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Abstract: East Asia is a region that is highly vulnerable to drought disasters during the spring season,
as this period is critical for planting, germinating, and growing staple crops such as wheat, maize, and
rice. The climate in East Asia is significantly influenced by three large-scale climate variations: the
Pacific Decadal Oscillation (PDO), the El Niño–Southern Oscillation (ENSO), and the Indian Ocean
Dipole (IOD) in the Pacific and Indian Oceans. In this study, the spring meteorological drought was
quantified using the standardized precipitation evapotranspiration index (SPEI) for March, April,
and May. Initially, coupled climate networks were established for two climate variables: sea surface
temperature (SST) and SPEI. The directed links from SST to SPEI were determined based on the
Granger causality test. These coupled climate networks revealed the associations between climate
variations and meteorological droughts, indicating that semi-arid areas are more sensitive to these
climate variations. In the spring, PDO and ENSO do not cause extreme wetness or dryness in East
Asia, whereas IOD does. The remote impacts of these climate variations on SPEI can be partially
explained by atmospheric circulations, where the combined effects of air temperatures, winds, and
air pressure fields determine the wet/dry conditions in East Asia.

Keywords: SPEI; drought; climate network; atmospheric circulation; East Asia

1. Introduction

A drought is a prevalent and intricate natural phenomenon primarily attributed to
a prolonged period of inadequate precipitation, coupled with the compounded effects of
elevated evapotranspiration due to climatic factors such as higher temperatures, lower
relative humidity, or intense winds [1,2]. The consequences of droughts are devastating;
they affect agriculture, water resources, ecosystems, human health, and the economy. In
the context of global warming, it is imperative to prioritize attention to the adverse impacts
of droughts [1,3,4]. Firstly, global warming may alter global precipitation patterns. As
temperatures rise, evaporation rates increase, potentially changing the distribution and
amount of rainfall. This can lead to reduced precipitation in certain regions, rendering them
more susceptible to drought conditions. Wilhite and Glantz [5] have classified droughts
into four types: meteorological, hydrologic, agricultural, and socioeconomic droughts.
Meteorological droughts focus on atmospheric conditions, hydrological droughts are con-
cerned with water bodies, agricultural droughts pertain to crop health, and socioeconomic
droughts address broader societal and economic impacts [6,7]. In this study, we will ex-
amine meteorological droughts, defined as deficiencies in precipitation [8], and serving as
precursors to hydrological, agricultural, and socioeconomic droughts.

In the past few decades, many drought indices have been used in studies to measure
drought conditions, such as rainfall deciles (RDs) [9], the Palmer drought severity index
(PDSI) [10], the standardized precipitation index (SPI) [11], the standardized precipitation
evapotranspiration index (SPEI) [12], and the modified version of PDSI [13]. RDs are useful
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for understanding how current rainfall patterns deviate from normal states and can provide
early alerts for potential drought conditions [9]. SPI is a drought index that focuses solely
on precipitation data. It calculates the deviation of precipitation from the long-term average
for a given timescale, such as monthly or annually [11]. SPI is a dimensionless index that
allows for comparisons across different locations and seasons, making it useful for monitor-
ing drought conditions globally. The PDSI is a more comprehensive drought index that
considers both water supply and demand. It takes into account precipitation, evaporation,
soil moisture, and other factors, providing a quantitative measure of drought severity
and duration [10]. SPEI combines the precipitation and potential evapotranspiration data
simultaneously to evaluate drought conditions, effectively capturing the balance between
water supply (precipitation) and water demand (evapotranspiration) [12,14]. It has been
concluded that SPEI is superior to SPI and PDSI because it calculates drought across vari-
ous timescales, has a simple methodology, and provides robust results [15–17]. Moreover,
SPEI is supposed to be a much more reasonable approach for analyzing the impacts of
climate change on drought occurrence [12,18]. In the past few years, SPEI has been widely
applied to study the spatiotemporal characteristics and changing trends of meteorological
droughts and dryness/wetness in different areas of the world [19–23]. Mishra and Singh
defined meteorological drought as the phenomenon of an atmospheric water deficit due to
a precipitation deficit in a period [24]. Ma et al. [25] described a meteorological drought
event as having a duration of SPEI < −0.5 for no less than 30 days. Therefore, we have
chosen SPEI on a one-month timescale as the meteorological drought index for this study.

East Asia, a densely populated region, relies heavily on agriculture for its social,
economic, and cultural prosperity (Figure 1). The northern and northeastern regions of
China serve as the primary production areas for wheat and maize, while rice cultivation
is widespread in southern China, the Korean Peninsula, and Japan. In 2022, China alone
produced a total of 137 million tons of wheat, 276 million tons of maize, and 211 million tons
of rice [26]. In Japan, rice production has consistently exceeded 7.5 million tons from 2012 to
2021 [27]. Spring in East Asia is characterized by variable precipitation patterns [28], making
it a crucial time for the planting, germination, and growth of these crops. While some areas
receive ample rainfall that favors crop germination and growth, others may encounter
drought conditions that adversely impact agriculture. During this period, drought can
result in insufficient soil moisture, hindering the normal growth and development of crop
roots and seedlings. Moreover, wind patterns play a pivotal role in the spring climate of
East Asia. The region experiences diverse wind systems, including seasonal monsoons that
significantly alter temperature, humidity, and precipitation levels [29]. Due to these factors,
East Asia is particularly vulnerable to drought disasters during the spring season, because
the moisture transported by the monsoon is less than in the summer [30]. Studies have
shown that droughts have a significant impact on crop yields, including maize in Northeast
China and maize, rice, soybean, and wheat across China [31,32].

The Pacific Decadal Oscillation (PDO) is a prominent mode of climate variability that
operates on a decadal timescale in the Pacific Ocean. This climate variability is characterized
by alternating patterns of sea surface temperature (SST) and sea level pressure anomalies,
extending from the tropical Pacific to the North Pacific. It has been verified that PDO has
exerted significant influence on various aspects of the global climate system, including
temperature, precipitation, and extreme events [33–37]. The El Niño–Southern Oscillation
(ENSO) is a natural phenomenon that also significantly influences global climate patterns.
ENSO is characterized by alternating periods of warm (El Niño) and cold (La Niña) sea
surface temperatures in the tropical Pacific Ocean, which trigger complex atmospheric
responses and subsequent climate anomalies worldwide. The impact of ENSO on the
global climate system has been extensively studied in previous studies, with numerous
research articles exploring its diverse effects on temperature, precipitation, and other
climatic variables [38–40]. ENSO used to be thought of as the primary cause of many
episodic droughts around the world. Apart from PDO and ENSO over the Pacific, another
large climate mode over the Indian Ocean, IOD, also significantly affects regional climate.
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IOD refers to the difference in sea surface temperatures between the western and eastern
parts of the Indian Ocean. This phenomenon, through its complex sea–air coupling effects,
has a significant impact on the climate and environment of the surrounding regions of the
Indian Ocean. It can be analogously compared to the ENSO phenomenon in the Pacific
Ocean [41,42].
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Figure 1. Location map of the study area (18° N∼55° N, 100° E∼150° E). (A), (B), and (C) are three
grid points.

The aim of this study is to delve into the remote effects of large-scale climate variations,
such as the PDO, ENSO, and IOD, on meteorological drought during the spring season
in East Asia. Although this subject has been extensively researched through traditional
correlation analysis, regression analysis, and causality testing in previous studies [43–45],
this study adopts a novel approach. Specifically, we will first analyze the relationships
between climate variations and meteorological drought using coupled climate network
analysis. These coupled climate networks will be constructed for two climate variables: the
standardized precipitation evapotranspiration index (SPEI) and sea surface temperature
(SST). The three climate variations mentioned earlier will be identified through the spatial
patterns of SST. The connection between the SPEI node and the SST node will be determined
based on the Granger causality test. By observing the spatial patterns of network degrees,
we can detect the remote impacts of climate variations on SPEI. Furthermore, we will
analyze the mechanisms behind these remote impacts through composite analysis, focusing
on atmospheric circulation patterns.

This paper is organized as follows. The data and statistical methods used in this study
are presented in Section 2. The results and discussions are presented in Sections 3 and 4,
respectively. Finally, the main findings of this study are presented in Section 5.

2. Data and Methods
2.1. Data

To calculate the SPEI, we use the CRU TS 4.07 dataset, which is the most complete
and updated dataset of gridded precipitation and potential evaporation on a global scale.
It has a spatial resolution of 0.5° × 0.5°, ranging from the years 1901 to 2022. The CRU
TS 4.07 dataset can be freely accessed from the following website https://crudata.uea.ac.
uk/cru/data/hrg/ (accessed on 15 March 2024). In this study, we only analyze the data
ranging from 1979 to 2022 covering 44 years.

The PDO index is calculated by comparing sea surface temperature anomalies in
different regions of the Pacific Ocean. A positive PDO index indicates warmer-than-

https://crudata.uea.ac.uk/cru/data/hrg/
https://crudata.uea.ac.uk/cru/data/hrg/
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average conditions in the central and eastern Pacific, while a negative index corresponds to
cooler-than-average conditions. The monthly time series of the PDO index since 1854 can
be obtained from the National Center for Environmental Information, NOAA (https://
www.ncei.noaa.gov/access/monitoring/pdo/, (accessed on 15 March 2024)) (Figure 2).

The Southern Oscillation Index (SOI), a standardized difference between barometric
pressures observed at stations in Darwin, Australia, and Tahiti, is used to quantify ENSO
in this study. The negative phase of the SOI indicates below-normal air pressure at Tahiti
and above-normal air pressure at Darwin. Prolonged periods of negative (positive) SOI
values coincide with abnormally warm (cold) ocean waters across the eastern tropical
Pacific, characteristic of El Niño (La Niña) episodes. The monthly SOI index could also
be directly downloaded from the National Center for Environmental Information, NOAA
(https://www.ncei.noaa.gov/access/monitoring/enso/soi, (accessed on 15 March 2024))
(Figure 2).

The Dipole Mode Index (DMI) is a metric used to quantify the strength and direc-
tion of the IOD in this study. This index measures the difference in sea surface temper-
atures between the eastern and western Central Indian Ocean, providing a numerical
representation of the IOD’s intensity and phase. A positive DMI value indicates a pos-
itive IOD event, where the western Indian Ocean is warmer than usual and the east-
ern Indian Ocean is cooler. Conversely, a negative DMI value signifies a negative IOD
event, with the temperature pattern reversed. The monthly SOI index could be accessed
from https://psl.noaa.gov/gcos-wgsp/Timeseries/DMI/, (accessed on 15 March 2024)
(Figure 2).
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Figure 2. The monthly time series of PDO, SOI, and DMI from 1979 to 2022.

To understand the impact of climate variations on meteorological drought, we analyze
the large-scale atmospheric circulation of mean geopotential height, air temperatures,
and wind fields at 850 hPa from NCEP/NCAR Reanalysis datasets. These datasets are a
comprehensive collection of atmospheric data jointly produced by the National Centers
for Environmental Prediction (NCEP) and the National Center for Atmospheric Research
(NCAR) in the United States. Created using the most advanced global data assimilation
systems and extensive databases, these datasets process and homogenize observations
from various sources, including ground stations, ships, radiosondes, wind-measuring
balloons, aircraft, and satellites. They are reliable for climate analysis, especially since
the beginning of the satellite era in 1979. The global dataset has a spatial resolution
of 2.5° × 2.5° [46]. The integrated NCEP/NCAR Reanalysis datasets are available at
http://www.esrl.noaa.gov/psd/data/, (accessed on 20 December 2023).

https://www.ncei.noaa.gov /access/monitoring/pdo/
https://www.ncei.noaa.gov /access/monitoring/pdo/
https://www.ncei.noaa.gov/access/monitoring/enso/soi
https://psl.noaa.gov/gcos-wgsp/Timeseries/DMI/
http://www.esrl.noaa.gov/psd/data/
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In this study, the sea surface temperature dataset used for climate analysis is the
Extended Reconstructed Sea Surface Temperature (ERSST) v5, which provides a compre-
hensive record of global sea surface temperature variations from 1854 to 2024. This dataset
is based on a combination of observations from various sources, including ship-based mea-
surements, satellite observations, and buoy data. These observations are then combined
and interpolated using sophisticated statistical techniques to create a seamless and continu-
ous global SST record. This dataset is available at https://www.ncdc.noaa.gov/data-access,
(accessed on 20 December 2023).

2.2. Methods
2.2.1. Stationarity Test

In this study, the stationarity of the precipitation and potential evaporation time series
in March, April, and May from 1979 to 2022 (44 data points) were tested using the ADF
test method, respectively [47,48]. The ADF tests were conducted through the ordinary least
squares (OLS) estimation of regression models incorporating either an intercept or a linear
trend. We considered the autoregressive AR(1) model as follows :

x(t) = ρx(t − 1) + ε(t), t = 1, 2, · · · , 44 (1)

where x(0) equals 0, |ρ| ≤ 1 and ε(t) represents independent random variables with
mean zero and variance σ2. If |ρ| < 1, the time series x(t) is stationary. If ρ = 1, x(t) is
nonstationary and represents a random walk process. The null hypothesis of the ADF test
is ρ = 1, and more details can be found in [47,48].

2.2.2. Standardized Precipitation Evapotranspiration Index (SPEI)

SPEI provides a quantitative measure of drought severity and duration, considering
both water supply (precipitation) and water demand (evapotranspiration) [12]. In this
study, SPEI is calculated based on monthly climatic water balance, and the difference
between precipitation (P) and potential evapotranspiration (ET0). The next step is to fit
a probability distribution to the cumulative water balance series. Then, the cumulative
water balance values are transformed to the standard normal distribution to obtain the
corresponding SPEI, where negative SPEI values indicate drought conditions, with the
magnitude of the negativity representing the severity of the drought. In this study, the
calculations of SPEI were performed by applying the R-package “SPEI” [49]. The SPEI can
be further classified into different categories according to different thresholds; the specific
classification criteria are listed in Table 1.

Table 1. Drought classification based on the SPEI [12].

SPEI Value Category Abbreviation

SPEI ≥ 2 extreme wet EW
1.5 ≤ SPEI < 2 severe wet SW
1 ≤ SPEI < 1.5 moderate wet MW
0.5 ≤ SPEI < 1 slight wet LW

−0.5 ≤ SPEI < 0.5 near normal NN
−1 ≤ SPEI < −0.5 slight dry LD
−1.5 ≤ SPEI < −1 moderate dry MD
−2 ≤ SPEI < −1.5 severe dry SD

SPEI ≤ −2 extreme dry ED

2.2.3. Coupled Climate Network Analysis

In this study, the interdependence between large-scale climate variability and droughts
is first investigated by using a coupled climate network. SST in the North Pacific (32∼60° N,
130° E∼120° W) [50], tropical Pacific (−20° S∼20° N, 120° E∼80° W) [39], and tropical
Indian Ocean (−10° S∼5° N, 40° E∼100° E) [51] are selected to represent PDO, ENSO, and
IOD variations, respectively. The monthly SPEI time series over East Asia (15° N∼53° N,

https://www.ncdc.noaa.gov/data-access
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100° E∼146° E) are chosen to represent droughts. This study area covers East China, the
Korean Peninsula, Japan, and part of Russia.

The spatial fields of the two climate variables are described by two sets of univariate
time series {Xs

n(t)}Ns
n=1 for SST and {Xp

m(t)}
Np
m=1 for SPEI, where each time series corre-

sponds to the node in the coupled networks. The spatial resolutions of SST fields and
SPEI fields are inherited from the SST and CRU TS 4.07 datasets. In this study, the linear
relationships between SST and SPEI are evaluated by the Granger causality (GC) test. GC
is defined as a causality test between two time series, SPEI and SST, in terms of the linear
relationships between Xp

m(t) and the two lagged time series Xp
m(t − τ) and Xs

n(t − τ) for
lags τ (1 ≤ τ ≤ τmax) [52,53]. The two linear models, which are, respectively, referred to as
the complete model and the restricted model, are defined as follows:

Xp
m(t) = α0 +

τmax

∑
τ=1

ατXp
m(t − τ) +

τmax

∑
τ=1

βτXs
n(t − τ) + εc(t) (2)

and

Xp
m(t) = γ0 +

τmax

∑
τ=1

γτXp
m(t − τ) + εr(t) (3)

where ατ , βτ , and γτ are constant model parameters, and εc(t) and εr(t) are white noise
terms. The restricted model Equation (3) is regarded as the null model for the hypothesis
that Xp

m(t) is not dependent on Xs
n(t − τ). Then, the hypothesis is tested by compar-

ing the residuals of these two models: when the sum of the squared residuals for the
complete model Rc = ∑t[εc(t)]2 is significantly smaller than that for the restricted model
Rr = ∑t[εr(t)]2, Xp

m is thought to be caused by Xs
n (denoted as Xs

n → Xp
m). Then, the

matrix A{Np×Ns} records the results of the GC test, and only 5% of links between SPEI
and SST fields are kept for further network analysis, while the other 95% are discarded
as non-significant links [54]. Then, the summation of each column of A{Np×Ns} denotes
the out-degree of the SST node, while the summation of each row denotes the in-degree of
the SPEI node. The potential relationships between large-scale climate variations and SPEI
can be partly revealed by the spatial patterns of out-degrees and in-degrees of the coupled
climate networks. Figure 3 shows the schematic diagram of the coupled climate network
between SST and SPEI.

SPEI node

SST node

Granger causality

Figure 3. The schematic diagram of the coupled climate network between SST and SPEI.

2.2.4. Composite Analysis

The climate variability indexes for the period from 1979 to 2022 are depicted in Figure 1.
Utilizing these three time series, we have delineated the positive and negative phases of the
PDO, SOI, and DMI. Specifically, for the PDO, thresholds of 1 and −1 are set for the positive
and negative phases. For the SOI, the thresholds are set at 1.5 and −1.5, while for the DMI,
they are 0.4 and −0.4. To elucidate the influence of these large-scale climate variations on
spring drought, we averaged the SPEI values for March, April, and May during the positive
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and negative phases of PDO, SOI, and DMI. By comparing these averaged SPEI values,
we can identify the remote impacts of these climate variations on drought conditions.
Additionally, we have averaged the atmospheric circulation anomalies around East Asia
during these phases, relative to normal years, as referenced in [55]. For a composite analysis,
this study considers three climate variables: geopotential height, air temperatures, and
wind fields at the 850 hPa level.

3. Results

The averages of precipitation and potential evapotranspiration for March, April, and
May are initially presented in Figure 4. Observing Figure 4, we notice that the precipitation
distribution in the study area exhibits a gradient decrease from southeast to northwest
during the three spring months. Along the southeast coast, precipitation rises from 200 mm
to 400 mm between March and May. Conversely, in the northern part, the total precipitation
does not exceed 100 mm in May, reflecting the semi-arid climate of this region. The
latitudinal pattern is not as apparent for potential evapotranspiration. In March, the
total potential evapotranspiration is relatively low and gradually increases in April and
May. Notably, the areas with the highest potential evapotranspiration are located in
Northern China, not necessarily the regions with higher latitudes where air temperatures
are relatively lower. In particular, potential evapotranspiration can rise to 6.4 mm/day
in May due to continuous sunny and hot weather, before the influence of the East Asian
summer monsoon from the southeast arrives. However, this period coincides with the
critical planting season for crops, which requires ample precipitation. Therefore, from a
water resource management perspective, it is essential to ensure the efficient and rational
utilization of water resources for agriculture in this semi-arid region. Additionally, Figure 4
reveals that most of the precipitation and potential evapotranspiration time series passed
the augmented Dickey–Fuller (ADF) test at a significance level of α = 0.05, indicating
their stationarity.

Based on the available precipitation and potential evapotranspiration data, we com-
puted the SPEI from January 1979 to December 2022. In this study, the SPEI with a
one-month time scale represents meteorological drought. Illustrative examples of the
monthly SPEI time series for the three grid points, labeled (A), (B), and (C) in Figure 1,
are presented in Figure 5. Subsequently, we calculate the Granger causality between the
SPEI time series and sea surface temperature (SST) time series to construct coupled climate
networks. Figure 6 depicts the in-degree of SPEI fields and out-degree of SST fields. Nodes
with higher degree values connect more nodes on the other layer of the coupled network.
The areas with higher in-degrees in the SPEI field correlate with areas with higher out-
degrees in the SST field. Figure 5A,B indicate that droughts over Northern China and the
Mongolian Plateau are correlated with the centers of the North Pacific and the Japan Sea.
The spatial pattern of SST over the North Pacific is similar to the PDO spatial pattern [56],
suggesting that the semi-arid region in East Asia is more sensitive to the remote impact
of large-scale climate variability. The coupled climate network between SPEI and SST
over the central Pacific also reveals the remote impact of the El Niño–Southern Oscillation
(ENSO) on meteorological drought, as shown in Figure 6c,d. Specifically, the SST pattern
in the coupled network aligns with the spatial SST pattern of ENSO reported in previous
literature studies [54,57]. The area with the higher out-degree in the SST field is located
at the eastern edge of the central Pacific. Additionally, the coupled climate network in
Figure 6f reveals the spatial pattern of the Indian Ocean Dipole (IOD) [58]. By comparing
Figure 6a,c,e, we find that high in-degrees are primarily distributed over the northern part
of the study area. This finding suggests that droughts in semi-arid areas are more strongly
correlated with large-scale climate variations.
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Figure 4. The average precipitation (a,c,e) and potential evapotranspiration (b,d,f) in March, April,
and May from 1979 to 2022. The stippling indicates the grids with nonstationary precipitation and
potential evapotranspiration time series at the α = 0.05 significance levels based on the ADF test.

The average SPEI values for March, April, and May during the positive and negative
phases of the PDO, SOI, and DMI are presented in Figures 7–9, respectively. In the case of
PDO, the spatial patterns of SPEI in March and April do not exhibit a complete reversal
between the positive and negative phases. In March, droughts are prevalent, with relatively
small wet areas. During the positive phase of PDO, a belt of wetter conditions emerges,
spanning from the southeast coast of China to the south coast of Japan. In contrast, during
the negative phase, this belt shifts northward, extending from South China to the Korean
Peninsula and Northeast China. In April, drought conditions are more severe in the
negative PDO phase compared to the positive phase. However, in May, the spatial pattern
of SPEI in the positive and negative PDO phases begins to exhibit a more distinct opposition,
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with wetter areas in the positive phase tending to become drier in the negative phase, and
vice versa. The proportions of each SPEI-based category of dryness/wetness during the
positive and negative PDO phases in March, April, and May are summarized in Table 2.
An opposing effect of positive and negative PDO on SPEI has been observed; Figure 7 and
Table 2 do not indicate the presence of extreme wetness or dryness conditions.

In March, the remote impact of ENSO on SPEI over East Asia during the positive
and negative phases is nearly opposite (Figures 8a,b). In the positive phase of SOI (La
Niña), drought areas are primarily located in Northern China, while they shift northward
to Northeast China and Russia in the negative phase of SOI (El Niño). In April, the drought
area expands in both La Niña and El Niño phases, and the difference in their impact on SPEI
over East Asia is not significant. However, in May, Southern China and Japan experience
wetter conditions during La Niña but drier conditions during El Niño. In the El Niño
phase, the wet area shifts to the central part of the study area, and drought conditions
become less severe in the northern part. The remote impact of IOD on SPEI over East Asia
in March, April, and May is inconsistent. During the positive phase of DMI, most of East
Asia experiences wetter conditions in March but becomes drier in April and May (Figure 9).
In the negative phase of DMI, the contrast between wet and dry areas in the spring season
is less pronounced. Generally, the southern part of the study area tends to be wetter, while
the northern part is drier. The proportions of each category of dryness/wetness based on
SPEI during the positive and negative phases of SOI and DMI in March, April, and May
are summarized in Table 3 and Table 4, respectively. It is noteworthy that extreme wetness
or extreme dryness may occur in the positive phase of DMI in March and April.
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Figure 5. Monthly SPEI time series from 1979 to 2022 for the three grid points labeled by (A), (B), and
(C) in Figure 1, positive and negative values of SPEI are indicated by light brown and blue colors.
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Figure 7. Composite maps of SPEI for positive and negative phases of PDO in March, April, and May
from 1979 to 2022.
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Figure 8. The same as Figure 4 but for SOI.
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Figure 9. The same as Figure 4 but for DMI.



Water 2024, 16, 1508 12 of 21

Table 2. The proportions of each category of dryness/wetness based on SPEI for positive and negative phases of PDO in March, April, and May (%).

Month, Phase EW SW MW LW NN LD MD SD ED

March, PDO+ 0 0 0 2.43 83.94 13.63 0 0 0
March, PDO− 0 0 0 1.73 80.1 18.18 0 0 0
April, PDO+ 0 0 0 6.91 82.76 10.33 0 0 0
April, PDO− 0 0 0 1.175 62.17 36.54 0.112 0 0
May, PDO+ 0 0 0 3.53 94.38 2.1 0 0 0
May, PDO− 0 0 0 0.81 87.38 11.8 0 0 0

Table 3. The proportions of each category of dryness/wetness based on SPEI for positive and negative phases of SOI in March, April, and May (%).

Month, Phase EW SW MW LW NN LD MD SD ED

March, SOI+ 0 0 0.28 5.71 60.8 23.6 9.57 0 0
March, SOI− 0 2.5 7.47 18.66 49.38 20.59 0 0 0
April, SOI+ 0 0 0 3.53 79.35 17.12 0 0 0
April, SOI− 0 0 0.17 1.45 69.27 23.89 5.2 0 0
May, SOI+ 0 0 1.59 11.8 58.89 20.98 6.72 0 0
May, SOI− 0 0 1.455 10.6 67.7 14.3 4.76 1.203 0

Table 4. The proportions of each category of dryness/wetness based on SPEI for positive and negative phases of DMI in March, April, and May (%).

Month, Phase EW SW MW LW NN LD MD SD ED

March, DMI+ 6.5 24.52 20.53 13.5 21 3.32 2.97 3.07 4.68
March, DMI− 0 0 6.77 21.07 43.84 23.11 5.2 0 0
April, DMI+ 0.48 2.24 2.66 4.87 29.43 16.14 15.87 15.83 12.47
April, DMI− 0 0.06 2.1 19.73 63.8 10.1 3.25 0.95 0
May, DMI+ 0 0 0.23 9.45 27.53 25.49 25.43 11.47 0.39
May, DMI− 0 0 0 4.53 92.3 3.16 0 0 0
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4. Discussion

In this study, we focus on spring meteorological drought, a critical factor affecting agri-
culture in East Asia. Meteorological drought is primarily influenced by numerous climate
factors, of which, the rainfall or snowfall amount, frequency, and distribution are pivotal
in determining drought conditions [59]. Elevated temperatures accelerate evaporation
rates, leading to faster drying of soil and water bodies, particularly in arid and semi-arid
regions where evaporation rates are already high [60]. Wind patterns can also contribute
to drought conditions, as strong winds can desiccate soil and plants, further aggravating
drought’s impact [61]. Alterations in solar radiation and atmospheric composition, such
as the increase in greenhouse gases, have a bearing on global climate patterns and tem-
peratures. These changes, in turn, influence evaporation rates, precipitation patterns, and
the occurrence of drought [61]. Additionally, large-scale atmospheric circulation patterns
that govern the movement of moisture and precipitation play a significant role in drought
conditions across vast regions [59,62,63]. Therefore, when analyzing a severe drought
event, a comprehensive analysis of these climate factors is crucial to understanding the
mechanisms leading to meteorological drought.

Oceanic processes, such as the spatial pattern of SST variability, have a profound
influence on global climate patterns, including drought. These oceanic events can modu-
late atmospheric circulation and precipitation patterns, ultimately leading to drought or
excessive rainfall [60,64]. Wu and Kinter [65] observed that SST can significantly impact
both long- and short-term droughts in the Americas. Pan et al. [60] further demonstrated
that the variation in compound drought and heat waves is linked to different SST modes.
In this study, we explored the remote influence of three large-scale climate variations, PDO,
ENSO, and IOD, on meteorological drought over East Asia. We constructed coupled climate
networks analyzing two climate variables: SST and the SPEI. The spatial patterns of SST
reflect the climate variations under investigation. PDO encapsulates changes in SST, wind
patterns, and other oceanic and atmospheric variables that occur on a decadal timescale [66].
ENSO and SST patterns are closely intertwined, with ENSO events, such as El Niño and La
Niña, significantly affecting SST patterns in the Pacific Ocean and beyond. For instance,
during an El Niño event, SSTs in the eastern tropical Pacific increase significantly, while
during a La Niña event, they cool. These temperature changes can then propagate to other
regions of the globe, influencing SST patterns in those areas [67]. IOD is characterized by
anomalous SST variations between the western and eastern regions of the Indian Ocean,
with one side experiencing warmer waters and the other experiencing cooler waters [51].
Our analysis revealed that the out-degree of the SST field partly reflects the spatial pattern
of SST representing the PDO, ENSO, and IOD variations. Furthermore, we found that
drought in semi-arid regions is strongly correlated with these large-scale climate variations.

East Asia is greatly impacted by drought [43]. The are many studies focusing on the
impact of these climate variations on temperature, precipitation, and drought in this study
area. Wu et al. [44] analyzed the dynamic changes of the dryness/wetness characteristics
in the Zhujiang river basin of South China and identified the roles of PDO and ENSO in
determining drought in this area. Yang et al. [68] analyzed the spatiotemporal evolution
patterns of droughts in China from 1961 to 2021 based on SPEI and found that drought
has become weaker during this period. Wang et al. [17] analyzed the characteristics of the
spatial and temporal distribution of drought in Northeast China during the same period.
They also found that SPEI at the annual scale showed a decreasing trend. Hu et al. [22]
identified the dominant patterns of dryness/wetness variability in the Huang-Huai-Hai
River Basin of China and found that they were correlated with the multiscale climate
oscillations. Atmospheric circulations are considered the leading factor in shaping the
spatial pattern of dryness/wetness variability. Ge et al. [69] analyzed the characteristics
and determining factors of spring–summer consecutive drought variations in Northwest
China, and found that the change in atmospheric circulation was responsible for the change
in drought. In this study, the impacts of PDO, ENSO, and IOD on spring drought were
also analyzed from the perspective of atmospheric circulations. Meteorological droughts
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are also common in the Korean Peninsula and sometimes lead to hydrological droughts,
agriculture droughts, or other secondary disasters [70,71].

In this study, the remote impacts of PDO, ENSO, and IOD on spring meteorological
drought over East Asia were revealed by composting the SPEI values for the positive
and negative phases of these climate variations in March, April, and May, respectively.
Previous studies have revealed that the PDO might exert a modulating effect on ENSO
teleconnections in winter by shaping winter monsoon [72,73]. Also, the combined effect
of IOD and ENSO is very complex [74]. Since we only focus on the spring meteorological
drought from 1979 to 2022, the positive and negative of these three climate variations are
not further distinguished into more classes. We speculated that the spatial patterns of
spring meteorological drought could be partly explained by the atmospheric circulation
patterns in different phases of climate variations. Figures 10–12 present the atmospheric
circulation anomalies for positive and negative phases of PDO, ENSO, and IOD in May
and March, respectively. Figure 10a,b correspond to Figure 7e,f. Lower air temperatures,
strong winds bringing moisture from the sea, and lower air pressures together contributed
to the wet conditions, while higher air temperatures, strong winds without moisture,
and higher air pressures are responsible for dry conditions. In addition, the atmospheric
circulation anomalies presented in Figure 11a,b correspond to the composite maps of SPEI
Figure 8a,b. The spatial patterns of air temperatures over the Central Pacific are consistent
with the spatial pattern of SST in positive and negative phases of ENSO [75]. Moreover,
higher/lower pressure centers associated with anti-cyclones and cyclones are located in the
North Pacific. The large-scale circulation patterns partly explained the spatial pattern of
drought in the positive phase of ENSO (La Niña). In the negative phase of ENSO (El Niño),
Southern China and Japan are wet due to the warmer SST at the South/East China Sea
and the southwest wind transporting vapor to South China and Japan. IOD is considered
a counterpart to the climate-driving ENSO in the equatorial East Pacific. Yang et al. [76]
and Wu et al. [77] both found the remote impact of IOD on summer precipitation over East
Asia. Figure 12a,b correspond to Figure 9a,b. In the spring season, especially in March, the
difference in atmospheric circulation patterns over the Indian Ocean is not obvious. Then
the difference between SPEI patterns in positive and negative phases of DMI is probably
explained by the air temperature anomalies. The only exception is Japan, which is wet in
both the positive and negative phases of DMI due to the strong winds transporting vapor
from warmer SST to land (Figure 12b).

As the three major climate variations that significantly impact precipitation and tem-
perature patterns over East Asia, the PDO, ENSO, and IOD are closely interrelated. PDO,
a decadal climate pattern, can modulate the occurrence and strength of ENSO events.
Research indicates that during specific phases of the PDO cycle, the frequency and magni-
tude of El Niño and La Niña events can undergo significant changes [73]. The correlation
between ENSO and IOD is also complex but notable. There is a widely acknowledged
positive correlation between the two phenomena. Specifically, during an El Niño event
in the Pacific Ocean, there is a tendency for a positive IOD event to occur in the Indian
Ocean during the same year’s summer and autumn [78,79]. In the future, the combined
effects of these climate variations on drought should be examined on broader spatial and
temporal scales.

In this study, the meteorological drought index used is the widely adopted SPEI,
which traditionally assumes stationarity in probability distributions [12]. However, under
the backdrop of a warming climate, this stationarity assumption has been increasingly
violated [35]. Sun et al. [80] proposed a nonstationary SPEI by accounting for the non-
stationarity of hydrometeorological processes. Similarly, in this study, the augmented
Dickey–Fuller (ADF) test revealed that not all precipitation and potential evapotranspi-
ration data are stationary. Previous studies have also detected changes in drought pat-
terns [81]. In this research, the remote impact of the three climate variations was analyzed
using coupled network analysis and composite analysis. As such, the non-stationarity of
meteorological drought should also be taken into account in future studies.
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Figure 10. Composite anomalies of geopotential height (gpm; contour with numbers), air temperature
(°C; shaded), zonal and meridional wind anomalies (blue vectors) at 850-hPa level in positive (a) and
negative phases (b) of PDO.
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Figure 11. The same as Figure 10 but for SOI.
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Figure 12. The same as Figure 10 but for DMI.

5. Conclusions

East Asia is a region highly vulnerable to spring drought disasters, primarily due to
the crucial role of agriculture in this area. In this study, we examined the remote effects
of three large-scale climate variations, PDO, ENSO, and IOD, on spring meteorological
drought over East Asia. Since these climate variations are reflected in SST patterns, we first
constructed coupled climate networks between the SPEI and SST. Directed links from SST
to SPEI were calculated using the Granger causality test, and only significant links were
retained for network analysis. The out-degree of SST fields aligns with the spatial pattern
of SST for these three climate variations, indicating that semi-arid areas are more sensitive
to these large-scale climate variations.

In March and April, the effect of PDO on SPEI was not entirely opposing. However, in
May, there were significant differences in the spatial patterns of SPEI between the positive
and negative phases of PDO, though extreme wetness and dryness were not observed.
In March, the remote impact of ENSO on SPEI over East Asia for positive and negative
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phases was almost the opposite. During the La Niña phase, drought areas were mainly
concentrated in Northern China, while in the El Niño phase, they shifted northward to
Northeast China and Russia. In April, the difference in the remote impact of ENSO on SPEI
over East Asia was less apparent, and ENSO could lead to both severe wetness and severe
dryness. While the remote impact of IOD on SPEI over East Asia in March, April, and May
was inconsistent, IOD had the potential to cause extreme wetness and extreme dryness.
Furthermore, we analyzed the impacts of PDO, ENSO, and IOD on spring drought from
the perspective of atmospheric circulations. Generally, the wet or dry conditions over East
Asia are determined by a combination of air temperatures, wind, and air pressure fields.
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