Comprehensive Review of Global Perspectives on Per- and Polyfluoroalkyl Compounds: Occurrence, Fate, and Remediation in Groundwater Systems
Abstract
:1. Introduction
2. Literature Screening and Bibliography
3. Source of PFASs in the Groundwater System
3.1. Industry
3.2. Landfill Leachate
3.3. Wastewater Treatment Facilities
3.4. Agriculture Application of Biosolids
4. Global Trends of PFASs in The Groundwater System
5. Fate and Transport Mechanisms
5.1. Leaching Processes
5.2. Natural Attenuation
5.3. Precursor Transformations
6. Remediation Technologies
6.1. Ex Situ Methods
6.2. In Situ Methods
6.3. Recent Advancement of PFAS Remediation
7. PFASs in Saudi Groundwater
8. Research Needs and Future Outlook
- Advanced research on PFAS contaminant leaching, attenuation, and migration processes in the subsurface environment is required to understand subsurface loading and movement better.
- Determine reliable sorption coefficients for interactions between PFASs and aquifer materials in real-world implementation.
- Enhance research to include a broader range of PFASs, especially precursor chemicals, to enhance understanding of their environmental fate and toxicity.
- To improve model accuracy, develop comprehensive datasets to validate the PFAS transport models using multi-year field data.
- Conduct performance studies of remediation technologies, especially in situ methods across multiple locations, to assess their scalability and effectiveness.
- Increase PFAS research and monitoring efforts in densely populated developing countries such as India to better assess contamination levels, exposure risks, and potential impact on public health.
- A comprehensive investigation of the PFAS contamination of the groundwater system in arid regions like Saudi Arabia and the surrounding countries is required to protect the limited freshwater resources and human health.
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teymourian, T.; Teymoorian, T.; Kowsari, E.; Ramakrishna, S. A Review of Emerging PFAS Contaminants: Sources, Fate, Health Risks, and a Comprehensive Assortment of Recent Sorbents for PFAS Treatment by Evaluating Their Mechanism. Res. Chem. Intermed. 2021, 47, 4879–4914. [Google Scholar] [CrossRef]
- Vatankhah, H.; Anderson, R.H.; Ghosh, R.; Willey, J.; Leeson, A. A Review of Innovative Approaches for Onsite Management of PFAS-Impacted Investigation Derived Waste. Water Res. 2023, 247, 120769. [Google Scholar] [CrossRef] [PubMed]
- Newell, C.J.; Stockwell, E.B.; Alanis, J.; Adamson, D.T.; Walker, K.L.; Anderson, R.H. Determining Groundwater Recharge for Quantifying PFAS Mass Discharge from Unsaturated Source Zones. Vadose Zone J. 2023, 22, e20262. [Google Scholar] [CrossRef]
- Singh, A.; Lynch, R.; Solomon, J.; Weaver, J.D.; May, A.R. Development of Novel Fluor Mop Materials for Remediation of Perfluoroalkyl Substances (PFAS) from groundwater. J. Hazard. Mater. 2023, 448, 130853. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.W.; Hamid, F.S.; Yusoff, I.; Chan, V. A Review of PFAS Research in Asia and Occurrence of PFOA and PFOS in Groundwater, Surface Water and Coastal Water in Asia. Groundw. Sustain. Dev. 2023, 22, 100947. [Google Scholar] [CrossRef]
- Rehnstam, S.; Czeschka, M.-B.; Ahrens, L. Suspect Screening and Total Oxidizable Precursor (TOP) Assay as Tools for Characterization of per- and Polyfluoroalkyl Substance (PFAS)-Contaminated Groundwater and Treated Landfill Leachate. Chemosphere 2023, 334, 138925. [Google Scholar] [CrossRef] [PubMed]
- Pannu, M.W.; Chang, J.; Medina, R.; Grieco, S.A.; Hwang, M.; Plumlee, M.H. Comparing PFAS Removal across Multiple Groundwaters for Eight GACs and Alternative Adsorbent. AWWA Water Sci. 2023, 5, e1345. [Google Scholar] [CrossRef]
- He, Y. Per- and Polyfluoroalkyl Substances (PFAS) in China’ s Groundwater Resources: Concentration, Composition, and Human Health Risk. E3S Web Conf. 2023, 406, 02047. [Google Scholar] [CrossRef]
- USEPA. PFAS National Primary Drinking Water Regulation; USEPA: Washington, DC, USA, 2024.
- McDermett, K.S.; Guelfo, J.; Anderson, T.A.; Reible, D.; Jackson, A.W. The Development of Diffusive Equilibrium, High-Resolution Passive Samplers to Measure Perfluoroalkyl Substances (PFAS) in Groundwater. Chemosphere 2022, 303, 134686. [Google Scholar] [CrossRef]
- Li, R.; MacDonald Gibson, J. Predicting the Occurrence of Short-Chain PFAS in Groundwater Using Machine-Learned Bayesian Networks. Front. Environ. Sci. 2022, 10, 958784. [Google Scholar] [CrossRef]
- Alam, M.S.; Preisendanz, H.E.; Fetter, J.R.; Boser, S.; Swisock, B.R. Assessing the Potential Impacts of Biosolids Applications on the Presence of PFAS Compounds in Nearby Groundwater Wells: A Citizen Science-Based Study in Pennsylvania. In Proceedings of the 2022 ASABE Annual International Meeting, Houston, TX, USA, 17–20 July 2022. [Google Scholar] [CrossRef]
- Kassar, C.; Boyer, T.H. Removal of PFAS from Groundwater Using Weak-Base Anion Exchange Resins. AWWA Water Sci. 2023, 5, e1325. [Google Scholar] [CrossRef]
- Kulkarni, P.R.; Richardson, S.D.; Nzeribe, B.N.; Adamson, D.T.; Kalra, S.S.; Mahendra, S.; Blotevogel, J.; Hanson, A.; Dooley, G.; Maraviov, S.; et al. Field Demonstration of a Sonolysis Reactor for Treatment of PFAS-Contaminated Groundwater. J. Environ. Eng. 2022, 148, 06022005. [Google Scholar] [CrossRef]
- Liang, S.; Mora, R.; Huang, Q.; Casson, R.; Wang, Y.; Woodard, S.; Anderson, H. Field Demonstration of Coupling Ion-Exchange Resin with Electrochemical Oxidation for Enhanced Treatment of per- and Polyfluoroalkyl Substances (PFAS) in Groundwater. Chem. Eng. J. Adv. 2022, 9, 100216. [Google Scholar] [CrossRef]
- Chen, S.; Guo, B. Pore-Scale Modeling of PFAS Transport in Water-Unsaturated Porous Media: Air–Water Interfacial Adsorption and Mass-Transfer Processes in Thin Water Films. Water Resour. Res. 2023, 59, e2023WR034664. [Google Scholar] [CrossRef]
- Liu, M.; Munoz, G.; Vo Duy, S.; Sauvé, S.; Liu, J. Per-and Polyfluoroalkyl Substances in Contaminated Soil and Groundwater at Airports: A Canadian Case Study. Environ. Sci. Technol. 2021, 56, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Rovero, M.; Cutt, D.; Griffiths, R.; Filipowicz, U.; Mishkin, K.; White, B.; Goodrow, S.; Wilkin, R.T. Limitations of Current Approaches for Predicting Groundwater Vulnerability from PFAS Contamination in the Vadose Zone. Ground Water Monit. Remediat. 2021, 41, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, T.; Bond, D.; Foley, J. PFAS Soil and Groundwater Contamination: Via Industrial Airborne Emission and Land Deposition in SW Vermont and Eastern New York State, USA. Environ. Sci. Process Impacts 2021, 23, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Niarchos, G.; Ahrens, L.; Kleja, D.B.; Leonard, G.; Forde, J.; Bergman, J.; Ribeli, E.; Schütz, M.; Fagerlund, F. In-Situ Application of Colloidal Activated Carbon for PFAS-Contaminated Soil and Groundwater: A Swedish Case Study. Remediation 2023, 33, 101–110. [Google Scholar] [CrossRef]
- Mussabek, D.; Söderman, A.; Imura, T.; Persson, K.M.; Nakagawa, K.; Ahrens, L.; Berndtsson, R. PFAS in the Drinking Water Source: Analysis of the Contamination Levels, Origin and Emission Rates. Water 2023, 15, 137. [Google Scholar] [CrossRef]
- Guelfo, J.L.; Marlow, T.; Klein, D.M.; Savitz, D.A.; Frickel, S.; Crimi, M.; Suuberg, E.M. Evaluation and Management Strategies for Per-and Polyfluoroalkyl Substances (PFASs) in Drinking Water Aquifers: Perspectives from Impacted US Northeast Communities. Environ. Health Perspect. 2018, 126, 065001. [Google Scholar] [CrossRef]
- Li, J.; Peng, G.; Xu, X.; Liang, E.; Sun, W.; Chen, Q.; Yao, L. Per-and Polyfluoroalkyl Substances (PFASs) in Groundwater from a Contaminated Site in the North China Plain: Occurrence, Source Apportionment, and Health Risk Assessment. Chemosphere 2022, 302, 134873. [Google Scholar] [CrossRef] [PubMed]
- Li, B.-B.; Hu, L.-X.; Yang, Y.-Y.; Wang, T.-T.; Liu, C.; Ying, G.-G. Contamination Profiles and Health Risks of PFASs in Groundwater of the Maozhou River Basin. Environ. Pollut. 2020, 260, 113996. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Liu, S.; Zhou, J.L.; Zheng, C.; Weifeng, J.; Chen, B.; Zhang, T.; Qiu, W. PFAS and Their Substitutes in Groundwater: Occurrence, Transformation and Remediation. J. Hazard. Mater. 2021, 412, 125159. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Provisional Health Advisories for Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS); USEPA: Washington, DC, USA, 2009.
- USEPA. Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA) EPA 822-R-16-005; U.S. Environmental Protection Agency, Office of Water: Washington, DC, USA, 2016.
- USEPA. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS); Office of Water Document: Washington, DC, USA, 2016.
- Dauchy, X.; Boiteux, V.; Colin, A.; Hémard, J.; Bach, C.; Rosin, C.; Munoz, J.-F. Deep Seepage of Per-and Polyfluoroalkyl Substances through the Soil of a Firefighter Training Site and Subsequent Groundwater Contamination. Chemosphere 2019, 214, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Ruyle, B.J.; Thackray, C.P.; Butt, C.M.; LeBlanc, D.R.; Tokranov, A.K.; Vecitis, C.D.; Sunderland, E.M. Centurial Persistence of Forever Chemicals at Military Fire Training Sites. Environ. Sci. Technol. 2023, 57, 8096–8106. [Google Scholar] [CrossRef]
- Hatton, J.; Holton, C.; DiGuiseppi, B. Occurrence and Behavior of Per-and Polyfluoroalkyl Substances from Aqueous Film-forming Foam in Groundwater Systems. Remediat. J. 2018, 28, 89–99. [Google Scholar] [CrossRef]
- Urtiaga, A.; Gómez-Lavín, S.; Soriano, A. Electrochemical Treatment of Municipal Landfill Leachates and Implications for Poly- and Perfluoroalkyl Substances (PFAS) Removal. J. Environ. Chem. Eng. 2022, 10, 107900. [Google Scholar] [CrossRef]
- Liu, T.; Hu, L.-X.; Han, Y.; Dong, L.-L.; Wang, Y.-Q.; Zhao, J.-H.; Liu, Y.-S.; Zhao, J.-L.; Ying, G.-G. Non-Target and Target Screening of per-and Polyfluoroalkyl Substances in Landfill Leachate and Impact on Groundwater in Guangzhou, China. Sci. Total Environ. 2022, 844, 157021. [Google Scholar] [CrossRef] [PubMed]
- Hepburn, E.; Madden, C.; Szabo, D.; Coggan, T.L.; Clarke, B.; Currell, M. Contamination of Groundwater with Per-and Polyfluoroalkyl Substances (PFAS) from Legacy Landfills in an Urban Re-Development Precinct. Environ. Pollut. 2019, 248, 101–113. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Liu, Y.; Bowden, J.A.; Tolaymat, T.M.; Townsend, T.G.; Solo-Gabriele, H.M. Evaluation of Per- and Polyfluoroalkyl Substances (PFAS) in Leachate, Gas Condensate, Stormwater and Groundwater at Landfills. Chemosphere 2023, 318, 137903. [Google Scholar] [CrossRef]
- Sadia, M.; Kunz, M.; Ter Laak, T.; De Jonge, M.; Schriks, M.; van Wezel, A.P. Forever Legacies? Profiling Historical PFAS Contamination and Current Influence on Groundwater Used for Drinking Water. Sci. Total Environ. 2023, 890, 164420. [Google Scholar] [CrossRef] [PubMed]
- Cáñez, T.T.; Guo, B.; McIntosh, J.C.; Brusseau, M.L. Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in Groundwater at a Reclaimed Water Recharge Facility. Sci. Total Environ. 2021, 791, 147906. [Google Scholar] [CrossRef] [PubMed]
- Mroczko, O.; Preisendanz, H.E.; Wilson, C.; Veith, T.L.; Mashtare, M.L.; Watson, J.E.; Elliott, H.A. Spatial and Temporal Patterns of PFAS Occurrence at a Wastewater Beneficial Reuse Site in Central Pennsylvania. In Proceedings of the American Society of Agricultural and Biological Engineers Annual International Meeting, ASABE 2021, Virtual, Online, 12–16 July 2021; Volume 4, pp. 2401–2415. [Google Scholar]
- Helmer, R.W.; Reeves, D.M.; Cassidy, D.P. Per-and Polyfluorinated Alkyl Substances (PFAS) Cycling within Michigan: Contaminated Sites, Landfills and Wastewater Treatment Plants. Water Res. 2022, 210, 117983. [Google Scholar] [CrossRef] [PubMed]
- EPA. U.S. Drinking Water Health Advisories for PFOA and PFOS; United States Environmental Protection Agency: Washington, DC, USA, 2016.
- Xingchun, J.; Wei, Z.; Jing, P.; Guohui, L.; Dian, C.; Zhaohe, Z.; Yiran, Z. The Occurrence, Spatial Distribution, and Well-Depth Dependence of PFASs in Groundwater from a Reclaimed Water Irrigation Area. Sci. Total Environ. 2023, 901, 165904. [Google Scholar] [CrossRef] [PubMed]
- Pepper, I.; Kelley, C.; Brusseau, M. Is PFAS from Land Applied Municipal Biosolids a Significant Source of Human Exposure via Groundwater? Sci. Total Environ. 2023, 864, 161154. [Google Scholar] [CrossRef]
- Johnson, G.R. PFAS in Soil and Groundwater Following Historical Land Application of Biosolids. Water Res. 2022, 211, 118035. [Google Scholar] [CrossRef] [PubMed]
- Röhler, K.; Haluska, A.A.; Susset, B.; Liu, B.; Grathwohl, P. Long-Term Behavior of PFAS in Contaminated Agricultural Soils in Germany. J. Contam. Hydrol. 2021, 241, 103812. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Drinking Water Health Advisory: Perfluorobutane Sulfonic Acid. (CASRN 375-73-5) and Related Compound Potassium Perfluorobutane Sulfonate (CASRN 29420-49-3); USEPA: Washington, DC, USA, 2022.
- USEPA. Fact Sheet: 2010/2015 PFOA Stewardship Program; USEPA: Washington, DC, USA, 2018.
- Szabo, D.; Coggan, T.L.; Robson, T.C.; Currell, M.; Clarke, B.O. Investigating Recycled Water Use as a Diffuse Source of Per-and Polyfluoroalkyl Substances (PFASs) to Groundwater in Melbourne, Australia. Sci. Total Environ. 2018, 644, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- McGregor, R. Six Pilot-Scale Studies Evaluating the in Situ Treatment of PFAS in Groundwater. Remediation 2020, 30, 39–50. [Google Scholar] [CrossRef]
- Newell, C.J.; Adamson, D.T.; Kulkarni, P.R.; Nzeribe, B.N.; Connor, J.A.; Popovic, J.; Stroo, H.F. Monitored Natural Attenuation to Manage PFAS Impacts to Groundwater: Potential Guidelines. Remediat. J. 2021, 31, 7–17. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Wang, X.; Qiao, X.; Hao, S.; Lu, J.; Duan, X.; Dionysiou, D.D.; Zheng, B. Contamination Profiles of Perfluoroalkyl Substances (PFAS) in Groundwater in the Alluvial-Pluvial Plain of Hutuo River, China. Water 2019, 11, 2316. [Google Scholar] [CrossRef] [PubMed]
- Yong, Z.Y.; Kim, K.Y.; Oh, J.-E. The Occurrence and Distributions of Per- and Polyfluoroalkyl Substances (PFAS) in Groundwater after a PFAS Leakage Incident in 2018. Environ. Pollut 2021, 268, 115395. [Google Scholar] [CrossRef] [PubMed]
- Sammut, G.; Sinagra, E.; Sapiano, M.; Helmus, R.; De Voogt, P. Perfluoroalkyl Substances in the Maltese Environment–(II) Sediments, Soils and Groundwater. Sci. Total Environ. 2019, 682, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.M.; Bharat, G.K.; Tayal, S.; Larssen, T.; Bečanová, J.; Karásková, P.; Whitehead, P.G.; Futter, M.N.; Butterfield, D.; Nizzetto, L. Perfluoroalkyl Substances (PFAS) in River and Ground/Drinking Water of the Ganges River Basin: Emissions and Implications for Human Exposure. Environ. Pollut. 2016, 208, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Gobelius, L.; Hedlund, J.; Durig, W.; Troger, R.; Lilja, K.; Wiberg, K.; Ahrens, L. Per-and Polyfluoroalkyl Substances in Swedish Groundwater and Surface Water: Implications for Environmental Quality Standards and Drinking Water Guidelines. Environ. Sci. Technol. 2018, 52, 4340–4349. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Yu, W.-J.; Liu, Y.; Wang, X.; Jin, Y.-H.; Dong, G.-H. Perfluoroalkyl Substances in Groundwater and Home-Produced Vegetables and Eggs around a Fluorochemical Industrial Park in China. Ecotoxicol. Environ. Saf. 2019, 171, 199–205. [Google Scholar] [CrossRef]
- Munoz, G.; Liu, M.; Vo Duy, S.; Liu, J.; Sauvé, S. Target and Nontarget Screening of PFAS in Drinking Water for a Large-Scale Survey of Urban and Rural Communities in Québec, Canada. Water Res. 2023, 233, 119750. [Google Scholar] [CrossRef] [PubMed]
- McMahon, P.B.; Tokranov, A.K.; Bexfield, L.M.; Lindsey, B.D.; Johnson, T.D.; Lombard, M.A.; Watson, E. Perfluoroalkyl and Polyfluoroalkyl Substances in Groundwater Used as a Source of Drinking Water in the Eastern United States. Environ. Sci. Technol. 2022, 56, 2279–2288. [Google Scholar] [CrossRef]
- Stefano, P.H.P.; Roisenberg, A.; D’Anna Acayaba, R.; Roque, A.P.; Bandoria, D.R.; Soares, A.; Montagner, C.C. Occurrence and Distribution of Per-and Polyfluoroalkyl Substances (PFAS) in Surface and Groundwaters in an Urbanized and Agricultural Area, Southern Brazil. Environ. Sci. Pollut. Res. 2023, 30, 6159–6169. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, Y.; Gao, K.; Wang, Y.; Wang, C.; Fu, J.; Wang, Y.; Jiang, G.; Jiang, Y. Levels, Spatial Distribution and Isomer Profiles of Perfluoroalkyl Acids in Soil, Groundwater and Tap Water around a Manufactory in China. Chemosphere 2019, 227, 305–314. [Google Scholar] [CrossRef]
- Qiao, X.; Jiao, L.; Zhang, X.; Li, X.; Hao, S.; Kong, M.; Liu, Y. Contamination Profiles and Risk Assessment of Per-and Polyfluoroalkyl Substances in Groundwater in China. Environ. Monit. Assess. 2020, 192, 159. [Google Scholar] [CrossRef] [PubMed]
- Newell, C.J.; Javed, H.; Li, Y.; Johnson, N.W.; Richardson, S.D.; Connor, J.A.; Adamson, D.T. Enhanced Attenuation (EA) to Manage PFAS Plumes in Groundwater. Remediation 2022, 32, 239–257. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Guo, B. Revising the EPA Dilution-Attenuation Soil Screening Model for PFAS. J. Hazard. Mater. 2023, 4, 100077. [Google Scholar] [CrossRef] [PubMed]
- Newell, C.J.; Adamson, D.T.; Kulkarni, P.R.; Nzeribe, B.N.; Connor, J.A.; Popovic, J.; Stroo, H.F. Monitored Natural Attenuation to Manage PFAS Impacts to Groundwater: Scientific Basis. Ground Water Monit. Remediat. 2021, 41, 76–89. [Google Scholar] [CrossRef]
- Burns, D.J.; Stevenson, P.; Murphy, P.J.C. PFAS Removal from Groundwaters Using Surface-Active Foam Fractionation. Remediation 2021, 31, 19–33. [Google Scholar] [CrossRef]
- Newell, C.J.; Kulkarni, P.R.; Adamson, D.T. In Situ Gas Sparging for Concentration and Removal of Per- and Polyfluoroalkyl Substances (PFAS) from Groundwater. Remediation 2021, 31, 35–47. [Google Scholar] [CrossRef]
- Palma, D.; Papagiannaki, D.; Lai, M.; Binetti, R.; Sleiman, M.; Minella, M.; Richard, C. PFAS Degradation in Ultrapure and Groundwater Using Non-Thermal Plasma. Molecules 2021, 26, 924. [Google Scholar] [CrossRef]
- Simon, J.A.; Abrams, S.; Bradburne, T.; Bryant, D.; Burns, M.; Cassidy, D.; Cherry, J.; Chiang, S.-Y.; Cox, D.; Crimi, M.; et al. PFAS Experts Symposium: Statements on Regulatory Policy, Chemistry and Analtyics, Toxicology, Transport/Fate, and Remediation for per- and Polyfluoroalkyl Substances (PFAS) Contamination Issues. Remediation 2019, 29, 31–48. [Google Scholar] [CrossRef]
- Gefell, M.J.; Huang, H.; Opdyke, D.; Gustafson, K.; Vlassopoulos, D.; McCray, J.E.; Best, S.; Carey, M. Modeling PFAS Fate and Transport in Groundwater, with and Without Precursor Transformation. Groundwater 2022, 60, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.J.; Werner, D.; Bellona, C. Removal of Per-and Polyfluoroalkyl Substances (PFASs) from Contaminated Groundwater Using Granular Activated Carbon: A Pilot-Scale Study with Breakthrough Modeling. Environ. Sci. 2019, 5, 1844–1853. [Google Scholar] [CrossRef]
- Zhou, J.; Baumann, K.; Surratt, J.D.; Turpin, B.J. Legacy and Emerging Airborne Per- and Polyfluoroalkyl Substances (PFAS) Collected on PM2.5 Filters in Close Proximity to a Fluoropolymer Manufacturing Facility. Environ. Sci. Process Impacts 2022, 24, 2272–2283. [Google Scholar] [CrossRef] [PubMed]
- Tamanna, T.; Mahon, P.J.; Hockings, R.K.; Alam, H.; Raymond, M.; Smith, C.; Clarke, C.; Yu, A. Ion Exchange MIEX® GOLD Resin as a Promising Sorbent for the Removal of PFAS Compounds. Appl. Sci. 2023, 13, 6263. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, L.-X.; Yu, W.-J.; Bao, J.; Li, T.-Y.; Hu, X.-M.; Zhao, X. Simultaneous Removal of Multiple PFAS from Contaminated Groundwater around a Fluorochemical Facility by the Periodically Reversing Electrocoagulation Technique. Chemosphere 2022, 307, 135874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, Y.; Dong, L.; Chen, X.; Guan, Y.; Liu, W.; Wang, Z. Efficient Degradation of PFOA in Water by Persulfate-Assisted and UV-Activated Electrocoagulation Technique Using Fe Foam Electrode. Electrochim. Acta 2022, 434, 141296. [Google Scholar] [CrossRef]
- Laramay, F.; Crimi, M. A Sustainability Assessment of an in Situ Ultrasonic Reactor for Remediation of PFAS-Contaminated Groundwater. Remediation 2020, 31, 59–72. [Google Scholar] [CrossRef]
- Moeini, M.; Modaresahmadi, K.; Tran, T.; Reddy, K.R. Sustainability Assessment of PFAS Adsorbents for Groundwater Remediation. Mater. Today Proc. 2022, 60, 2209–2216. [Google Scholar] [CrossRef]
- Vo, H.N.P.; Nguyen, T.M.H.; Ngo, H.H.; Guo, W.; Shukla, P. Biochar Sorption of Perfluoroalkyl Substances (PFASs) in Aqueous Film-Forming Foams-Impacted Groundwater: Effects of PFASs Properties and Groundwater Chemistry. Chemosphere 2022, 286, 131622. [Google Scholar] [CrossRef] [PubMed]
- Uwayezu, J.N.; Carabante, I.; van Hees, P.; Karlsson, P.; Kumpiene, J. Validation of UV/Persulfate as a PFAS Treatment of Industrial Wastewater and Environmental Samples. J. Water Process. Eng. 2023, 53, 103614. [Google Scholar] [CrossRef]
- Uwayezu, J.N.; Carabante, I.; van Hees, P.; Karlsson, P.; Kumpiene, J. Combining Electrochemistry and Ultraviolet Radiation for the Degradation of Per-and Poly-Fluoroalkyl Substances in Contaminated Groundwater and Wastewater. J. Water Process. Eng. 2023, 54, 104028. [Google Scholar] [CrossRef]
- Fenti, A.; Jin, Y.; Rhoades, A.J.H.; Dooley, G.P.; Iovino, P.; Salvestrini, S.; Musmarra, D.; Mahendra, S.; Peaslee, G.F.; Blotevogel, J. Performance Testing of Mesh Anodes for in Situ Electrochemical Oxidation of PFAS. Chem. Eng. J. Adv. 2022, 9, 100205. [Google Scholar] [CrossRef]
- Boyer, T.H.; Ellis, A.; Fang, Y.; Schaefer, C.E.; Higgins, C.P.; Strathmann, T.J. Life Cycle Environmental Impacts of Regeneration Options for Anion Exchange Resin Remediation of PFAS Impacted Water. Water Res. 2021, 207, 117798. [Google Scholar] [CrossRef] [PubMed]
- Groele, J.R.; Sculley, N.; Olson, T.M.; Foster, J.E. An Investigation of Plasma-Driven Decomposition of per- and Polyfluoroalkyl Substances (PFAS) in Raw Contaminated Ground Water. J. Appl. Phys. 2021, 130, 053304. [Google Scholar] [CrossRef]
- Buckley, T.; Karanam, K.; Han, H.; Vo, H.N.P.; Shukla, P.; Firouzi, M.; Rudolph, V. Effect of Different Co-Foaming Agents on PFAS Removal from the Environment by Foam Fractionation. Water Res. 2023, 230, 119532. [Google Scholar] [CrossRef]
- Nau-Hix, C.; Multari, N.; Singh, R.K.; Richardson, S.; Kulkarni, P.; Anderson, R.H.; Holsen, T.M.; Mededovic Thagard, S. Field Demonstration of a Pilot-Scale Plasma Reactor for the Rapid Removal of Poly-and Perfluoroalkyl Substances in Groundwater. ACS ES&T Water 2021, 1, 680–687. [Google Scholar] [CrossRef]
- Lassalle, J.; Gao, R.; Rodi, R.; Kowald, C.; Feng, M.; Sharma, V.K.; Hoelen, T.; Bireta, P.; Houtz, E.F.; Staack, D. Degradation of PFOS and PFOA in Soil and Groundwater Samples by High Dose Electron Beam Technology. Radiat. Phys. Chem. 2021, 189, 109705. [Google Scholar] [CrossRef]
- McGregor, R.; Zhao, Y. The in Situ Treatment of TCE and PFAS in Groundwater within a Silty Sand Aquifer. Remediation 2021, 31, 7–17. [Google Scholar] [CrossRef]
- Hao, S.; Reardon, P.N.; Choi, Y.J.; Zhang, C.; Sanchez, J.M.; Higgins, C.P.; Strathmann, T.J. Hydrothermal Alkaline Treatment (HALT) of Foam Fractionation Concentrate Derived from PFAS-Contaminated Groundwater. Environ. Sci. Technol. 2023, 57, 17154–17165. [Google Scholar] [CrossRef] [PubMed]
- Benaafi, M.; Abba, S.I.; Tawabini, B.; Abdulazeez, I.; Salhi, B.; Usman, J.; Aljundi, I.H. Integrated Clustering Analysis for Delineating Seawater Intrusion and Heavy Metals in Arabian Gulf Coastal Groundwater of Saudi Arabia. Heliyon 2023, 9, e19784. [Google Scholar] [CrossRef] [PubMed]
- Ebert, C.H. V Water Resources and Land Use in the Qatif Oasis of Saudi Arabia. Geogr. Rev. 1965, 55, 496–509. [Google Scholar] [CrossRef]
- Shoemaker, J.; Tettenhorst, D. Method 537.1: Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS); U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment: Washington, DC, USA, 2018.
- US-EPA. SW-846 Test Method 8327: Per-and Polyfluoroalkyl Substances (PFAS) by Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). 2022. Available online: https://Wwwepagov/Hw-Sw846/Sw-846-Test-Method-8327-and-Polyfluoroalkyl-Substances-Pfas-Liquid-Chromatographytandem (accessed on 1 June 2022).
- Gaines, L.G.T. Historical and Current Usage of Per-and Polyfluoroalkyl Substances (PFAS): A Literature Review. Am. J. Ind. Med. 2023, 66, 353–378. [Google Scholar] [CrossRef]
- Grandjean, P.; Heilmann, C.; Weihe, P.; Nielsen, F.; Mogensen, U.B.; Budtz-Jørgensen, E. Serum Vaccine Antibody Concentrations in Adolescents Exposed to Perfluorinated Compounds. Environ. Health Perspect. 2017, 125, 077018. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Song, X.; Wei, C.; Ding, D.; Tang, Z.; Tu, X.; Chen, X.; Wang, S. Distribution, Source Identification and Health Risk Assessment of PFASs in Groundwater from Jiangxi Province, China. Chemosphere 2022, 291, 132946. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benaafi, M.; Bafaqeer, A. Comprehensive Review of Global Perspectives on Per- and Polyfluoroalkyl Compounds: Occurrence, Fate, and Remediation in Groundwater Systems. Water 2024, 16, 1583. https://doi.org/10.3390/w16111583
Benaafi M, Bafaqeer A. Comprehensive Review of Global Perspectives on Per- and Polyfluoroalkyl Compounds: Occurrence, Fate, and Remediation in Groundwater Systems. Water. 2024; 16(11):1583. https://doi.org/10.3390/w16111583
Chicago/Turabian StyleBenaafi, Mohammed, and Abdullah Bafaqeer. 2024. "Comprehensive Review of Global Perspectives on Per- and Polyfluoroalkyl Compounds: Occurrence, Fate, and Remediation in Groundwater Systems" Water 16, no. 11: 1583. https://doi.org/10.3390/w16111583
APA StyleBenaafi, M., & Bafaqeer, A. (2024). Comprehensive Review of Global Perspectives on Per- and Polyfluoroalkyl Compounds: Occurrence, Fate, and Remediation in Groundwater Systems. Water, 16(11), 1583. https://doi.org/10.3390/w16111583