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Abstract: In the 1D–2D coupled simulation of urban waterlogging, the calculation process of vertical
flow exchange is independent from the 1D hydraulic calculation, resulting in a failure to consider the
node head and pipe flow during the exchange flow calculation, which may lead to irrational results
and further affect the stability of the model calculation. However, setting an upper limit for the
exchange flow may introduce excessive subjective factors into the simulation process. In this study, a
vertical flow exchange method based on the water balance of nodes is proposed. When a node is in
an overloaded state, the calculation of vertical flow exchange at the node is integrated into the 1D
hydraulic simulation process, thus taking into consideration the influence of the node head and pipe
flow when calculating vertical flow exchange. Additionally, the iterative solution method used in
the 1D hydraulic model ensures numerical harmony between the vertical flow exchange, node head
and pipe flow, thus ensuring the stability of the coupled calculation. For the non-overloaded nodes,
the calculation of the vertical flow exchange was conducted using a variable-head orifice discharge
formula, enabling the consideration of changes in the surface water depth during the calculation
of the node backflow. Using the InfoWorks ICM model as a benchmark, a comparative analysis of
case simulation results demonstrated that the improved vertical flow exchange method was able to
accurately and stably simulate the process of vertical flow exchange. When used with the improved
vertical exchange method, the coupled model gave simulation results that closely matched those of
the benchmark model.

Keywords: urban waterlogging; coupled model; SWMM; vertical flow exchange

1. Introduction

In recent years, with the increasing frequency of extreme rainfall disasters, more cities
have implemented planning and construction for drainage and flood control. In this pro-
cess, urban hydrodynamic models have been widely applied [1–4]. Early hydrodynamic
models focused on simulating surface runoff processes and hydrodynamic processes in un-
derground drainage systems, but they were unable to simulate surface waterlogging [5,6].
In order to address this deficiency, Hsu M. H. (2000) used the SWMM (Storm Water Man-
agement Model) as a one-dimensional (1D) model coupled with a two-dimensional (2D)
diffusive overland flow model, in order to achieve a coupled urban waterlogging simula-
tion [7]. However, in this method, the flow exchange between models was unidirectional.
When the drainage network was overloaded, water flowed from the drainage system to the
ground surface; when the drainage system had sufficient discharge capacity, surface water
on the ground could not flow back to the drainage system. In further research, a series
of coupled models capable of bidirectional exchange between an underground drainage
system and surface water were developed [8–10]. Although coupled models have the
advantages of detailed results and adeptness in handling simulations of the bidirectional
exchange of water flows, their computational processes are complex and their efficiency
is low. In order to achieve a balance between simulation accuracy and computational
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efficiency, some researchers explored waterlogging simulation methods that could avoid
solving hydrodynamic equations yet still maintain good accuracy, such as with flood analy-
sis algorithms based on GIS [11], an enhanced inundation model for flood calculations [12],
and some simple models of cellular automata [13]. However, these methods can only
determine the extent of waterlogging and water depth, but are unable to simulate the
hydrodynamic processes of waterlogging, so their application scope is limited.

Currently, the coupled 1D–2D model is the main method for simulating urban water-
logging. Vertical flow exchange is a key segment in the coupled process, and it significantly
influences the accuracy of the simulation results and the water balance between the 1D
and 2D models [14–16]. The current calculation method for vertical flow exchange mainly
uses the head difference between the water levels of nodes in the 1D model (H1D) and the
surface water levels of the 2D model (H2D) as the driving head, and orifice or weir flow
formulas are utilized to calculate the flow exchange between the 1D and 2D models [17].

The typical calculation formula for node overflow is as follows [2]:

Qo f = co Amh

√
2g(H1D − H2D) if H1D > H2D (1)

where Qof is the calculated overflow value (m3/s); co is the orifice discharge coefficient; Amh

is the manhole area of nodes (m2); g is the gravitational acceleration (m/s2); H1D is the
water level of the 1D model’s nodes (m); and H2D is the water level of the 2D model (m).

The typical calculation formula for the node backflow is as follows [2]:

Qb f =


cwWH2D

√
2gH2D if H1D≤ Z2D < H2D and Qb f < Qbm

co Amh
√

2g(H1D − H2D) if Z2D ≤ H1D < H2D and Qb f < Qbm

Qbm if Qb f ≥ Qbm

(2)

where Qbf is the calculated value of the backflow (m3/s), and in order to achieve a stable
simulation, the value of Qbf cannot exceed the maximum backflow rate of Qbm; cw is the
weir discharge coefficient; W is the perimeter of the node or the width of the rainwater
outlet (m); and Z2D is the ground elevation where the node is located (m).

When calculating node backflow or intercepted discharge by inlets, in order to consider
the water interactions between the surface and drainage system more accurately, water
energy upstream of the node or inlet (sum of the head difference and velocity head) is
used as the driving head for Formula (2) [18]. Furthermore, some studies have discussed
the relationship between the discharge coefficient and the surface flow pattern, and have
concluded that the orifice and weir discharge coefficient have a significant correlation with
the Froude number of surface flow [18,19]. The vertical water exchange method takes into
consideration that velocity head and flow pattern are often used for detailed 1D models of
drainage systems, including the full drainage structure composed of conduits, manholes,
gullies and inlets. These are coupled with 2D models in a fully distributed way [20,21],
where the runoff volumes are estimated and applied directly to the elements of the 2D
model of the overland surface, and exchange with the 1D model through inlets. However,
due to limitations in data availability and computational power, the Fully Distributed
models are generally suitable for small-scale cases. For medium to large-scale models,
the Semi-Distributed Urban Stormwater models remain the preferred choice. In Semi-
Distributed models, conceptual, empirical or physical-based methods transform runoff
routing into inflow hydrographs, which are then applied to the selected computational
nodes of the drainage system. Not every inlet is modeled, but they are clustered to
computational ones. In this case, the discharge coefficient has been decoupled from specific
inlets and has become a subjectively determined parameter that needs to be calibrated
using actual measurement data.

The determination of discharge coefficients for flow exchange equations over a range
of hydraulic conditions and inlet types has a significant impact on the simulation results.
Recent studies related to water exchange through manholes or inlets using the weir and
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orifice-type equations have been implemented using physical model experiments [22–24]
and numerical simulations [25]. The values of the discharge coefficients are influenced
by the inlet geometry and the approaching flow characteristics (flow depth and Froude
number). Rubinato et al. [19] studied water exchange of scaled circular manholes under sub-
critical flow with a Froude number of 0.151–0.691; the results revealed that under subcritical
flow conditions, water exchange is sensitive to hydraulic heads within interaction nodes
and surface water. Hence, the uncertainty related to head loss in hydraulic structures, sur-
face roughness and other parameters in urban hydrology may have significant implications
to water exchange and should be considered in the selection of weir/orifice formulas and
the determination of discharge coefficients. Under supercritical flow conditions, the flow
velocity parameter has to be considered while determining the discharge coefficients. Cosco
et al.‘s study [18] highlighted the strong relationship between discharge coefficient ranges
and the upstream Froude number under supercritical flow, and formulated power functions
in order to express the weir/orifice discharge coefficients as a function of Froude number.
Ali Zaiter et al. (2024) gave a comprehensive review about “equations and methodologies
of inlet drainage system discharge coefficients” [26]. Ali’s review summarized orifice and
weir discharge coefficient ranges of rectangular inlets, grated circular inlets and circular
non-grated inlets under subcritical flow and supercritical flow, respectively, and concluded
that there is no uniform pattern or trend to determine the discharge coefficient of each inlet
as it may vary significantly with the change in Froude number, inlet geometry, grate geom-
etry, grate orientation, flow velocity and water depth. Therefore, weir and orifice discharge
coefficients have to be calibrated and adjusted experimentally, taking into consideration
the crucial factors that affect the inlet discharge capacity [27]. Russo et al. (2015) analyzed
extreme floods in Barcelona using the 1D–2D coupled model created by InfoWorks ICM,
and gave a detailed description of how to calculate and calibrate the discharge coefficients
of manholes and storm inlets [28].

The calculation of flow exchange through orifice or weir formulas is not only complex,
but also involves significant uncertainty in the selection of discharge coefficients. Moreover,
the introduction of an artificially set value of Qbm adds subjectivity and uncertainty to the
simulation of coupled models. The fundamental reason for the instability in the coupling
process when not using a limitation for Qbm is that the calculation of the backflow is
independent of the 1D model. Thus, interactions among variables such as the vertical flow
exchange, node head and conduit flow are neglected, which may lead to irrational backflow
values. When an irrational value is involved in the coupling process, computational
instability may occur. Fan Y. (2017) suggested determining the Qbm based on the simulation
stability of the model and the actual situation of the node [29]. According to this method, the
appropriate value of Qbm can only be obtained through trial and error during the simulation
process. In order to implement a stable coupled simulation without artificially set values,
Peng G. (2022) calculated the backflow while considering the free space of a manhole and
connected conduits [30]; however, this was a compromise solution and the interactions
among the vertical flow exchange, node head and conduit flow were still neglected.

This study introduces the principle of node inflow and outflow balance into the
calculation process for vertical flow exchange, and the calculation of vertical flow exchange
is integrated into the 1D model in order to consider interactions among the vertical flow
exchange, node head and conduit flow so that harmonious results can be obtained. This
improved method simplifies the calculation process for vertical flow exchange and enhances
the stability of the coupled process.

2. Coupled 1D–2D Hydrodynamic Model
2.1. Hydrodynamic Models

The SWMM is a hydrologic–hydraulic water quality simulation model that utilizes
dynamic modeling techniques [31]. As an open-source model, it is widely used in the
field of urban stormwater simulation. The SWMM is suitable for the 1D hydrodynamic
simulation of drainage systems in urban areas. In this study, the SWMM is used as a 1D
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model for the hydrological simulation of sub-catchments and the hydrodynamic calculation
of drainage systems.

Conservative shallow water equations are used as the governing equations in the 2D
model, and they are solved using a self-developed simulation module with the Godunov
scheme for the finite volume method [32]. Conservative shallow water equations are
adopted as the governing equations in the 2D model. The governing equations can be
written in matrix form, as shown in Formulas (3) and (4).

∂U
∂t

+
∂F
∂x

+
∂G
∂y

= S f + Sb (3)

where U, F and G represent the conservation vector, the flux vectors in the x and y directions,
respectively, and Sb and Sf are the source terms representing the bed slope and friction
effects, respectively. In addition, t, x, and y represent time and the coordinate axes of
a Cartesian coordinate system. The specific forms of U, F, G, Sb and Sf are shown in
Formula (4).

U =

 h

hu

hv

, F =

 hu

hu2 + 1
2 gh2

huv

, G =

 hv

huv

hv2 + 1
2 gh2

, Sb =


0

−gh ∂zb
∂x

−gh ∂zb
∂y

, S f =

 0

−C f u
√

u2 + v2

−C f v
√

u2 + v2

 (4)

where h represents water depth (m); u and v represent the flow velocities in the x and y
directions, respectively (m/s); zb represents the absolute elevation of the ground surface

(m); and C f = gn2

h1/3 , in which n is the Manning coefficient. Additionally, water level
η is used in the second order spatial reconstruction and the non-negative water depth
reconstruction—η = h + zb.

Formulas (3) and (4) are solved herein by a finite volume Godunov-type numerical
scheme proposed by Liang (2010), which has an emphasis of constructing a well-balanced
scheme and evaluating the friction source term in order to ensure non-negativity of water
depth [33,34]. The monotonic upstream-centered scheme for conservation laws (MUSCL)
linear reconstruction method [35] with a MINMOD slope limiter [36] is used along with
a Harten, Lax and van Leer approximate Riemann solver, with the contact wave restored
(HLLC) for the calculation of interface fluxes [37]. The second-order temporal accuracy is
achieved by using a Runge–Kutta time integration [38].

During the coupling process of the 1D and 2D models, two main aspects are involved:
time synchronization and flow exchange. For time synchronization, this study used the
1D model time step as the benchmark and achieved time synchronization by adjusting the
2D model time step. For flow exchange, this study only considered vertical flow exchange,
while lateral and frontal flow exchanges were neglected. Closed boundary conditions were
adopted at the boundaries of the surface grid for the 2D model.

2.2. Time Synchronization in the Coupled 1D and 2D Models

Since the time step of the 1D model (∆t1D) is often larger than that of the 2D model
(∆t2D), ∆t1D is taken as a benchmark. By adjusting ∆t2D, the synchronization of the time
steps in the 1D and 2D models is achieved. During the simulation process, when the 1D
model advances by one time step, the 2D model runs n steps. The first n − 1 steps of the
2D model are calculated using the Courant–Friedrichs–Lewy (CFL) criterion, and the value
of ∆t2D for the nth step is calculated as ∆t1D −∑n−1

1 ∆t2D. The synchronization method for
the 1D and 2D models is presented in Figure 1.
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3. Improved Vertical Flow Exchange Method

The three typical cases of vertical flow exchange at nodes are shown in Figure 2.
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In Figure 2, cases (a) and (b) represent situations of overloaded nodes, where the
water head inside the node (same as the water level of the surface cell) is greater than the
maximum at the upper edge of the connected conduit section, which is denoted as HP.
Since the 1D model generally ignores the volume inside node wells, this implies that the
node water head HJ exceeds the ground elevation H0. In such cases, the calculation of
conduit flow in the 1D model should consider the surface water level of the 2D model at the
node location. The inflow and outflow of the node are calculated according to the conduit
flow values. The difference between the inflow and outflow is considered as the vertical
flow exchange between the 1D and 2D models. If the value of the vertical flow exchange
is positive, this indicates that the node is an overflow node. If the value is negative, this
indicates that the node is a backflow node. If the value is equal to 0, this indicates that
there is no vertical flow exchange in this node. Case (c) represents the situation of a non-
overloaded node, where the node water head HJ is less than the maximum at the upper
edge HP of the section of connected conduits. In this case, the calculation of pipe flows in
the 1D model was independent of the surface water level, and the backflow of the node
was calculated using the orifice flow formula and was added as the inflow to the node.

3.1. Calculation of the Vertical Flow Exchange

The nodes of the 1D model are associated with the mesh cells of the 2D model in
which they are located, with the mesh cell area serving as the ponded area for each node.

Figure 3 illustrates the relationship between the ponded area of the node and the
mesh cell. The dark blue cell represents the mesh cell corresponding to the location of the
node. Before the coupling simulation begins, the ponded area of the corresponding node
is updated using the area of this cell. This cell not only participates in the calculations of
the 2D model, but also contributes to the computation of the vertical flow exchange. The
remaining cells are ordinary cells that only participate in the calculations of the 2D model.
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3.1.1. Calculation of the Vertical Flow Exchange in Overloaded Nodes

When a node is in an overloaded state, the calculation of the flow in the connected
conduits needs to consider the influence of the surface water level. In 1D hydraulic
simulations, before the calculation of the dynamic wave in each time step begins, the water
level of the mesh cell in which the node is located is used to update the node’s water head
in the 1D model. Then, the 1D hydraulic calculation of the dynamic wave is performed. The
SWMM module uses an iterative method to calculate node water heads and conduit flow
rates, with the convergence of node water heads as the stopping condition for iteration, and
in each iteration, the vertical flow exchange is updated by applying the principle of water
conservation. This ensures numerical harmony among the node water heads, conduit flows
and vertical exchange flows. Thus, stability in the calculation of the vertical flow exchange
is achieved. According to the principle of water conservation, the following relationship
between the change in water volume within the ponded area and the flow in the connected
conduits of the node exists:

Vnew − Vold = ∆t1D

(
∑k

i=1 Qi + Qlat

)
(5)

where Vold represents the water volume within the ponded area of the node at the beginning
of the time step (m3); Vnew represents the water volume within the ponded area of the node
at the end of the time step (m3); Qi is the flow in the ith conduit connected to the node
(m3/s), with inflow as positive and outflow as negative; Qlat is the sum of other inflows,
such as surface runoff and dry weather flow (m3/s); and k is the number of conduits
connected to the node.

The change in the water volume within the ponded area of the node in the 1D model
is the volume of vertical exchange between the 1D and 2D models, so the vertical exchange
flow can be calculated as follows:

Qex f =
Vnew − Vold

∆t1D
(6)

where Qexf represents the vertical exchange flow (m3/s), with positive values indicating
node overflow and negative values indicating node backflow.

3.1.2. Calculation of Vertical Flow Exchange in Non-Overloaded Nodes

When a node is not overloaded but there is ponding water on the surface cell, the
flow calculation for the connected conduits does not need to consider the influence of the
surface water level. Therefore, there is no need to update the node’s water level, and the
orifice flow formula is used here for the backflow calculation. During the backflow process,
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the surface water level may change. As a result, the following formula for the backflow
calculation considering a variable head is used:

tb =
2S
(√

H1 −
√

H2
)

co Amh
√

2g
(7)

where tb represents the backflow time (s); S represents the ponded area (m2); H1 represents
the surface water level at the node at the beginning of the backflow time tb (m); and H2
represents the surface water level at the node at the end of the backflow time tb (m).

Assuming that H2 = 0, Formula (7) is used to calculate the time tb, which represents
the time required for all of the ponding water in the cell to completely backflow. If tb > ∆t1D,
this indicates that within the current time step in the SWMM, not all of the ponding water
in the cell backflows. Then, Formulas (8) and (9) are utilized in order to calculate the
water level of the surface water and the backflow rate at the end of the current time step in
the SWMM.

H2 =

(√
H1 −

co A∆t1D
√

2g
2S

)2

(8)

Qex f =
S(H1 − H2)

∆t1D
(9)

If tb ≤ ∆t1D, this indicates that within the current time step in the SWMM, all of the
ponding water in the cell has completely returned into the underground network. Then,
the backflow rate at the end of the current time step is calculated with Formula (10):

Qex f =
SH1

∆t1D
(10)

If the node is in an overloaded state at the end of ∆t1D, this indicates that it has
transitioned from a backflow state to an overflow state within this time step. In this case,
the vertical flow exchange of the node is calculated using the principle of conservation of
inflow and outflow according to Formula (6).

3.1.3. Correction of Continuity Errors Caused by Node Water Head Updates

Figure 4 illustrates the meanings of various variables during the process of updating
the node water head. In the coupling process, the 1D model’s time step ∆tn

1D is calculated
first. When a node is in an overflow state (shown in Figure 4a), the water head of the node
changes from Hold to Hnew within the time step. The water volume between these two
levels represents the overflow volume of the 1D model. During the process of vertical flow
exchange, this volume is transferred from the 1D model to the 2D model. Consequently,
the volume of water in the 2D model increases accordingly. In order to ensure water
conservation in the coupling process, this volume needs to be removed from the 1D model.
Therefore, at the end of ∆tn

1D, the water head and ponding water volume corresponding to
the node in the 1D model should be Hold.
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After the overflow volume is added to the 2D model and the 2D model’s corresponding
time step is completed, the water level in the 2D cells becomes H2D. Before the calculation of
the next time step in the 1D model (∆tn+1

1D ) begins, it is necessary to update the node water
head using H2D. The water head at the node changes from Hold to H2D, and the ponding
water volume also increases accordingly. The increment in this ponding water volume is
equivalent to adding additional virtual water to the 1D model without corresponding to
any actual physical process, which may lead to continuity errors.

In order to eliminate this continuity error, it is necessary to eliminate the volume
of water between Hold and H2D during the calculation of the flow exchange in time step
∆tn+1

1D . The elimination method involves obtaining the initial result of the flow exchange
Qexf0 using Formula (6) and then correcting it using Formula (11), in order to eliminate the
continuity error.

Qex f = Qex f 0 −
(H 2D − Hold)S

∆t1D
(11)

When the node is in an overloaded backflow state (shown in Figure 4b), the water
head at the node changes from Hold to Hnew. At the end of ∆tn

1D in the 1D model, the water
head and ponding water volume of this node are calculated according to Hnew. The water
volume between Hold and Hnew represents the vertical backflow volume, which will be
removed from the corresponding 2D cells during the respective time step in the 2D model.
Updating the node water head using H2D before the calculation of the next time step in the
1D model ∆tn+1

1D would cause an increase in the ponding water volume in the 1D model’s
nodes. The water head changes from Hnew to H2D, and the ponding water volume changes
accordingly. This increase in ponding water volume can be considered as the volume of
surface water from the 2D model flowing back to the ponded area of the 1D model’s nodes.
This volume of water has actual physical significance and does not lead to continuity errors;
therefore, no correction is needed.

3.2. Implementation of Model Coupling

In the coupled model utilizing the improved vertical flow exchange method, the
SWMM requires the node ponding functionality to be enabled. The specific calculation
steps during the coupling process corresponding to ∆t1D are as follows:

i. Determining which nodes are in an overloaded state;
ii. Updating the water heads for overloaded nodes;
iii. Calculating the backflow for non-overloaded nodes (with the method described in

Section 3.1.2) and adding backflow to the corresponding node as inflow;
iv. One-step evolution of the 1D model (the vertical flow exchange for overloaded nodes

is calculated with the method described in Section 3.1.1 by adding the corresponding
functions);

v. Eliminating continuity errors;
vi. Transferring the vertical flow exchange values to the 2D model;

vii. Evolution of the 2D model until the end of ∆t1D. This is followed by step i.

Since the SWMM module has the function of calculating the ponding water volume at
nodes, the vertical exchange flow under the condition of overloaded nodes can be directly
obtained through the change in the ponding water volume at these nodes. Steps (i) to (v)
can be implemented within the SWMM module by adding corresponding functions to it.

4. Case Study
4.1. Benchmark Software

In this study, InfoWorks ICM (from here on ‘ICM’) was used as a benchmark. ICM
solves the complete 2D Saint Venant equations in a finite volume semi-implicit scheme [35]
with a Riemann solver [39]. ICM combines a number of distinctive features such as the
analysis and prediction of potential flood extent, depth and velocity, and the modeling of
the interaction of surface and underground systems in a fully integrated environment [28].
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Generally, in a 1D–2D coupled model created by ICM, the calculation of vertical flow
exchange between 1D and 2D models is achieved through nodes of 2D and Gully 2D flood
types. For 2D nodes, the exchange of water between the 1D and 2D models is calculated
using weir equations, assuming a weir crest level at the node ground level and crest length
equal to the node shaft circumference. For Gully 2D nodes, the exchange flow is calculated
using a specific (customized) “head/discharge relationship”. The Gully 2D flood-type
nodes more accurately describe the water exchange between the 1D drainage system and
the 2D surface at different rainwater inlets.

ICM can conduct both Fully Distributed simulations and Semi-Distributed simula-
tions. In this study, only Semi-Distributed simulations were performed and discussed.
For theoretical study cases, the nodes with vertical flow exchange do not represent any
specific type of rainwater inlet. For practical study cases, the drainage network used was a
reduced network, only conduits and computational nodes were included. Runoff volumes
were estimated for the sub-catchment and then routed to the corresponding nodes as
sub-catchments’ outlets. In this case, only 2D flood type were used for water exchange
calculation of both study cases, and the typical discharge value of 0.5 was used for all 2D
flood type nodes.

4.2. Theoretical Study Case

The improved method was validated using a theoretical case study, as shown in
Figure 5. The drainage system consisted of six nodes and six conduits, and the level surface
area was a closed square with a side length of 200 m. Nodes 2 to 5 allowed vertical flow
exchange. The elevation of the surface was 0 m, and the roughness coefficient (n value)
was 0.025. Water entered the system through node 1, with the inflow gradually increasing
from 0 to 1.0 m3/s within the first 10 min of the simulation, remaining constant until the
20th hour and then dropping to 0. Water left the system through node 6, with the outfall
set as a free outflow. The system was initially dry. The attributes of the conduits and nodes
are shown in Table 1.
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Table 1. Properties of the elements of the drainage system.

ID
Conduit Node

Upstream
Node

Downstream
Node

Dia
/m

Len
/m Roughness X

Coordinate
Y

Coordinate
Full

Depth/m
Ground

Elevation/m
Well Dia

/m

1 1 2 1.0 100 0.013 −70.711 100.000 1.159 0 0.7
2 2 4 0.6 100 0.013 29.289 100.000 1.259 0 0.7
3 2 3 0.6 100 0.013 100.000 170.711 1.329 0 0.7
4 4 5 0.7 100 0.013 100.000 29.289 1.329 0 0.7
5 3 5 0.7 100 0.013 170.711 100.000 1.400 0 0.7
6 5 6 1.0 100 0.013 270.711 100.000 1.500 0 -
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In the coupled model proposed in this study, the area of the mesh cell where the node
is located was used as the ponded area of the node. Therefore, the impact of the grid mesh
on the coupled process is important. Two types of grid meshing structures (2 m × 2 m (S4)
and 4 m × 4 m (S16)) were used for the theoretical case.

Figure 6a shows the water balance in the improved model with grid meshing of cell
areas of 16 m2. During the process of vertical flow exchange, the accumulated overflow
volume from the nodes should be equal to the sum of the surface water volume and the
accumulated backflow volume from the nodes. Figure 6a shows that the improved model
maintained water conservation during the vertical flow exchange process, as the accumu-
lated overflow curve of the nodes perfectly overlapped with the curve of “accumulated
backflow + surface water accumulation”. In the process of the coupled 1D–2D simulation,
the total water entering the coupled model (accumulated system inflow) needed to be equal
to the sum of the water leaving the system (accumulated system outflow) and the water
stored within the model (surface water). Figure 6b demonstrates that the overall water
conservation of the model was also well satisfied.
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Figure 6. Analytical diagram of the water balance in the improved model. (a) Water conservation in the
vertical flow exchange process. (b) Systematic water conservation in the coupled simulation process.

Root mean squared error (RMSE) was used as a statistical measure of deviation be-
tween “accumulated overflow” with “accumulated backflow + surface water accumulation”
for Figure 6a, and “accumulated system inflow” with “accumulated system outflow + sur-
face water” for Figure 6b.

Figure 7 takes node 2 as a typical overflow node, node 3 as a typical backflow node,
and the locations of point A and node 3 as representatives for the surface water depth. It
compares the calculation results of the improved model and the ICM model with two types
of grid meshing. The Nash–Sutcliffe efficiency coefficient (ENS) was used to quantitatively
evaluate the degree of agreement between the simulation results of the two models. It can
be seen that the calculation results of the improved vertical flow exchange method with
different grid meshes had a high degree of agreement with the results of the ICM model.
With the meter-level and ten-meter-level grid meshes, the coupled calculation results
obtained with the improved vertical flow exchange method were basically consistent with
the results obtained with the ICM model. It can be seen in Figure 7c that the difference in
grid meshing had a certain impact on the simulation results for the surface water depth,
but the improved method was able to obtain a water depth change curve that was almost
consistent with that of the ICM model.
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Figure 7. Comparison of the results of the improved model and the ICM model (a–d).

4.3. Practical Study Case

The Dongsha storm drainage system in Wuchang District, Wuhan City, was used as a
practical case for the simulation of urban waterlogging; the study area covers a catchment
range of 82.73 km2. The terrain within the catchment area is relatively flat, with Shahu
Lake and Donghu Lake located on the south side. These lakes are the main recipients of
runoff. However, as the lake water levels remain relatively high throughout the year, it
adversely affects the drainage of the stormwater drainage network, making local low-lying
areas prone to waterlogging.

The terrain and drainage system of the study area are shown in the right subfigure of
Figure 8. The ICM model and the improved model were both used to establish a coupled
1D–2D model for the study area. An unstructured grid with an average cell size of 450 m2

was adopted as the ICM model’s ground grid, and the total number of cells was 210,000.
The improved model used a structured grid for the ground, with a cell size of 20 m × 20 m
and a total of 240,000 cells. The rainfall data used were from two heavy rainstorms in the
area, which occurred on 18 June and 6 July 2016 (hereinafter referred to as the 201606 and
201607 rainstorms). The cumulative rainfall amounts for the two storms were 143.5 mm
and 125.6 mm, respectively, and the rainfall intensity curves for both storms is shown in
the two left subfigures in Figure 8.

Both coupled models were used to simulate the waterlogging conditions for the two
rainstorms. The inundated area of the improved model is shown in Figure 9. The 201606
rainstorm, with its heavy rainfall and short duration, led to severe urban waterlogging.
The simulation results indicated many inundated areas and significant water depths on the
ground. For the 201607 rainstorm, although it also had heavy rainfall, its longer duration
and more uniform distribution of rainfall throughout the event, with a peak intensity
approximately half of that of the 201606 rainstorm, resulted in less severe waterlogging
and fewer recorded waterlogging points on that day. In both rainstorm simulations, the
simulation results of the improved model were basically consistent with the actual recorded
waterlogging points on the respective days. The simulation results demonstrated that the
coupled model using the improved vertical flow exchange method was able to accurately
simulate the inundation range and depth of urban waterlogging.
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Figure 10 presents the temporal changes in the surface water volume for both the
improved model and the ICM model during the two rainfall events. It can be observed that
the vertical flow exchange calculations from the improved model closely aligned with those
from the ICM model, as indicated by the high degree of overlap in the curves depicting
the temporal variation in the volume of groundwater accumulation. This suggests that the
vertical flow exchange calculations at the nodes using the improved method were highly
consistent with those from the ICM model.

In the urban waterlogging simulations, the vertical flow exchange at overloaded nodes
accounted for most of the overall vertical flow exchange. Figure 11 shows a comparison
of the number of different types of vertical flow exchange nodes in the evolution of the
1D model during the coupling process. Based on the statistical analysis of the simulation
results, the proportion of vertical flow exchange at overloaded nodes, with respect to the
total vertical flow exchange at nodes during the two rainstorm simulations, was 81.43%
and 88.66%, respectively. Using the improved method allowed for the direct calculation
of the vertical flow exchange results at nodes using the SWMM module, based on the
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principle of water conservation in most cases. The calculation of the backflow volume
using a variable-head orifice flow formula was only needed in a few instances of backflow
at non-overloaded nodes. This significantly reduced the amount of vertical flow exchange
calculations using the orifice or weir flow formulas, thereby improving the computational
efficiency and stability of the coupled simulation.
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5. Conclusions and Future Work

Based on the SWMM and an independently developed two-dimensional hydrody-
namic model, a coupled hydrological and hydrodynamic model for urban waterlogging
was constructed. Within this framework, the vertical flow exchange method was improved
using the principle of node water balance. Both a theoretical drainage system and a real
urban drainage system were used as case studies in order to validate the improved method
in terms of simulation accuracy, reliability and water balance. The main conclusions are
as follows.

Calculating the vertical flow exchange using the principle of water conservation
can significantly reduce the calculations related to the orifice or weir formulas. Most
calculations related to the vertical flow exchange can be implemented with the original
functions in the SWMM. Only the backflow at non-overloaded nodes needs to be calculated
outside the SWMM by using orifice or weir flow formulas.

The calculation of the vertical flow exchange is integrated into the SWMM calculation
module. The SWMM module uses an iterative method to calculate the node water heads
and conduit flow rates, with the convergence of node water heads as the stopping condition
for each iteration. Thus, numerical harmony is achieved among the node water heads,
conduit flows and vertical exchange flows. In addition, numerical stability of the simulation
is achieved without any artificially set values in the calculation of the vertical flow exchange.
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A comparison of the simulation results from the ICM model with those of the improved
model demonstrates that the coupled model using the improved vertical flow exchange
method exhibits good accuracy and reliability. Its results align closely with those of the ICM
simulation across various grid sizes ranging from meters to hundreds of meters, making
this method suitable for the numerical simulation of urban waterlogging.

However, this study still has certain limitations. It only discusses the calculation of
vertical flow exchange in the case of Semi-Distributed Urban Stormwater Models. The
nodes involved in vertical flow exchange are computational nodes, not specific rainwater
inlets. Additionally, due to insufficient monitoring data, there has been no detailed cali-
bration or discussion of the flow coefficients at the exchange nodes in both the ICM and
proposed models. These shortcomings need to be addressed in future work.
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