Spring Meteorological Drought over East Asia and Its Associations with Large-Scale Climate Variations
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. Stationarity Test
2.2.2. Standardized Precipitation Evapotranspiration Index (SPEI)
2.2.3. Coupled Climate Network Analysis
2.2.4. Composite Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SPEI | standardized precipitation evapotranspiration index |
PDO | Pacific Decadal Oscillation |
ENSO | El Niño–Southern Oscillation |
SOI | Southern Oscillation Index |
IOD | Indian Ocean Dipole |
DMI | Dipole Mode Index |
SST | sea surface temperature |
GC | Granger causality |
References
- Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global Warming and Changes in Drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Otop, I.; Adynkiewicz-Piragas, M.; Zdralewicz, I.; Lejcu s, I.; Miszuk, B. The Drought of 2018–2019 in the Lusatian Neisse River Catchment in Relation to the Multiannual Conditions. Water 2023, 15, 1647. [Google Scholar] [CrossRef]
- Dai, A. Increasing Drought under Global Warming in Observations and Models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- El Qorchi, F.; Yacoubi Khebiza, M.; Omondi, O.A.; Karmaoui, A.; Pham, Q.B.; Acharki, S. Analyzing Temporal Patterns of Temperature, Precipitation, and Drought Incidents: A Comprehensive Study of Environmental Trends in the Upper Draa Basin, Morocco. Water 2023, 15, 3906. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role ff Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Haile, G.G.; Tang, Q.; Li, W.; Liu, X.; Zhang, X. Drought: Progress in Broadening its Understanding. Wiley Interdiscip. Rev. Water 2020, 7, e1407. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Guo, E.; Dong, Z.; Quan, L. Estimation of Variability Characteristics of Regional Drought during 1964–2013 in Horqin Sandy Land China. Water 2016, 8, 543. [Google Scholar] [CrossRef]
- Herrera-Estrada, J.E.; Satoh, Y.; Sheffield, J. Spatiotemporal Dynamics of Global Drought. Geophys. Res. Lett. 2017, 44, 2254–2263. [Google Scholar] [CrossRef]
- Gibbs, W.J.; Maher, J.V. Rainfall Deciles as Drought Indicators. Bureau of Meteorology; Commonwealth of Australia: Melbourne, Australia, 1967.
- Palmer, W.C. Meteorological Drought; US Department of Commerce, Weather Bureau: Silver Spring, MD, USA, 1965.
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Anaheim, CA, USA, 1993. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Q.; Xu, C.-Y.; Du, J.; Sun, P.; Hu, P. Modified Palmer Drought Severity Index: Model Improvement and Application. Environ. Int. 2019, 130, 104951. [Google Scholar] [CrossRef]
- Santos, J.F.; Tadic, L.; Portela, M.M.; Espinosa, L.A.; Brleković, T. Drought Characterization in Croatia Using E-OBS Gridded Data. Water 2023, 15, 3806. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, X.; Pan, Y.; Bai, J.; Li, S. Performance of Different Drought Indices for Agriculture Drought in the North China Plain. J. Arid. Land. 2018, 10, 507–516. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Z.; Lai, H.; Men, R.; Wang, F.; Feng, K.; Qi, Q.; Zhang, Z.; Quan, Q.; Huang, S. Dynamic Characteristics of Meteorological Drought and Its Impact on Vegetation in an Arid and Semi-Arid Region. Water 2023, 15, 3882. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, X.; Guo, E.; Cong, L.; Wang, Y. Characteristics of the Spatial and Temporal Distribution of Drought in Northeast China, 1961–2020. Water 2024, 16, 234. [Google Scholar] [CrossRef]
- Das, P.K.; Dutta, D.; Sharma, J.R.; Dadhwal, V.K. Trends and Behaviour of Meteorological Drought (1901–2008) over Indian Region Using Standardized Precipitation—Evapotranspiration Index. Int. J. Climatol. 2016, 36, 909–916. [Google Scholar] [CrossRef]
- Bao, G.; Liu, Y.; Liu, N.; Linderholm, H. Drought Variability in Eastern Mongolian Plateau and its Linkages To The Large-Scale Climate Forcing. Clim. Dyn. 2015, 44, 717–733. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X. Spatiotemporal Trends of Dryness/Wetness Duration and Severity: The Respective Contribution of Precipitation and Temperature. Atmos. Res. 2019, 216, 176–185. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (Spei) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Hu, W.; She, D.; Xia, J.; He, B.; Hu, C. Dominant Patterns of Dryness/Wetness Variability In The Huang-Huai-Hai River Basin and its Relationship with Multiscale Climate Oscillations. Atmos. Res. 2021, 247, 105148. [Google Scholar] [CrossRef]
- Manzano, A.; Clemente, M.A.; Morata, A.; Luna, M.Y.; Beguería, S.; Vicente-Serrano, S.M.; Martín, M.L. Analysis of the Atmospheric Circulation Pattern Effects over SPEI Drought Index in Spain. Atmos. Res. 2019, 230, 104630. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, B.; Jia, L.; Huang, H. Conditional Distribution Selection For Spei-Daily and Its Revealed Meteorological Drought Characteristics in China from 1961 to 2017. Atmos. Res. 2020, 246, 105108. [Google Scholar] [CrossRef]
- Available online: https://www.stats.gov.cn/ (accessed on 10 May 2024).
- Available online: https://www.statista.com/statistics/645885/japan-rice-production-volume/ (accessed on 10 May 2024).
- Zhao, Q.; Yang, S.; Tian, H.; Deng, K. Leading Pattern of Spring Drought Variability over East Asia and Associated Drivers. J. Trop. Meteorol. 2024, 30, 1–10. [Google Scholar]
- Son, J.H.; Seo, K.H. East Asian Summer Monsoon Precipitation Response to Variations in Upstream Westerly Wind. Clim. Dynam. 2022, 59, 77–84. [Google Scholar] [CrossRef]
- Deng, Y.; Gao, L.L.; Gou, X.H. Spatiotemporal Drought Variation in Midlatitude East Asia over the Past Half Millennium. J. Geophys. Res. 2023, 128, e2022JD037793. [Google Scholar] [CrossRef]
- Guo, E.; Liu, X.; Zhang, J.; Wang, Y.; Wang, Y.; Wang, C.; Wang, R.; Li, D. Assessing Spatiotemporal Variation of Drought and Its Impact on Maize Yield in Northeast China. J. Hydrol. 2017, 553, 231–247. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M.; Liu, Y. Crop Yield and Production Responses to Climate Disasters in China. Sci. Total Environ. 2021, 750, 141147. [Google Scholar] [CrossRef] [PubMed]
- Kiem, A.S.; Franks, S.W.; Kuczera, G. Multi-Decadal Variability of Flood Risk. Geophys. Res. Lett. 2003, 30, GL015992. [Google Scholar] [CrossRef]
- Villafuerte, M.Q., II; Matsumoto, J.; Akasaka, I.; Takahashi, H.G.; Kubota, H.; Cinco, T.A. Long-Term Trends And Variability of Rainfall Extremes in the Philippines. Atmos. Res. 2014, 137, 1–13. [Google Scholar] [CrossRef]
- Gao, M.; Mo, D.; Wu, X. Nonstationary Modeling of Extreme Precipitation in China. Atmos. Res. 2016, 182, 1–9. [Google Scholar] [CrossRef]
- Gao, M.; Zheng, H. Nonstationary extreme Value Analysis of Temperature Extremes in China. Stoch. Environ. Res. Risk Assess. 2018, 32, 1299–1315. [Google Scholar] [CrossRef]
- Wei, W.; Yang, Z.; Li, Z. Influence of Pacific Decadal Oscillation on Global Precipitation Extremes. Environ. Res. Lett. 2021, 16, 044031. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Stepaniak, D.P. Indices of El Niño Southern Oscillation and Tropical Atlantic Sea Surface Temperature Anomalies. J. Clim. 2001, 14, 1686–1701. [Google Scholar]
- Yeh, S.W.; Kug, J.S.; Dewitte, B.; Kim, S.Y.; Jin, F.F.; An, S.I. El Niño in Changing Climate. Nature 2009, 461, 511–514. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Borlace, S.; Lengaigne, M.; van Rensch, P.; Collins, M.; Vecchi, G.A.; Jin, F.F. Increasing Frequency of Extreme El Niño Events Due To Greenhouse Warming. Nature 2014, 510, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhou, L.; Roundy, P.E.; Hua, W.; Raghavendra, A. Increasing Influence of Indian Ocean Dipole on Precipitation over Central Equatorial Africa. Geophys. Res. Lett. 2021, 48, e2020GL092370. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, W.; Wang, X.; Chen, S.; Chen, J.; Li, S. Indian Ocean Dipole and ENSO’s Mechanistic Importance in Modulating The Ensuing-Summer Precipitation over Eastern China. NPJ Clim. Atmos. Sci. 2022, 5, 48. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, T. Drought over East Asia: A Review. J. Clim. 2015, 28, 3375–3399. [Google Scholar] [CrossRef]
- Wu, J.; Tan, X.; Chen, X.; Lin, K. Dynamic Changes of The Dryness/Wetness Characteristics in The Largest River Basin of South China and Their Possible Climate Driving Factors. Atmos. Res. 2020, 232, 104685. [Google Scholar] [CrossRef]
- Yang, P.; Wang, W.; Xia, J.; Zhang, Y.; Zhan, C.; Zhang, S.; Chen, N.; Luo, H.; Li, J. Linear and Nonlinear Causal Relationships between the Dry/Wet Conditions and Teleconnection Indices in the Yangtze River Basin. Atmos. Res. 2022, 275, 106249. [Google Scholar] [CrossRef]
- Leetmaa, A.; Reynolds, R.; Jenne, R.; Josepht, D. The NCEP/NCAR 40-year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar]
- Dickey, D.A.; Fuller, W.A. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. J. Am. Stat. Assoc. 1979, 74, 423–431. [Google Scholar]
- Said, S.E.; Dickey, D. Testing for Unit Roots in Autoregressive Moving-Average Models with Unknown Order. Biometrika 1984, 71, 599–607. [Google Scholar] [CrossRef]
- SPEI. Available online: https://github.com/sbegueria/SPEI (accessed on 2 April 2024).
- Lu, Z.; Yuan, N.; Yang, Q.; Ma, Z.; Kurths, J. Early warning of the Pacific Decadal Oscillation Phase Transition using Complex Network Analysis. Geophys. Res. Lett. 2021, 48, e2020GL091674. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A Dipole Mode in The Tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.N.; Vega-Oliveros, D.A.; Yan, X.; Flammini, A.; Menczer, F.; Radicchi, F.; Kravitz, B.; Fortunato, S. Detecting Climate Teleconnections with Granger causality. Geophys. Res. Lett. 2021, 48, e2021GL094707. [Google Scholar] [CrossRef]
- Hamilton, J.D. Time Series Analysis. Princeton; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Gao, M.; Zhao, Y.; Wang, Z.; Wang, Y. A Modified Extreme Event-Based Synchronicity Measure for Climate Time Series. Chaos 2023, 33, 023105. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, M.; Xie, N.; Gao, Z. Relating anomalous Large-Scale Atmospheric Circulation Patterns to Temperature and Precipitation Anomalies in the East Asian Monsoon Region. Atmos. Res. 2020, 232, 104679. [Google Scholar] [CrossRef]
- Dong, X. Influences of the Pacific Decadal Oscillation on the East Asian Summer Monsoon in non-ENSO Years. Atmos. Sci. Lett. 2016, 17, 115–120. [Google Scholar] [CrossRef]
- Timmermann, A.; An, S.I.; Kug, J.S.; Jin, F.F.; Cai, W.; Capotondi, A.; Cobb, K.M.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; et al. El Niño–southern Oscillation Complexity. Nature 2018, 559, 535–545. [Google Scholar] [CrossRef]
- Basharin, D.; Stankūnavičius, G. European Precipitation Response to Indian Ocean Dipole Events. Atmos. Res. 2022, 273, 106142. [Google Scholar] [CrossRef]
- Irfan, U.; Xieyao, M.; Jun, Y.; Abubaker, O.; Asmerom, H.B.; Farhan, S.; Vedaste, I.; Sidra, S.; Muhammad, A.; Mengyang, L. Spatiotemporal Characteristics of Meteorological Drought Variability and trends (1981–2020) over South Asia and the associated large-scale circulation patterns. Clim. Dynam. 2023, 60, 2261–2284. [Google Scholar]
- Pan, X.; Wang, W.; Shao, Q.; Wei, J.; Li, H.; Zhang, F.; Cao, M.; Yang, L. Compound Drought and Heat Waves Variation and Association with Sst Modes across China. Sci. Total Environ. 2024, 907, 167934. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.; Pitman, A.J.; Ridder, N.N. Climate Influence on Compound Solar and Wind Droughts in Australia. NPJ Clim. Atmos. Sci. 2023, 6, 184. [Google Scholar] [CrossRef]
- Zhang, Y.; You, Q.; Lin, H.; Chen, C. Analysis of Dry/Wet Conditions in the Gan River Basin, China, and Their Association with Large-Scale Atmospheric Circulation. Global Planet Chang. 2015, 133, 309–317. [Google Scholar] [CrossRef]
- Hamal, K.; Sharma, S.; Pokharel, B.; Shrestha, D.; Talchabhadel, R.; Shrestha, A.; Khadka, N. Changing Pattern of Drought in Nepal and Associated Atmospheric Circulation. Atmos. Res. 2021, 262, 105798. [Google Scholar] [CrossRef]
- Ionita, M.; Nagavciuc, V.; Scholz, P.; Dima, M. Long-term Drought Intensification over Europe Driven by the Weakening Trend of the Atlantic Meridional Overturning Circulation. J. Hydrol. Reg. Stud. 2022, 42, 101176. [Google Scholar] [CrossRef]
- Wu, R.; Kinter, J.L., III. Analysis of the Relationship of U.S. Droughts with SST and Soil Moisture: Distinguishing the Time Scale of Droughts. J. Clim. 2009, 22, 4520–4538. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Dai, A.; Wigley, T.M.L. Global patterns of ENSO-induced precipitation. Geophys. Res. Lett. 2000, 27, 1283–1286. [Google Scholar] [CrossRef]
- Yang, Y.; Dai, E.; Yin, J.; Jia, L.; Zhang, P.; Sun, J. Spatial and Temporal Evolution Patterns of Droughts in China over the Past 61 Years Based on the Standardized Precipitation Evapotranspiration Index. Water 2024, 16, 1012. [Google Scholar] [CrossRef]
- Ge, J.; Feng, D.; Liu, H.; Li, W.; Zhu, Y. Characteristics and Determining Factors of Spring-Summer Consecutive Drought Variations in Northwest China. Atmos. Res. 2024, 304, 107361. [Google Scholar] [CrossRef]
- Nam, W.H.; Hayes, M.J.; Svoboda, M.D.; Tadesse, T.; Wilhite, D.A. Drought Hazard Assessment In The Context of Climate Change for South Korea. Agric. Water Manag. 2015, 160, 106–117. [Google Scholar] [CrossRef]
- Seo, J.; Won, J.; Lee, H.; Kim, S. Probabilistic Monitoring of Meteorological Drought Impacts on Water Quality of Major Rivers in South Korea using Copula Models. Water Res. 2024, 251, 121175. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.; Huang, R. Interdecadal modulation of PDO on the Impact Of ENSO On The East Asian Winter Monsoon. Geophys. Res. Lett. 2008, 35, L20702. [Google Scholar] [CrossRef]
- Kim, J.W.; Yeh, S.W.; Chang, E.C. Combined effect of El Niño-Southern Oscillation and Pacific Decadal Oscillation on the East Asian Winter Monsoon. Clim. Dynam. 2013, 42, 957–971. [Google Scholar] [CrossRef]
- Yin, H.; Wu, Z.; Fowler, H.J.; Blenkinsop, S.; He, H.; Li, Y. The Combined Impacts of ENSO and IOD on Global Seasonal Droughts. Atmosphere 2022, 13, 1673. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Y.; Feng, J.; Wang, F. ENSO Cycle and Climate Anomaly in China. Chin. J. Oceanol. Limn. 2012, 30, 985–1000. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Q.; Liu, Z. Linking observations of the Asian monsoon to the Indian Ocean SST: Possible roles of Indian Ocean Basin mode and dipole mode. J. Clim. 2010, 23, 5889–5902. [Google Scholar] [CrossRef]
- Wu, R.; Yang, S.; Wen, Z.; Huang, G.; Hu, K. Interdecadal change in the relationship of southern China summer rainfall with tropical Indo-Pacific SST. Theor. Appl. Climatol. 2012, 108, 119–133. [Google Scholar] [CrossRef]
- Stuecker, M.F.; Timmermann, A.; Jin, F.F.; Chikamoto, Y.; Zhang, W.; Wittenberg, A.T.; Widiasih, E.; Zhao, S. Revisiting ENSO/Indian Ocean Dipole phase relationships. Geophys. Res. Lett. 2017, 44, 2481–2492. [Google Scholar] [CrossRef]
- Xiao, H.M.; Lo, M.H.; Yu, J.Y. The increased frequency of combined El Niño and positive IOD events since 1965s and its impacts on maritime continent hydroclimates. Sci. Rep. 2022, 12, 7532. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Ge, C.; Yao, R.; Bian, Y.; Yang, H.; Zhang, Q.; Xu, C.; Singh, V. Development of a nonstationary Standardized Precipitation Evapotranspiration Index (NSPEI) and its application across China. Atmos. Res. 2024, 300, 107256. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Lai, C.; Zeng, Z.; Zhong, R.; Chen, X.; Zhou, X.; Wang, M. Does dourht in China show a significant decreasing trend from 1961 to 2009? Sci. Total Environ. 2017, 537, 314–324. [Google Scholar] [CrossRef] [PubMed]
SPEI Value | Category | Abbreviation |
---|---|---|
SPEI | extreme wet | EW |
SPEI | severe wet | SW |
SPEI | moderate wet | MW |
SPEI | slight wet | LW |
SPEI | near normal | NN |
SPEI | slight dry | LD |
SPEI | moderate dry | MD |
SPEI | severe dry | SD |
SPEI | extreme dry | ED |
Month, Phase | EW | SW | MW | LW | NN | LD | MD | SD | ED |
---|---|---|---|---|---|---|---|---|---|
March, PDO+ | 0 | 0 | 0 | 2.43 | 83.94 | 13.63 | 0 | 0 | 0 |
March, PDO− | 0 | 0 | 0 | 1.73 | 80.1 | 18.18 | 0 | 0 | 0 |
April, PDO+ | 0 | 0 | 0 | 6.91 | 82.76 | 10.33 | 0 | 0 | 0 |
April, PDO− | 0 | 0 | 0 | 1.175 | 62.17 | 36.54 | 0.112 | 0 | 0 |
May, PDO+ | 0 | 0 | 0 | 3.53 | 94.38 | 2.1 | 0 | 0 | 0 |
May, PDO− | 0 | 0 | 0 | 0.81 | 87.38 | 11.8 | 0 | 0 | 0 |
Month, Phase | EW | SW | MW | LW | NN | LD | MD | SD | ED |
---|---|---|---|---|---|---|---|---|---|
March, SOI+ | 0 | 0 | 0.28 | 5.71 | 60.8 | 23.6 | 9.57 | 0 | 0 |
March, SOI− | 0 | 2.5 | 7.47 | 18.66 | 49.38 | 20.59 | 0 | 0 | 0 |
April, SOI+ | 0 | 0 | 0 | 3.53 | 79.35 | 17.12 | 0 | 0 | 0 |
April, SOI− | 0 | 0 | 0.17 | 1.45 | 69.27 | 23.89 | 5.2 | 0 | 0 |
May, SOI+ | 0 | 0 | 1.59 | 11.8 | 58.89 | 20.98 | 6.72 | 0 | 0 |
May, SOI− | 0 | 0 | 1.455 | 10.6 | 67.7 | 14.3 | 4.76 | 1.203 | 0 |
Month, Phase | EW | SW | MW | LW | NN | LD | MD | SD | ED |
---|---|---|---|---|---|---|---|---|---|
March, DMI+ | 6.5 | 24.52 | 20.53 | 13.5 | 21 | 3.32 | 2.97 | 3.07 | 4.68 |
March, DMI− | 0 | 0 | 6.77 | 21.07 | 43.84 | 23.11 | 5.2 | 0 | 0 |
April, DMI+ | 0.48 | 2.24 | 2.66 | 4.87 | 29.43 | 16.14 | 15.87 | 15.83 | 12.47 |
April, DMI− | 0 | 0.06 | 2.1 | 19.73 | 63.8 | 10.1 | 3.25 | 0.95 | 0 |
May, DMI+ | 0 | 0 | 0.23 | 9.45 | 27.53 | 25.49 | 25.43 | 11.47 | 0.39 |
May, DMI− | 0 | 0 | 0 | 4.53 | 92.3 | 3.16 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; Ge, R.; Wang, Y. Spring Meteorological Drought over East Asia and Its Associations with Large-Scale Climate Variations. Water 2024, 16, 1508. https://doi.org/10.3390/w16111508
Gao M, Ge R, Wang Y. Spring Meteorological Drought over East Asia and Its Associations with Large-Scale Climate Variations. Water. 2024; 16(11):1508. https://doi.org/10.3390/w16111508
Chicago/Turabian StyleGao, Meng, Ruijun Ge, and Yueqi Wang. 2024. "Spring Meteorological Drought over East Asia and Its Associations with Large-Scale Climate Variations" Water 16, no. 11: 1508. https://doi.org/10.3390/w16111508
APA StyleGao, M., Ge, R., & Wang, Y. (2024). Spring Meteorological Drought over East Asia and Its Associations with Large-Scale Climate Variations. Water, 16(11), 1508. https://doi.org/10.3390/w16111508