Synergic Origin and Evolution of TDS, Mg and Fluoride in Groundwater as Relative to Chronic Kidney Disease of Unknown Etiology (CKDu) in Sri Lanka
Abstract
:1. Introduction
2. Climatological, Geological, and Hydrological Settings of Sri Lanka
3. Materials and Methods
3.1. Study Area
3.2. Sample Collection and Analysis
4. Results and Discussion
4.1. Groundwater Chemistry
4.2. Hydrogeochemical Evolution of Groundwater
4.3. Sources of Groundwater Recharge
4.4. Groundwater Age
4.5. Correlation between Groundwater Fluoride, Hardness, TDS and Occurrence of CKDu
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levine, K.E.; Redmon, J.H.; Elledge, M.F.; Wanigasuriya, K.P.; Smith, K.; Munoz, B.; Waduge, V.A.; Periris-John, R.J.; Sathiakumar, N.; Harrington, J.M.; et al. Quest to identify geochemical risk factors associated with chronic kidney disease of unknown etiology (CKDu) in an endemic region of Sri Lanka—A multimedia laboratory analysis of biological, food, and environmental samples. Environ. Monit. Assess. 2015, 188, 548. [Google Scholar] [CrossRef] [PubMed]
- Nanayakkara, I.; Dissanayake, R.K.; Nanayakkara, S. The presence of dehydration in paddy farmers in an area with chronic kidney disease of unknown aetiology. Nephrology 2020, 25, 156–162. [Google Scholar] [CrossRef]
- Pry, J.M.; Jackson, W.; Rupasinghe, R.; Lishanthe, G.; Badurdeen, Z.; Abeysekara, T.; Chandrajith, R.; Smith, W.; Wickramasinghe, S. A pilot case-control study using a one health approach to evaluate behavioral, environmental, and occupational risk factors for chronic kidney disease of unknown etiology in Sri Lanka. One Health Outlook 2021, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Wickramarathna, S.; Balasooriya, S.; Diyabalanage, S.; Chandrajith, R. Tracing environmental aetiological factors of chronic kidney diseases in the dry zone of Sri Lanka-A hydrogeochemical and isotope approach. J. Trace Elem. Med. Biol. 2017, 44, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Cooray, T.; Wei, Y.; Zhong, H.; Zheng, L.; Weragoda, S.K.; Weerasooriya, R. Assessment of Groundwater Quality in CKDu Affected Areas of Sri Lanka: Implications for Drinking Water Treatment. Int. J. Environ. Res. Public Health 2019, 16, 1698. [Google Scholar] [CrossRef] [PubMed]
- Imbulana, S.; Oguma, K. Groundwater as a potential cause of Chronic Kidney Disease of unknown etiology (CKDu) in Sri Lanka: A review. J. Water Health 2021, 19, 393–410. [Google Scholar] [CrossRef] [PubMed]
- Wimalawansa, S.J. The role of ions, heavy metals, fluoride, and agrochemicals: Critical evaluation of potential aetiological factors of chronic kidney disease of multifactorial origin (CKDmfo/CKDu) and recommendations for its eradication. Environ. Geochem. Health 2015, 38, 639–678. [Google Scholar] [CrossRef] [PubMed]
- Faleel, R.A.; Jayawardena, U.A. Progression of potential etiologies of the chronic kidney disease of unknown etiology in Sri Lanka. J. Environ. Sci. Health C Toxicol. Carcinog. 2020, 38, 362–383. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.; Aragón, A.; González, M.; López, I.; Jakobsson, K.; Elinder, C.G.; Lundberg, I.; Wesseling, C. Decreased Kidney Function of Unknown Cause in Nicaragua: A Community-Based Survey. Am. J. Kidney Dis. 2010, 55, 485–496. [Google Scholar] [CrossRef]
- Gifford, F.J.; Gifford, R.M.; Eddleston, M.; Dhaun, N. Endemic Nephropathy Around the World. Kidney Int. Rep. 2017, 2, 282–292. [Google Scholar] [CrossRef]
- McDonough, L.K.; Meredith, K.T.; Nikagolla, C.; Middleton, R.J.; Tan, J.K.; Ranasinghe, A.V.; Sierro, F.; Banati, R.B. The water chemistry and microbiome of household wells in Medawachchiya, Sri Lanka, an area with high prevalence of chronic kidney disease of unknown origin (CKDu). Sci. Rep. 2020, 10, 18295. [Google Scholar] [CrossRef] [PubMed]
- Edirisinghe, E.A.N.V.; Manthrithilake, H.; Pitawala, H.M.T.G.A.; Dharmagunawardhane, H.A.; Wijayawardane, R.L. Geochemical and isotopic evidences from groundwater and surface water for understanding of natural contamination in chronic kidney disease of unknown etiology (CKDu) endemic zones in Sri Lanka. Isot. Environ. Health Stud. 2017, 54, 244–261. [Google Scholar] [CrossRef]
- Rajapakse, S.; Shivanthan, M.C.; Selvarajah, M. Chronic Kidney Disease of Unknown Etiology in Sri Lanka. Int. J. Occup. Environ. Health 2016, 22, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Jayasekara, J.M.K.B.; Dissanayake, D.M.; Adhikari, S.B.; Bandara, P. Geographical Distribution of Chronic Kidney Disease of Unknown Origin in North Central Region of Sri Lanka. Ceylon Med. J. 2013, 58, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Kulathunga, M.R.D.L.; Ayanka Wijayawardena, M.A.; Naidu, R.; Wijeratne, A.W. Chronic kidney disease of unknown aetiology in Sri Lanka and the exposure to environmental chemicals: A review of literature. Environ. Geochem. Health 2019, 41, 2329–2338. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.; Luyckx, V.A. Genetic and Developmental Factors in Chronic Kidney Disease Hotspots. Semin. Nephrol. 2019, 39, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Premadasa, H.K.S.; Priyanath, H.M.S.; Walpita, C.N. The Impact of Social Capital on Socioeconomic Condition of Ckdu Patients in Sri Lanka: An Empirical Investigation. Int. J. Sci. Res. Manag. 2020, 8, 377–388. [Google Scholar] [CrossRef]
- Sandanayake, S.; Diyabalanage, S.; Edirisinghe, E.A.N.V.; Guo, H.; Vithanage, M. Hydrogeochemical characterization of groundwater with a focus on Hofmeister ions and water quality status in CKDu endemic and CKDu non–endemic areas, Sri Lanka. Environ. Pollut. 2023, 328, 121596. [Google Scholar] [CrossRef]
- Balasooriya, B.M.J.K.; Chaminda, G.G.T.; Weragoda, S.K.; Kankanamge, C.E.; Kawakami, T. Assessment of Groundwater Quality in Sri Lanka Using Multivariate Statistical Techniques. In Contaminants in Drinking and Wastewater Sources: Challenges and Reigning Technologies; Springer: Berlin/Heidelberg, Germany, 2021; pp. 117–135. [Google Scholar]
- Vlahos, P.; Schensul, S.L.; Nanayakkara, N.; Chandrajith, R.; Haider, L.; Anand, S.; Silva, K.T.; Schensul, J.J. Kidney progression project (KiPP): Protocol for a longitudinal cohort study of progression in chronic kidney disease of unknown etiology in Sri Lanka. Glob. Public Health 2019, 14, 214–226. [Google Scholar] [CrossRef]
- Panabokke, C.R.; Perera, A.P.G.R.L. Groundwater Resources of Sri Lanka; Water Resources Board: Colombo, Sri Lanka; Sri Lank: Kotte, Sri Lanka, 2005.
- Pathmarajah, S. Use of Groundwater for Agriculture in Sri Lanka Proceedings of a Symposium (Reprint); Symposium Sponsors Agricultural Engineering Society of Sri Lanka (AESSL); Postgraduate Institute of Agriculture (PGIA), Peradeniya Faculty of Agriculture: Peradeniya, Sri Lanka, 2007. [Google Scholar]
- Wasana, H.M.; Aluthpatabendi, D.; Kularatne, W.M.T.D.; Wijekoon, P.; Weerasooriya, R.; Bandara, J. Drinking water quality and chronic kidney disease of unknown etiology (CKDu): Synergic effects of fluoride, cadmium and hardness of water. Environ. Geochem. Health 2016, 38, 157–168. [Google Scholar] [CrossRef]
- Chandrajith, R.; Nanayakkara, S.; Itai, K.; Aturaliya, T.; Dissanayake, C.; Abeysekera, T.; Harada, K.; Watanabe, T.; Koizumi, A. Chronic kidney diseases of uncertain etiology (CKDue) in Sri Lanka: Geographic distribution and environmental implications. Environ. Geochem. Health 2011, 33, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, H.A.H.; Chandrajith, R.; Dissanayake, C.B. Spatial variation of isotope composition in precipitation in a tropical environment: A case study from the Deduru Oya river basin, Sri Lanka. Hydrol. Process. 2008, 22, 4565–4570. [Google Scholar] [CrossRef]
- Edirisinghe, E.A.N.V.; Pitawala, H.M.T.G.A.; Dharmagunawardhane, H.A.; Wijayawardane, R.L. Spatial and temporal variation in the stable isotope composition (δ18O and δ2H) of rain across the tropical island of Sri Lanka. Isotopes Environ. Health Stud. 2017, 53, 628–645. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Li, S.L.; Yue, F.; Udeshani, C.; Chandrajith, R. Natural and anthropogenic controls of groundwater quality in sri lanka: Implications for chronic kidney disease of unknown etiology (ckdu). Water 2021, 13, 2724. [Google Scholar] [CrossRef]
- Cooray, P.G. The precambrian of Sri Lanka: A historical review. Precambrian Res. 1994, 66, 3–18. [Google Scholar] [CrossRef]
- Amarasinghe, U.A.; Mutuwatta, L.; Sakthivadivel, R. Water Scarcity Variations within a Country: A Case Study of Sri Lanka; International Water Management Institute: Colombo, Sri Lanka, 1999. [Google Scholar]
- Gangadhara, K.R.; Jayasena, H.A.H. Rainwater Harvest by Tank Cascades in Sri Lanka-Was it a Technically Adapted Methodology by the Ancients? In Proceedings of the Twelfth International Conference on Rain Water Catchment Systems, New Delhi, India, 1 November 2005. [Google Scholar]
- Priyadarshanee, K.S.G.S.; Pang, Z.; Edirisinghe, E.A.N.V.; Dharmagunawardhane, H.A.; Pitawala, H.M.T.G.A.; Gunasekara, J.D.C.; Tilakarathna, I.A.N.D.P. Deep groundwater recharge mechanism in the sedimentary and crystalline terrains of Sri Lanka: A study based on environmental isotope and chemical signatures. Appl. Geochem. 2022, 136, 105174. [Google Scholar] [CrossRef]
- Indika, S.; Hu, D.; Wei, Y.; Yapabandara, I.; Cooray, T.; Makehelwala, M.; Jinadasa, K.B.S.N.; Weragoda, S.K.; Weerasooriya, R.; Pang, Z. Spatiotemporal Variation of Groundwater Quality in North Central Province, Sri Lanka. ACS EST Water 2023, 3, 1687–1698. [Google Scholar] [CrossRef]
- Panabokke, C.R. Groundwater Conditions in Sri Lanka: A Geomorphic Perspective; National Science Foundation of Sri Lanka: Colombo, Sri Lanka, 2007. [Google Scholar]
- Harris, N.B.W.; Cooray, P.G. An Introduction to the Geology of Sri Lanka (Ceylon), 2nd ed.; National Museums of Sri Lanka: Colombo, Sri Lanka, 1991; Volume 128, p. 85. [Google Scholar] [CrossRef]
- Athuraliya, N.T.C.; Abeysekera, T.D.J.; Amerasinghe, P.H.; Kumarasiri, R.; Bandara, P.; Karunaratne, U.; Milton, A.H.; Jones, A.L. Uncertain etiologies of proteinuric-chronic kidney disease in rural Sri Lanka. Kidney Int. 2011, 80, 1212–1221. [Google Scholar] [CrossRef]
- Hu, D.; Indika, S.; Makehelwala, M.; Titus, C.; Zhu, L.; Pang, Z.; Zhong, H.; Weragoda, S.K.; Jinadasa, K.B.S.N.; Weerasooriya, R.; et al. Chemical characteristics and water stability evaluation of groundwater in the CKDu Zone of Sri Lanka. J. Environ. Sci. 2023, in press. [CrossRef]
- Liyanage, D.N.D.; Diyabalanage, S.; Dunuweera, S.P.; Rajapakse, S.; Rajapakse, R.M.G.; Chandrajith, R. Significance of Mg-hardness and fluoride in drinking water on chronic kidney disease of unknown etiology in Monaragala, Sri Lanka. Environ. Res. 2022, 203, 111779. [Google Scholar] [CrossRef]
- Senarathne, S.L.; Jayawardana, J.M.C.K.; Edirisinghe, E.A.N.V.; Chandrajith, R. Characterization of groundwater in Malala oya river basin, Sri Lanka using geochemical and isotope signatures. Groundw. Sustain. Dev. 2019, 9, 100225. [Google Scholar] [CrossRef]
- Imbulana, K.A.U.S.; Droogers, P.; Makin, I.W. World Water Assessment Programme Sri Lanka case study. In Proceedings of the Ruhuna Basins: Workshop Held at Koggala Beach Hotel, Koggala, Sri Lanka, 7–9 April 2002. [Google Scholar] [CrossRef]
- Standard Methods for the Examination of Water and Wastewater, 22nd ed.; APHA: Cincinnati, OH, USA, 2012.
- Reference Materials-VSMOW2. Available online: https://analytical-reference-materials.iaea.org/vsmow2 (accessed on 20 May 2024).
- Barth, J.A.C.; Veizer, J. Water mixing in a St. Lawrence river embayment to outline potential sources of pollution. Appl. Geochem. 2004, 19, 1637–1641. [Google Scholar] [CrossRef]
- Chabuk, A.; Abed, S.A.; Al-Zubaidi, H.A.M.; Al-Ansari, N.; Maliki, A.A.A.; Ewaid, S.H.; Laue, J. Application GIS Software to Determine the Distribution of T.D.S. Concentrations along the Tigris River. IOP Conf. Ser. Earth Environ. Sci. 2021, 735, 012055. [Google Scholar] [CrossRef]
- Dissanayake, C.B.; Weerasooriya, S.V.R. Fluorine as an indicator of mineralization—Hydrogeochemistry of a Precambrian mineralized belt in Sri Lanka. Chem. Geol. 1986, 56, 257–270. [Google Scholar] [CrossRef]
- Dissanayake, C.B.; Chandrajith, R. Groundwater fluoride as a geochemical marker in the etiology of chronic kidney disease of unknown origin in Sri Lanka. Ceylon J. Sci. 2017, 46, 3–12. [Google Scholar] [CrossRef]
- Ranasinghe, A.V.; Kumara, G.W.G.P.; Karunarathna, R.H.; De Silva, A.P.; Sachintani, K.G.D.; Gunawardena, J.M.C.N.; Kumari, S.K.C.R.; Sarjana, M.S.F.; Chandraguptha, J.S.; De Silva, M.V.C. The incidence, prevalence and trends of Chronic Kidney Disease and Chronic Kidney Disease of uncertain aetiology (CKDu) in the North Central Province of Sri Lanka: An analysis of 30,566 patients. BMC Nephrol. 2019, 20, 338. [Google Scholar] [CrossRef] [PubMed]
- Chandrajith, R.; Diyabalanage, S.; Dissanayake, C.B. Geogenic fluoride and arsenic in groundwater of Sri Lanka and its implications to community health. Groundw. Sustain. Dev. 2020, 10, 100359. [Google Scholar] [CrossRef]
- Su, C.; Wang, Y.; Xie, X.; Li, J. Aqueous geochemistry of high-fluoride groundwater in Datong Basin, Northern China. J. Geochem. Explor. 2013, 135, 79–92. [Google Scholar] [CrossRef]
- Saxena, V.; Ahmed, S. Dissolution of fluoride in groundwater: A water-rock interaction study. Environ. Geol. 2001, 40, 1084–1087. [Google Scholar]
- Dharma-wardana, M.W.C. Chronic kidney disease of unknown etiology and the effect of multiple-ion interactions. Environ. Geochem. Health 2018, 40, 705–719. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, C.K. Characterization of Hydrogeochemical Processes and Fluoride Enrichment in Groundwater of South-Western Punjab. Water Qual. Expo. Health 2015, 7, 373–387. [Google Scholar] [CrossRef]
- Vaheesar, K. Nitrate and fluoride content in ground water in the batticaloa district. J. Sci. 2001, 2, 9–15. [Google Scholar]
- Jayasumana, C.; Gunatilake, S.; Senanayake, P. Glyphosate, Hard Water and Nephrotoxic Metals: Are They the Culprits Behind the Epidemic of Chronic Kidney Disease of Unknown Etiology in Sri Lanka? Int. J. Environ. Res. Public Health 2014, 11, 2125. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science (1979) 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Logeshkumaran, A.; Magesh, N.S.; Godson, P.S.; Chandrasekar, N. Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India. Appl. Water Sci. 2015, 5, 335–343. [Google Scholar] [CrossRef]
- Rubasinghe, R.; Gunatilake, S.K.; Chandrajith, R. Geochemical characteristics of groundwater in different climatic zones of Sri Lanka. Environ. Earth Sci. 2015, 74, 3067–3076. [Google Scholar] [CrossRef]
- Raja, P.; Krishnaraj, S.; Selvaraj, G.; Kumar, S.; Francis, V. Hydrogeochemical investigations to assess groundwater and saline water interaction in coastal aquifers of the southeast coast, Tamil Nadu, India. Environ. Sci. Pollut. Res. 2021, 28, 5495–5519. [Google Scholar] [CrossRef] [PubMed]
- Lyu, M.; Pang, Z.; Yin, L.; Zhang, J.; Huang, T.; Yang, S.; Li, Z.; Wang, X.; Gulbostan, T. The control of groundwater flow systems and geochemical processes on groundwater chemistry: A case study in Wushenzhao Basin, NW China. Water 2019, 11, 790. [Google Scholar] [CrossRef]
- Wei, C.; Guo, H.; Zhang, D.; Wu, Y.; Han, S.; An, Y.; Zhang, F. Occurrence and hydrogeochemical characteristics of high-fluoride groundwater in Xiji County, southern part of Ningxia Province, China. Environ. Geochem. Health 2016, 38, 275–290. [Google Scholar] [CrossRef]
- Bershaw, J.; Hansen, D.D.; Schauer, A.J. Deuterium excess and 17O-excess variability in meteoric water across the Pacific Northwest, USA. Tellus B Chem. Phys. Meteorol. 2020, 72, 1–17. [Google Scholar] [CrossRef]
- Egbueri, J.C. Evaluation and characterization of the groundwater quality and hydrogeochemistry of Ogbaru farming district in southeastern Nigeria. SN Appl. Sci. 2019, 1, 851. [Google Scholar] [CrossRef]
- Adimalla, N. Assessment and Mechanism of Fluoride Enrichment in Groundwater from the Hard Rock Terrain: A Multivariate Statistical Approach. Geochem. Int. 2020, 58, 456–471. [Google Scholar] [CrossRef]
- Liu, J.; Peng, Y.; Li, C.; Gao, Z.; Chen, S. A characterization of groundwater fluoride, influencing factors and risk to human health in the southwest plain of Shandong Province, North China. Ecotoxicol. Environ. Saf. 2021, 207, 111512. [Google Scholar] [CrossRef] [PubMed]
- Chandrajith, R.; Dissanayake, C.B.; Ariyarathna, T.; Herath, H.M.J.M.K.; Padmasiri, J.P. Dose-dependent Na and Ca in fluoride-rich drinking water—Another major cause of chronic renal failure in tropical arid regions. Sci. Total Environ. 2011, 409, 671–675. [Google Scholar] [CrossRef]
- Hettithanthri, O.; Sandanayake, S.; Magana-Arachchi, D.; Wanigatunge, R.; Rajapaksha, A.U.; Zeng, X.; Shi, Q.; Guo, H.; Vithanage, M. Risk factors for endemic chronic kidney disease of unknown etiology in Sri Lanka: Retrospect of water security in the dry zone. Sci. Total Environ. 2021, 795, 148839. [Google Scholar] [CrossRef]
Water Type | pH | TDS | TA | TH | Na+ | Ca2+ | Mg2+ | SO42− | Cl− | NO3− | F− | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg/L) | (mg/L as CaCO3) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | ||||||||||||||
Dry | Wet | Dry | Wet | Dry | Wet | Dry | Wet | Dry | Wet | Dry | Wet | Dry | Wet | Dry | Wet | Dry | Wet | Dry | Wet | Dry | Wet | ||
Malwathu Oya Basin-Crystalline Terrain (CKDu endemic area: site A) | |||||||||||||||||||||||
Surface Water | Min | 7.4 | 7.4 | 304 | 200 | 176 | 136 | 200 | 163 | 68 | 35.4 | 28. | 15.5 | 26.5 | 9.7 | 2.5 | 0 | 94.5 | 29.7 | <0.008 | 0.1 | 0.26 | 0.3 |
Max | 9.1 | 8.9 | 427 | 501 | 200 | 321 | 200 | 264 | 103 | 99 | 35 | 52.8 | 30.6 | 30.3 | 7.5 | 18 | 163 | 95.7 | 3.6 | 0.6 | 0.34 | 1.2 | |
Avg | 8.3 | 8 | 366 | 338 | 188 | 209 | 200 | 209 | 85 | 63.4 | 31.7 | 28.6 | 28.6 | 18.5 | 5 | 7.4 | 129 | 57.3 | 1.8 | 0.3 | 0.30 | 0.7 | |
Shallow GW | Min | 7 | 6.8 | 366 | 215 | 160 | 189 | 208 | 154 | 36.4 | 29.6 | 45.9 | 38.5 | 37.6 | 7.7 | 11.8 | 2 | 43.4 | 23.9 | <0.008 | 0.2 | 0.35 | 0.3 |
Max | 7.7 | 8.3 | 1032 | 1394 | 448 | 537 | 820 | 950 | 148 | 192 | 128 | 427 | 114 | 107 | 52.3 | 142 | 390 | 728 | 15.4 | 1.8 | 1.6 | 2.2 | |
Avg | 7.4 | 7.7 | 744 | 792 | 301 | 414 | 553 | 453 | 87.5 | 88.9 | 68.4 | 135 | 72.6 | 50.4 | 29.9 | 57.3 | 217 | 226 | 4.5 | 0.9 | 0.8 | 0.9 | |
Deep GW | Min | 6.6 | 6.7 | 102 | 107 | 104 | 88.2 | 68 | 70.4 | 28.5 | 21.8 | 12.7 | 0.4 | 5.4 | 3.4 | 7.8 | 6 | 7.2 | 3.9 | <0.008 | <0.008 | 0.4 | 0.2 |
Max | 7.4 | 8.5 | 663 | 729 | 456 | 473 | 616 | 295 | 157 | 167 | 58 | 88.8 | 67 | 50.2 | 36.6 | 49 | 152 | 153 | 27.6 | 8.5 | 1.3 | 2.7 | |
Avg | 7 | 7.5 | 423 | 425 | 266 | 322 | 305 | 201 | 79 | 72.6 | 45 | 35.8 | 36 | 21.4 | 21.3 | 25.8 | 77 | 60 | 5.5 | 1.8 | 0.8 | 0.9 | |
Malwathu Oya Basin -Sedimentary Terrain (CKDu control area: site B) | |||||||||||||||||||||||
Shallow GW | Min | 7.7 | 7.7 | 904 | 912 | 288 | 393 | 380 | 44 | 239 | 340 | 57.8 | 7.2 | 48.5 | 3.6 | 55 | 62 | 378 | 445 | <0.008 | 0.6 | 0.3 | 0.5 |
Max | 8.1 | 8.6 | 2570 | 1289 | 520 | 453 | 420 | 290 | 987 | 590 | 71 | 94.4 | 75 | 23.6 | 220 | 136 | 1246 | 484 | <0.008 | 1.5 | 0.8 | 1.7 | |
Avg | 7.9 | 8.1 | 1737 | 1102 | 404 | 423 | 400 | 167 | 613 | 465 | 64.4 | 50.8 | 61.8 | 13.6 | 138 | 99 | 812 | 465 | - | 1.1 | 0.5 | 1.1 | |
Deep GW | Min | 7.3 | 7.6 | 531 | 530 | 232 | 305 | 204 | 89.2 | 117 | 114 | 52.9 | 49.6 | 34.4 | 15.6 | 25.9 | 29 | 171 | 129 | <0.008 | 0.4 | 0.2 | 0.3 |
Max | 7.5 | 7.7 | 1290 | 1294 | 360 | 373 | 336 | 317 | 425 | 360 | 78.8 | 70.8 | 51.9 | 35.4 | 89.4 | 132 | 578 | 380 | <0.008 | 1.1 | 0.3 | 0.6 | |
Avg | 7.4 | 7.7 | 925 | 928 | 296 | 329 | 276 | 225 | 264 | 237 | 66 | 60.9 | 43.6 | 25.3 | 56.2 | 76.7 | 376 | 275 | - | 0.9 | 0.3 | 0.4 | |
Malala Oya Basin (CKDu control area: site C) | |||||||||||||||||||||||
Surface Water | Min | 7.2 | 6.95 | 177 | 130 | 74 | 3.36 | 112 | 52 | 25 | 24 | 1.0 | 18 | 0.4 | 10 | <0.2 | 7 | <0.2 | 16 | <0.2 | <0.2 | <0.2 | 0.4 |
Max | 8.2 | 9.19 | 952 | 1810 | 195 | 1831 | 716 | 668 | 305 | 303 | 52.7 | 119 | 44.7 | 102 | 125.1 | 151 | 375 | 705 | 506.5 | 27.6 | 0.6 | 3.1 | |
Avg | 7.7 | 7.87 | 470 | 628 | 126 | 850 | 250 | 261 | 139 | 127 | 28.3 | 38 | 23.2 | 31 | 44.7 | 44 | 138 | 177 | 106.6 | 4.8 | 0.1 | 1.1 | |
Shallow GW | Min | 6.7 | 7.09 | 257 | 143 | 90 | 3.19 | 136 | 132 | 26 | 22 | 17.5 | 14 | 7.0 | 4 | 25.9 | 8 | 27.4 | 20 | <0.2 | <0.2 | <0.2 | 0.2 |
Max | 7.8 | 8.38 | 2310 | 2530 | 527 | 1270 | 872 | 980 | 968 | 970 | 69.2 | 129 | 94.8 | 117 | 312.4 | 450 | 1008 | 992 | 6.3 | 26.4 | 2.1 | 5.8 | |
Avg | 7.6 | 7.84 | 786 | 851 | 210 | 625 | 381 | 338 | 237 | 304 | 37.2 | 50 | 33.8 | 48 | 112.2 | 132 | 262.9 | 330 | 2.0 | 8.6 | 0.4 | 2.3 | |
Deep GW | Min | 6.8 | 7.14 | 655 | 493 | 187 | 435 | 268 | 220 | 100 | 149 | 12.1 | 10 | 35.9 | 29 | 34.1 | 41 | 137.2 | 32 | <0.2 | 1.7 | <0.2 | 1.5 |
Max | 7.9 | 7.64 | 1354 | 1166 | 357 | 1000 | 728 | 748 | 324 | 350 | 84.8 | 71 | 76.3 | 74 | 169 | 155 | 497 | 363 | 15.7 | 138.7 | 5.9 | 7.8 | |
Avg | 7.3 | 7.39 | 901 | 863 | 252 | 620 | 443 | 513 | 187 | 260 | 48.0 | 36 | 53.4 | 50 | 101.6 | 83 | 230 | 205 | 5.9 | 18.4 | 1.5 | 3.7 | |
Maximum Permissible Limits | |||||||||||||||||||||||
SLS | 6.5–8.5 | 500 | 200 | 250 | 200 | 100 | 30 | 250 | 250 | 50 | 1.0 | ||||||||||||
WHO | 6.5–8.5 | 600 | 500 | 300 | 200 | 100 | 30 | 250 | 250 | 50 | 1.5 |
Water Type | δ18O (‰) | δ2H (‰) | D-Excess | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Minimum | Maximum | Minimum | Maximum | Minimum | Maximum | |||||||
Dry | Wet | Dry | Wet | Dry | Wet | Dry | Wet | Dry | Wet | Dry | Wet | |
Malwathu Oya Basin (CKDu endemic area: site A) | ||||||||||||
Surface Water | 1.0 | −3.3 | 2.5 | −1.8 | 3.2 | −25.0 | 12.2 | −16.4 | −14.8 | −2.4 | −5.1 | 1.8 |
Shallow Groundwater | −5.6 | −5.6 | −3.2 | −2.7 | −34.5 | −35.2 | −21.5 | −19.1 | 2.1 | 1.0 | 9.9 | 9.8 |
Deep Groundwater | −5.9 | −6.3 | −4.6 | −4.6 | −36.8 | −38.8 | −29.6 | 29.0 | 6.0 | 8.9 | 10.7 | 11.9 |
Malwathu Oya Basin (CKDu control area: site B) | ||||||||||||
Shallow Groundwater | −2.2 | −2.4 | −2.0 | −1.9 | −15.8 | −17.5 | −14.4 | −13.0 | 1.9 | 1.5 | 2.0 | 1.8 |
Deep Groundwater | −2.8 | −2.4 | −1.9 | −2.0 | −19.2 | −17.3 | −13.5 | −13.7 | 1.3 | 1.8 | 2.9 | 2.2 |
Malala Oya Basin (CKDu control area: site C) | ||||||||||||
Surface Water | −1.0 | −5.0 | 5.8 | −1.0 | −7.7 | −30.2 | 19.8 | −9.6 | −26.8 | −2.6 | 0.5 | 11.0 |
Shallow Groundwater | −3.9 | −5.6 | 0.6 | 0.1 | −29.2 | −32.3 | 1.8 | −7.1 | −7.2 | −8.1 | 6.9 | 12.4 |
Deep Groundwater | −5.0 | −6.0 | −2.3 | −2.1 | −34.8 | −36.3 | −14.7 | −17.0 | 1.4 | 0.0 | 7.6 | 12.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priyadarshanee, K.S.G.S.; Pang, Z.; Edirisinghe, E.A.N.V.; Pitawala, H.M.T.G.A.; Gunasekara, J.D.C.; Wijesooriya, W.M.G.S.; Hao, Y.; Bao, Y.; Tian, J. Synergic Origin and Evolution of TDS, Mg and Fluoride in Groundwater as Relative to Chronic Kidney Disease of Unknown Etiology (CKDu) in Sri Lanka. Water 2024, 16, 1606. https://doi.org/10.3390/w16111606
Priyadarshanee KSGS, Pang Z, Edirisinghe EANV, Pitawala HMTGA, Gunasekara JDC, Wijesooriya WMGS, Hao Y, Bao Y, Tian J. Synergic Origin and Evolution of TDS, Mg and Fluoride in Groundwater as Relative to Chronic Kidney Disease of Unknown Etiology (CKDu) in Sri Lanka. Water. 2024; 16(11):1606. https://doi.org/10.3390/w16111606
Chicago/Turabian StylePriyadarshanee, K. S. G. S., Zhonghe Pang, E. A. N. V. Edirisinghe, H. M. T. G. A. Pitawala, J. D. C. Gunasekara, W. M. G. S. Wijesooriya, Yinlei Hao, Yifan Bao, and Jiao Tian. 2024. "Synergic Origin and Evolution of TDS, Mg and Fluoride in Groundwater as Relative to Chronic Kidney Disease of Unknown Etiology (CKDu) in Sri Lanka" Water 16, no. 11: 1606. https://doi.org/10.3390/w16111606
APA StylePriyadarshanee, K. S. G. S., Pang, Z., Edirisinghe, E. A. N. V., Pitawala, H. M. T. G. A., Gunasekara, J. D. C., Wijesooriya, W. M. G. S., Hao, Y., Bao, Y., & Tian, J. (2024). Synergic Origin and Evolution of TDS, Mg and Fluoride in Groundwater as Relative to Chronic Kidney Disease of Unknown Etiology (CKDu) in Sri Lanka. Water, 16(11), 1606. https://doi.org/10.3390/w16111606