theory developed by [46,47,77] was considered. Starting from the continuity equation of 
the subsurface water flow (Equations (2) and (3)), the temporal variation of the effective 
soil water hw * n [m] (where n is the terrain porosity [-]) depends on the advection term డడ௫ [m2/s] and the source term 𝑖 [m/s]. The first term describes the subsurface water flow 
variation along the slope element while the second represents the rainfall infiltration 
(Figure 2a). If the slopes are characterized by shallow soils, temporary aquifers may form 
after a period of rainfall. Considering the Dupuit approximation for the subsurface water 
flow velocity [50,78] (Equation (4), where hydraulic gradient డೢడ௫  is approximated by local 
terrain slope assuming the flow parallel to the bedrock), a stationary process (Equation 
(5), where డೢడ௧ = 0) and, integrating along the flow path coordinate x, the hydrological 
model reduces to Equation (6). In Equation (6), the quantity a represents the upslope 
contributing area for the subsurface flow while B is the width of the slope element 
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For long-lasting precipitation (d > 24 h), the overall pylons at risk are reduced to
20–25% of the total, increasing the ones in safer conditions from 270 (d = 48 h) to
310 (d = 120 h). The pylons located in always unstable areas reduce to ~70–60 (around
15% of the total). The TR is more uniformly distributed for classes with TR < 100 yrs,
showing a consistent reduction of the “very frequent” event (located across the ridges),
while an increasing number of pylons within the “middle” TR classes is observed.
Figure 16 also highlights how the rcrit is not able to distinguish safe and unsafe pylons,
while with the TR data, stable pylons are clearly detected with respect to unstable ones.
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4. Discussion

This work has presented an application of the SLEM model, firstly elaborated by Borga
et al. and Tarolli et al. for evaluating the shallow landslide hazard and then reworked
in this paper. The main purpose of the analysis was to evaluate the landslide hazard for
some elements of the electrical network (powerlines). This represents a mandatory task
required by electrical stakeholders for operational planning and for implementing resilience
strategies to cope with these types of threats. The choice of this model has been driven by
several motivations:
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SLEM permits a faster simulation of the shallow landslide failure by simply merging
an infinite slope stability model and a kinematic routing of subsurface flow. The
parameters required are reduced to the minimum because it needs only information
about topographical slopes, soil textures, and saturated permeabilities of shallow
soils, which can be gathered from national and worldwide available databases. The
parameterization of cohesion and friction angle coefficients is trickier, but it is possible
to relate them to soil coverage and texture for retrieving a spatial distribution;
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SLEM made explicit the relation between critical rainfall rate and slope stability
through an approximate but physically consistent description of the hydrogeological
water cycle. In fact, with respect to the classical simple slope stability model where
each cell of DEM is considered independent of the other [12,42,44], the subsurface
flow hydrological effect is quantified as a process that directly affects the stability of
the terrain;
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A sensitivity analysis was conducted to try to consider the perturbation of the initial
soil moisture on the hydrological model included in SLEM. Taking inspiration from
the works of [48,86], the soil moisture influence has been included within the DCA
term. The former has been calculated as a function of Ksat_ini through the term Tc_sub,
which could be expressed as a function Sr_ini. These dependencies were detected
during the sensitivity analysis conducted in varying initial soil moisture conditions (as
reported in Table 1), giving reasonable results that are in accordance with the literature
studies [42,43,55];
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The definition of the critical rainfall rate that triggers instability for a defined duration
across a basin establishes the link between the cause and the effect and mimics the
geo-hydrological interaction at the slope scale. In fact, for each point of the water-
shed (i.e., cell of the domain), the expected frequency of that critical rainfall could be
estimated (i.e., return time). From TR, it is possible to measure the magnitude of the
rainfall phenomena and consequently infer the magnitude of the geo-hydrological
event and the probability of powerline failure;
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The SLEM model represents an evolution of a well-established geo-hydrological
routine that has been implemented in plenty of studies focusing on shallow landslide
stability and susceptibility [46,48–50]. Its validation has been assessed in different case
study areas of the world, considering one or a few reference rainfall events where a
detailed slope failure census was available [48,70,71]. In our case, sufficiently precise
data on past rainfall-induced slope failure events were not available, so the validation
has been carried out following a statistical approach, adopting the locally available
rainfall thresholds as a reference. To do that, the performance indexes inherited by
ROC methodology were considered to assess the validation of SLEM, which has shown
a slope failure detecting behaviour comparable to the rainfall thresholds indications.
Implicitly, this procedure allows for sound model validity with respect to an ensemble
of rainfall events previously considered for reconstructing the reference thresholds. In
this way, the parameter calibration necessary to validate the model is not constrained
to fit a single event but can be guided to match the typical statistical behaviour of the
rainfall-induced landslides that happened in the past over the investigated area. This
strategy allows to avoid parameter overfitting to a single-event analysis [43,55,72],
increasing the robustness of the slope failure prediction. This procedure depends on
how the threshold curve has been retrieved, but considering more than one threshold,
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possible discrepancies in reference curves could be detected easily, speeding up the
model parameters calibration phase.
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SLEM could be interpreted as an evolution of the rainfall threshold curves because it
practically could detect through rcrit stability and instability situations at the level of a
single DEM cell. This is a remarkable point because, using SLEM, the slope stability
could be evaluated taking into account the local terrain susceptibility factors that, in
rainfall threshold curves, are “hidden” within curves parameters athrs and nthrs;

Water 2024, 16, 1507 4 of 34 
 

 

Within the square bracket are all the presented parameters related to the stability 
model of the infinitely extended slope, generally adopted for assessing rainfall-induced 
shallow landslide failures, as described by Iverson [42] and Harp [12]: 
 Cr and Cs: the cohesion of plant roots and soil [kPa] on vegetated terrain slopes; 
 ρw and ρs: the density of water and sediment under saturated conditions [kg/m3]; 
 g, ht, and B: the acceleration of gravity (9.81 m/s2), depth of the ground [m], and 

contour length [m]; 
 β and φ: slope and ground friction angle [°]; 
 W: additional weight of plant biomass [kPa] on vegetated terrain slopes. 

The innovative part of the model resides within the first three terms T, a(d), and rc(d), 
where hydrological quantities are combined as follows: 
 T: the transmissivity of the shallow soil [m2/s], obtained as a product of soil thickness 

ht for the saturated hydraulic permeability Ksat [m/s]; 
 a(d): the Dynamic Contributing Area (DCA) [m2] of the upstream subsurface runoff, 

which can evolve (increase or decrease) depending on the rainfall duration d up to 
the maximum contributing area amax; 

 rcrit(d) is the critical intensity of precipitation [mm/h] of duration d that solves 
Equation (1). 
In the next paragraph, the key passages described in [50,70,71] adopted to retrieve 

Equation (1) are reported. The hydrological model, the slope stability model and their 
coupling are reported in Sections 2.1–2.3. Then, the strategy adopted for evaluating DCA 
and for including initial soil moisture dependence is described in Sections 2.4 and 2.5. In 
Section 2.6, the case study of the Emilia-Romagna region taken into consideration for the 
analysis is presented, while the description of the model implementation and initial data 
investigation is reported in Section 2.7. 

2.1. Hydrological Model 
For assessing the hydrological model of the subsurface flow, the kinematic wave 

theory developed by [46,47,77] was considered. Starting from the continuity equation of 
the subsurface water flow (Equations (2) and (3)), the temporal variation of the effective 
soil water hw * n [m] (where n is the terrain porosity [-]) depends on the advection term డడ௫ [m2/s] and the source term 𝑖 [m/s]. The first term describes the subsurface water flow 
variation along the slope element while the second represents the rainfall infiltration 
(Figure 2a). If the slopes are characterized by shallow soils, temporary aquifers may form 
after a period of rainfall. Considering the Dupuit approximation for the subsurface water 
flow velocity [50,78] (Equation (4), where hydraulic gradient డೢడ௫  is approximated by local 
terrain slope assuming the flow parallel to the bedrock), a stationary process (Equation 
(5), where డೢడ௧ = 0) and, integrating along the flow path coordinate x, the hydrological 
model reduces to Equation (6). In Equation (6), the quantity a represents the upslope 
contributing area for the subsurface flow while B is the width of the slope element 
(contour length) perpendicular to the subsurface flux. Neglecting any infiltration 
mechanism addressed to the rainfall rate 𝑟 (namely 𝑖 =  𝑟) and assuming a constant 
rainfall rate డబడ௧ = 0, the soil water hw could be expressed as Equation (7). If the terrain 
slope β and the Ksat are constant and independent from time, the only quantity that could 
perturb hw depending on the rainfall duration d is the term a(d), the Dynamic Contributing 
Area (DCA) (Figure 2b).  

 

In the end, the closed formulation proposed in Equations (22) and (23) permits the im-
plementation of SLEM rather easily in Python language. The availability of PCRaster
and PYSHED libraries has been considered to make hydrological elaborations faster.
The flexibility of the code allows for the inclusion of further features, such as soil data
elaboration and DCA calculation, by simply importing the required input data from
external databases. Therefore, the SLEM equations scripting was rather fast and the
sensitivity analysis for model calibration and validation was carried out quite rapidly.

4.1. Model Limitations

The SLEM model is a fast routine, and its mathematical construction is rather robust
and validated by [49,70,71], but the application over areas should be carried out carefully,
bearing in mind the assumptions and the input data uncertainties.

Regarding the hypothesis adopted in SLEM, the hydrological and slope stability mod-
els simplify the geo-hydrological interactions to make them computationally manageable
and replicable. The definition of the parameter a (DCA) in the function of the rainfall
duration d is a critical variable that has not been explicitly addressed by the authors of
the model because it depends on several geo-hydrological processes related to subsurface
water recirculation. DCA is an attempt to avoid the hydrological routing of subsurface flow
which is a time-consuming operation but is fundamental for reconstructing subsurface
dynamics across the watershed basin, influencing the local terrain soil moisture. However,
the empirical laws describing corrivation time for surface flow may not be suitable for
subsurface flow because hydrogeological watershed characteristics are different. This cor-
rection is valid under only in certain situations where the hydrogeological basin is supposed
to coincide with the hydrological ones while the subsurface flow velocity is 10−5–10−6

lower than the surface according to saturated permeability. Moreover, the hypothesis that
hydrological—hydrogeological basins overlap could not be acceptable in some cases, such
as in the presence of karstic or multilayer aquifers [72]. In this light, the availability of local
geological and lithological stratigraphy could represent an invaluable resource for better
predicting the subsurface dynamics. These issues are currently investigated in complex
geo-hydrological models and represent research frontiers [52].

Even though Sr_ini influence has been taken into account in the DCA term, some areas
are barely dependent on the soil moisture and are detected as “unconditionally unstable”
by SLEM. When DCA reaches its maximum value amax (i.e., all the areas of the basin
contribute to the subsurface flow), the Sr_ini influence is missed. Here, the ratio T/DCA
becomes a determinant for rcrit calculation. If all the rainfall r0 contributes to subsurface
flow and a very low transmissivity is encountered locally, hw increases sensibly (from
Equations (7) and (10)). Therefore, it may occur that hw could not resolve Equation (12) of
the stability model, bringing FS << 1. Because the SLEM model requires FS = 1, the only
possibility is to try to reduce hw by reducing the rainfall ratio r0. This represents a frequent
condition encountered over watershed ridges, which are generally classified as uncondi-
tionally unstable areas by landslide susceptibilities models [24,56]. Over the ridges, SLEM
predicts a rcrit ≈ 0 because steep slopes, thin soil depths, and low-contributing areas (where
T ≈ DCA) bring FS < 1. According to [46,50], reworking on Equation (1) imposing r0 = 0
and neglecting the cohesion and surcharge terms, the limited condition for unconditionally
unstable slope simplify and could be expressed as a function of soil and water densities
(ρw and ρs), slope inclination β, and friction angle ϕ. This dynamic better explains Figure 9
where watershed ridges exhibit rcrit ≈ 0 also in VERY_DRY condition while intermediate



Water 2024, 16, 1507 26 of 33

slopes experience a larger influence on soil moisture variation. Because powerlines are
frequently located over those impervious areas (Figure 5), further investigations are re-
quired to better disentangle predicted unstable areas from the effective landslide-prone
areas. This fact has been highlighted in Figures 15 and 16, where always unstable pylons
(with rcrit ≈ 0 or TR < 10 yr) represent a consistent portion of the totals, especially for
short rainfall durations. Performing the analysis with high-resolution DEM could be a
good solution for increasing SLEM precision but checking the result with a local landslide
susceptibility map is advisable to highlight the pylons under the highest landslide risk.

Because simple hydrological and slope stability models have been implemented in
SLEM, the number of parameters required for critical rainfall assessment has been reduced
to the minimum. This represents a valuable point because the scope of the analysis is to
conduct a physically based survey sufficiently accurate for planning purposes. Apart from
topographical data, which could be evaluated automatically using the DEM available, other
soil parameters are more difficult to assess precisely. The literature datasets were preferred
because they are easier to find on online repositories. Nevertheless, defining the most
representative value inside the classes provided, often characterized by a broader range, and
finding the most suitable methodology for spatially distributing the soil data properties
are the main drawbacks. There is no standardized procedure due to the high spatial
variability of soils across the landscape [88,90,107–109]. A methodology was proposed
in this work to spatially extend the cohesion and friction angle information across the
watershed. This procedure has already been adopted by other authors [72,110], especially
for carrying out sensitivity analysis on soil infiltration parameters. However, this is an
attempt to overcome the lack of spatially distributed data, which, for accurate slope stability
computational analysis, should be estimated directly from geotechnical in situ surveys or
laboratory experiments. Furthermore, a proper characterization using in situ measurement
is sometimes not affordable, especially for the impervious area, which is the most prone to
landslides. The methodology followed in this paper that tries to weigh each quantity in the
function of soil texture may seem promising at least for a brief survey of slope stability for
planning purposes, as the aim of our work.

The SLEM model was validated using the local rainfall threshold curves valid for the
Trebbia basin. According to several authors [6,7,61,67], the reliability of those empirical re-
lations is sometimes questionable because their calibrations strongly depend on the quality
of the critical rainfall dataset. Uncertainties in rain gauge data estimations and the lack of
rainfall peak detection may significantly perturb the rainfall threshold regression, leading
to wrong interpretation of the triggering rain [104]. Fortunately, several studies have been
conducted across the national territory in Italy that have the purpose to homogenise and
standardize the rainfall threshold construction, reducing as much error as possible [67,102].
In this regard, the studies of Ceriani, Segoni, and Ciccarese represent one of the most recent
analyses conducted in the investigated area, and those thresholds have been considered
representative of the local Civil Protection planning. According to these authors, the uncer-
tainties remain because, within the threshold curves, all the hydrological, geological, and
geotechnical parameters that influence local slope stability are hidden. However, following
the statistical interpretation of the curves, which are determined to allow a 5–10% proba-
bility of possible false alarm detection, the SLEM’s parameters were adjusted to address
these standards. In our opinion, the local thresholds should be considered first to validate
the model for understanding if the parameterization chosen is suitable or if a sensitivity
analysis of parameters is required. Threshold curves represent a tool able to summarise
the behaviour of an ensemble of critical rainfall events that happened over a region in
the past. They show the typical rainfall–landslide empirical correlation, highlighting the
peculiarity of the slope failure process across the investigated area, which should be ideally
reproduced by more sophisticated spatially distributed models such as SLEM. In the case of
the Trebbia basin, the model was rather in accordance with the local thresholds of Ceriani
and Segoni, while for Ciccarese, the best accordance was acquired only for short-duration



Water 2024, 16, 1507 27 of 33

events. The choice of more than one threshold valid for the area is advisable for better
model calibration.

4.2. Model Application to Assess Powerline Hazard

Thanks to its simplicity, SLEM has been applied to assessing powerline hazards.
The latter has been described bearing in mind a correlation between the magnitude and
frequency of occurrence (spatial or temporal) for natural phenomena and its relationship
with respect to the event magnitude (Figure 17). For electro-energetic networks, both
hazard frequency and magnitude and their relationship are interesting for future planning
against geo-hydrological threats [27]. First of all, low TR episodes are critical because they
can lead to instability rather frequently and increase the probability of electrical blackouts if
pylons or stations are affected. However, because the magnitude of these events is expected
to be low, periodic maintenance or mitigation strategies could be addressed more affordably
to reduce the overall risk of failures. On the other side, high TR episodes are generally
related to extreme precipitations whose effects at the watershed basin scale are difficult to
predict accurately [2,111]. Extreme events may have catastrophic effects on the territory,
triggering several geo-hydrological processes that cannot be completely described by the
infinite slope model [10,67]. Because the magnitude of the correlated geo-hydrological
event is expected to be higher, other types of risk reduction strategies should be analysed
in order to cope with possible disasters. In these cases, pylon relocations seem to be the
best cost-effective strategy to improve infrastructure resilience.
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The maps reported in Figures 13 and 14 clearly define these two possible scenarios
that correspond to short but intense rainfall (left, 1 h duration) and long-lasting precipita-
tion (right, 120 h). The most critical pylons coloured in red have a different distribution
across the watershed in the two scenarios, and the subsequent elaboration reported in
Figures 15 and 16 confirms this fact. Some pylons are critical in both situations, while oth-
ers are alternatively safer or not, depending on the duration of the critical precipitation. For
short events, a clusterization among stable and unstable pylons can be clearly depicted, and
this distinction mainly depends on their location in correspondence with watershed ridges.
Conversely, for long-lasting events, the number of predicted unstable pylons is lower, but
intermediate hazard situations may rise with failure return time comprised between 1 and
100 years, which is the range of the typical lifespan of electrical powerlines. Starting from
these considerations, stakeholders could implement the most suitable strategies in terms
of future maintenance and operational planning to improve the resilience of the overall
electrical system against geo-hydrological hazards.
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5. Conclusions

Strong uncertainties are linked to the modelling of geo-hydrological instability pro-
cesses triggered by rainfalls, which pose some difficulties in evaluating those areas most
prone to shallow landslides. The SLEM model examined in this study, although adopting
important simplifications, represents an attempt to couple triggering factors (rainfall) and
predisposing factors (terrain parameters) considering slope stability perturbed by water
circulation in the subsoil. The parameters, compared to more complex models, are reduced
to the minimum, making the methodology applicable, replicable, and suitable for geo-
hydrological hazard assessment for planning purposes. SLEM is implemented within a
Python code, which speeds up soil parameter reconstruction using available databases and
repositories. The revised version implements a new methodology to evaluate the DCA
parameter, which simplifies the model equation, excluding the dependence from Ksat and
including the dependence on the initial soil moisture through Kr_ini.

Working at basin scale, it is possible to highlight the most critical areas that can cause
slope instability as a function of precipitation of a given duration. The SLEM model was
tested for the Trebbia watershed which in recent past experienced severe episodes of geo-
hydrological instabilities. The model has been validated against locally available rain
thresholds that represent a tool able to summarise the rainfall-induced landslide process
using an ensemble of past precipitation events that occurred over a region. This strategy
avoids model parameter overfitting to a single-event calibration, assuring the correct
reproduction of the typical rainfall–landslide correlation existing over the investigated
area. Considering the critical rainfall rate calculated, an evaluation of the return period
is conducted to assess the magnitude of the event and to infer (under the hypothesis of
iso-frequency) the magnitude of the geo-hydrological event. Superimposing the hazard
maps onto the location of powerlines, a risk assessment was carried out for each pylon
located within the Trebbia basin. The analysis has shown how the rainfall duration is a
determinant factor for determining the most vulnerable infrastructures. The initial soil
moisture increasing from dry to wet conditions causes a significant reduction of the critical
precipitation rate between 50–90% depending on the rainfall duration. For short but intense
rainfalls, around 30% of pylons are under failure risk, while for long-lasting events, the
percentage reduces to 15–20%. Predicted failures are much more frequent across mountain
ridges for short rainfalls, while landslide hazards are more uniformly spread during long-
lasting events.

The risk analysis carried out with SLEM is intended for planning purposes because
the model is able to highlight the triggering factors, the event magnitude, and the location
where powerlines may be hit by geo-hydrological failures. Physically based hazard eval-
uations are the starting point for adopting possible mitigation strategies to increase the
overall electro-energetic system resilience.
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