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Abstract: As the medium of geological information, groundwater provides an indirect method to
solve the secondary disasters of mining activities. Identifying the groundwater regime of overburden
aquifers induced by the mining disturbance is significant in mining safety and geological environment
protection. This study proposes the novel data-driven algorithm based on the combination of
machine learning methods and hydrochemical analyses to predict anomalous changes in groundwater
levels within the mine and its neighboring areas induced after mining activities accurately. The
hydrochemistry analysis reveals that the dissolution of carbonate and evaporite and the cation
exchange function are the main hydrochemical process for controlling the groundwater environment.
The anomalous change in the hydrochemistry characteristic in different aquifers reveals that the
hydraulic connection between different aquifers is enhanced by mining activities. The continuous
wavelet coherence is used to reveal the nonlinear relationship between the groundwater level change
and external influencing factors. Based on the above analysis, the groundwater level, precipitation,
mine water inflow, and unit goal area could be considered as the input variables of the hydrological
model. Two different data-driven algorithms, the Decision Tree and the Long Short-Term Memory
(LSTM) neural network, are introduced to construct the hydrological prediction model. Four error
metrics (MAPE, RMSE, NSE and R2) are applied for evaluating the performance of hydrological
model. For the NSE value, the predictive accuracy of the hydrological model constructed using LSTM
is 8% higher than that of Decision Tree algorithm. Accurately predicting the anomalous change in
groundwater level caused by the mining activities could ensure the safety of coal mining and prevent
the secondary disaster of mining activities.

Keywords: coal mine; groundwater; hydrochemistry; machine learning; Xinjiang

1. Introduction

During the past decades, mining activities have caused several geo-environmental
problems [1,2], including water loss, the decline of groundwater level and deterioration of
groundwater quality, etc. The mining activities-induced secondary disaster [3], geological
disaster [4–6] and land subsidence [7,8], threaten the safety of mining activities. Ground-
water plays an important role during the mining activities, which is capable of amplifying
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the microdynamics of the geological setting caused by mining activities. In addition, mine
water inrush induced by the mining activities threatens the mine safety [9,10]. Thus, moni-
toring and predicting the dynamic change in groundwater level is the most effective way
to prevent the secondary disaster of mining activities.

Naturally, groundwater level is influenced by several external factors, including
geological factors [11–13], meteorological factors, and anthropogenic factors, etc. These
factors cause the highly nonlinear dynamics of groundwater level in the time and frequency
domains, making it difficult to accurately predict groundwater levels. Traditionally, the
physical-based model provides the feasible way to predict the variation in groundwater
level, which need stratigraphic structures, aquifer parameters, and boundary conditions.
However, due to the heterogeneity and anisotropy of aquifer properties, it is difficult to
obtain these hydrogeological parameters accurately [14,15]. Nowadays, the data-driven
method provides an efficient way to build hydrological models and improve the accuracy
of model prediction [16,17]. The significant advantage of data-driven algorithms is that
there is no need to explicitly define physical relationships between input and output
variables. In the previous studies, several machine learning methods have been used in
hydrological research, including identifying anomalies and prediction and cluster analysis,
which are mainly divided into cluster analysis and data prediction [18,19]. A self-organizing
neural network is one of the typical algorithms of cluster analysis, which can be used to
identify the source of groundwater pollution [20–22]. The Artificial Neural Network (ANN),
Recurrent Neural Network (RNN), Decision Tree and Long-Short Term Memory (LSTM)
are used to analyze and predict the variation in groundwater level [23–26]. Generally, the
machine learning algorithms have a three-layer structure, including input layer, hidden
layer, and output layer. However, for different algorithms, there are great differences in the
composition of three-layer structures. In ANN, both the hidden and output layer have the
non-linear activation function. This is helpful in improving the prediction accuracy. The
disadvantage of this algorithm is that it is not possible to take into account the relationship
between different input variables. In RNN, the adjacent neurons in the hidden layer are
connected together, which is the biggest difference from the ANN structure. It is helpful to
prevent gradient disappearance and gradient explosion. Unlike the previous two methods,
the Decision Tree and LSTM algorithm take into account the relationships between different
input variables during model training, while extracting valuable information from previous
neurons and passing it to the current neuron for predicting data. The Decision Tree is
applied for the anomalous identification of radon before seismic activities [27]. The LSTM
is used to predict the variation in groundwater level under the influence of meteorological
factors. However, few studies focus on applying machine learning methods to predict
anomalous changes in groundwater levels caused by the mining activities.

In mine area hydrology, most of the previous focus has been on the anomalous change
in the hydrochemical components and aquifer parameters caused by the mining activities,
while few studies have concentrated on the application of different data-driven methods to
predict the dynamic change in groundwater level. The long-term mining activities in the Yili
Coalfield has had a significant impact on the regional groundwater regime. Both the deteri-
oration of the groundwater quality and the decline of the groundwater level threatened the
local ecological environment and production safety. In this study, a hydrochemistry analysis
and two different data-driven methods are used to predict the variation in the groundwater
level induced by mining activities. Based on the monitoring dataset in the Yili Coalfield,
the aims are to (1) reveal the genetic mechanism of the hydrochemistry characteristics. The
comparison of hydrochemical data before and after mining activities is used to identify the
effect of mining activities on the hydraulic connection between different aquifers. A further
aim is to (2) identify the potential influencing factors. Continuous wavelet coherence is
used to identify the external factors on the anomalous change in groundwater level induced
by the mining activities, and then select the appropriate input variables to construct the
data-driven predicting model; (3) to construct the data-driven models. Using the Decision
Trees and Long Short-Term Memory neural network algorithm to construct the predicting
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model, this paper aims to (4) evaluate the model performance. Using four different error
metrics to evaluate the predictive performance of data-driven model, including R2, root
mean square error (RMSE), mean absolute percentage error (MAPE), and Nash–Sutcliffe
efficiency (NSE). The result of this study could provide the new data-driven method to
predict groundwater level change caused by the mining activities, which could also provide
the premise for coal mining safety and water resource management.

2. Geological Setting and Data Source
2.1. Regional Hydrogeological Setting

The Yili 1# mining area, covering about 208 km2, is located in the northwestern part of
the Xinjiang Uygur Autonomous Region, northwestern China, which is the first modernized
coalfield in Xinjiang with a production capacity of 10 million t/a. The elevation of the study
area ranges from 1000 m to 1300 m [28]. The main working areas of the mining activities are
No. 3# and No. 5#. Longwall mining extracts large rectangular panels of coal, and the roof
is temporarily supported using moveable hydraulic supports (Figure 1). The climate of the
study area is characterized by a typical arid climate with a low relative humidity and high
evapotranspiration. The annual evapotranspiration ranges from 1259 mm to 2381 mm, and
the average annual temperature is 8 ◦C. The annual average precipitation is 90 mm [29,30].
No. 3# and No. 5# are the main extracted coal seam.
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Tectonically, the study area is characterized by a monoclinic structure, with an east–west
orientation. According to the mineral XRD analysis results, the mineral species include
dolomite, calcite, halite, gypsum, albite, quartz and anorthite [28]. The aquifers are classified
into Quaternary pore aquifer (phreatic aquifer) and Jurassic fissure aquifer (confined aquifer).
The aquitards are composed of mudstone and siltstone, which are interbedded with the aquifer
in different thicknesses. The isotopic results indicate that both the Quaternary pore aquifer
and Jurassic fissure aquifer are recharged by the atmospheric precipitation and meltwater
from the Tianshan Mountain. The Quaternary aquifer is characterized by the good water
yield with the Q value of 0.041 L/s/m~0.128 L/s/m, while the Jurassic fissure aquifer is
characterized by poor water yield with the specific capacity of 0.008 L/s/m~0.109 L/s/m [28].

2.2. Data Collection
2.2.1. Time Series Data

To ensure mining safety and reveal the impact of mining activities on the groundwater
regime, the phreatic groundwater level (PGL), confined groundwater level (CGL), mine
water inflow (MWI), and unit goal area (UGA) were monitored in the Yili 1# mining area
during 2018~2023. The meteorological dataset was collected from the China Meteorological
Administration (http://data.cma.cn/, accessed on 15 May 2024). Analyzing the dynamic
change in monitored value could provide an accessible way to identify the impact of mining
activities on the aquifer and its potential influencing factors.

In order to eliminate the effect of different monitored intervals, the monitored value of
the groundwater level, precipitation, mine water inflow, and unit goal area are transferred
to the monthly average value for analysis. As is shown in Figure 2, the precipitation shows
a significant seasonal variation with a higher level during the summer wet season and
lower levels during the drier winter season. The maximum value of precipitation is 45 mm.
The mine water inflow (WI) increases with the increase in unit goal area (GA), indicating
that the increase in the extent of mining promoted mine water inrush. The maximum value
of the mine water inflow and the unit goal area are 311.5 m3/h and 54,300 m2, respectively.
For the groundwater level change, there is no obvious change in the phreatic groundwater
level associated with mining activities. It only shows the step-like change in 2021. In
contrast, the confined groundwater level shows a significant decline from 2018 to 2020,
associated with increases in WI and GA which indicates that it has been affected by the
mining activities.
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2.2.2. Hydrochemistry Data

A total of 59 groundwater samples were collected from the study area. A total of
26 groundwater samples were collected during the period of 2004–2006 (before mining
activities), including 6 samples from the phreatic aquifer, and 20 samples from the con-
fined aquifer. For identifying the effect of mining activities on the dynamic variation in
groundwater, 33 groundwater samples were collected from 2021 to 2023 (after mining
activities), including 5 phreatic groundwater samples and 28 confined water samples. All
groundwater samples were analyzed and measured in the Key Laboratory of Prevention
and Control Technology for Coal Mine Water Hazard, Shaanxi Province. The cations (Na+,
K+, Ca2+, Mg2+) were measured using ion chromatography. The SO4

2− and Cl− were also
measured using ion chromatography, while the HCO3

− was measured using the traditional
titration with HCl. To ensure the accuracy and reliability of the hydrochemical analysis
results, the charge balance error (CBE =

∣∣∣∑ cations−∑ anions
∑ cations+∑ anions

∣∣∣× 100) was calculated [8]. The
results show that the CBE is <±10%, indicating all measurement results are acceptable.

3. Methods
3.1. Hydrochemistry Analysis

During the process of the mining activities, several groundwater samples collected
from the phreatic and confined aquifers underwent a hydrochemistry analysis. The results
of the hydrochemistry analysis are summarized in Table 1.

Table 1. The hydrochemistry parameters of phreatic and confined aquifer before and after
mining activities.

Aquifer Type
/Mining Stage N pH

TDS Na+ + K+ Ca2+ Mg2+ Cl− SO42− HCO3− +
CO32−

mg/L

Phreatic aquifer
before mining activities 6

Maximum 7.90 648 133.52 72.69 22.92 33.44 327.55 277.09

Minimum 7.70 206 1.33 50.00 6.18 1.63 17.28 158.77

Average 7.83 349 48.17 60.06 13.00 17.94 104.41 210.37

Confined aquifer
before mining activities 20

Maximum 8.00 3132 956.64 129.44 60.96 447.68 1435.31 313.52

Minimum 7.50 400 54.53 57.39 10.96 9.79 123.45 182.45

Average 7.78 810 160.55 85.28 24.43 82.83 324.66 248.62

Phreatic aquifer
after mining activities 5

Maximum 8.10 1719 256.21 192.00 86.28 114.87 686.55 324.00

Minimum 7.30 614 100.50 106.21 6.68 93.60 181.93 220.26

Average 7.82 1264 188.34 137.86 42.82 103.42 520.74 251.48

Confined aquifer
after mining activities 28

Maximum 8.20 1019 121.95 30.70 10.50 6.50 54.30 102.00

Minimum 6.70 309 13.60 140.00 86.28 186.00 665.71 474.35

Average 7.45 711 58.25 93.32 32.54 68.73 205.01 201.32

Before the mining activities, 6 groundwater samples were collected from the phreatic
aquifer. Their pH values range from 7.70 to 7.90 with the average value of 7.83. The TDS
values are 206–648 mg/L with the average value of 349 mg/L; this is considered as the fresh
water (TDS < 1000 mg/L). The order of cation abundance is Ca2+ > Na+ + K+ > Mg2+ and those
of the anions is HCO3

− + CO3
2− > SO4

2– > Cl−. The hydrochemistry type is characterized by
HCO3-Ca and HCO3-Na. Then, the 20 groundwater samples were collected from the confined
aquifer. Their range of pH and TDS are 7.50–8.00 and 400–3132 mg/L, respectively. The
80% and 20% samples are categorized as fresh water (TDS < 1000 mg/L) and brackish water
(1000 mg/L < TDS < 3000 mg/L), respectively. The hydrochemistry type is characterized by
HCO3-Ca/Na and SO4-Ca/Na.

After the mining activities, 5 samples and 28 samples were collected from the phreatic and
confined aquifer, respectively. The order of cation and anion abundance in the groundwater
sample of the phreatic and confined aquifers are different to those before the mining activities.
For the phreatic aquifer, the pH value is 7.30–8.10, with the average value of 7.82. The TDS
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value ranges from 614 mg/L to 1719 mg/L. The average value of the TDS is 1264 mg/L, which
is about three times than that of before the mining activities. The order of cation and anion
abundance are different from those before the mining activities. The order of cation abundance
is Na+ + K+ > Ca2+ > Mg2+ and those of the anions is SO4

2– > HCO3
− + CO3

2− > Cl−. The
hydrochemistry type is SO4-Na and SO4-Ca. For the confined aquifer, the pH value ranges
from 6.70 to 8.20 with the average value of 7.45. The TDS ranges from 309 mg/L to 1019 mg/L.
The order of cation abundance is Ca2+ > Na+ + K+ > Mg2+ and those of the anions is SO4

2–

> HCO3
− + CO3

2− > Cl−. The hydrochemistry type is HCO3-Ca/Na and SO4-Ca/Na. The
genetic mechanisms of the hydrochemistry change caused by mining activities are discussed
in Section 5.1.

3.2. Time Series Analysis (Continuous Wavelet Coherence)

A continuous wavelet transform is an efficiency mathematical tool to identify the
correlation between different hydrological time series through the time and frequency
domain [31,32]. In this study, it is applied to analyze the correlation between external
influencing factors and groundwater level change. The Morlet function is selected to
conduct the continuous wavelet coherence [33,34]. The mathematical equation is defined
as follows:

R(x, y) =

∣∣S(s−1W(x, y))
∣∣2

S(s−1W(x)) · S(s−1W(y))
(1)

where W and S represent the continuous wavelet transform and smoothing operator,
respectively. s is wavelet scale. R represents the correlation coefficient. The closer the R
value is to 1, the higher the correlation is.

3.3. Machine Learning
3.3.1. Long Short-Term Memory Neural Network

The Long Short Term Memory algorithm (LSTM) is composed of three layers: input
layer, hidden layer and output layer (Figure 3). The hidden layer is composed of three
gates: input gates, output gates, and forget gates (Figure 3), which protects the valuable
information of the dataset when it is passed down in the process of information transfer
and solves the problem of gradient explosion and gradient disappearance. In this study,
the LSTM model is programmed using MATLAB.
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3.3.2. Decision Trees

The classical regression method applies fitting curves to build the linear relationship
between the independent variables and the dependent variable, although it cannot accu-
rately construct the relationship between the highly nonlinear variables. The Decision Trees
could solve this scientific problem, which applies the independent axis-parallel rectangles
to partition the space between the independent variables and the dependent variable. It
provides an efficient way to build the nonlinear relationship. In this study, the WEKA
(3.8.6) software is applied to build the Decision Tree model using an M5 algorithm. If there
is a missing value in the dataset, the linear interpolation is introduced to complement the
gap. Before training the hydrological model, the M5 algorithm conducts the pre-pruning of
the dataset. The construction of the Decision Tree stops only when the class variance of all
examples in the node is sufficiently small. The model in the selected leaf can then predict
the value of the class.

4. Model Development
4.1. Splitting the Dataset into Different Subsets

The splitting of the dataset is the basic step for constructing the data-driven model.
If the training dataset takes up a small proportion, the data-driven model cannot identify
the mathematic characteristic of the time series that leads to poor prediction accuracy. In
contrast, if the training dataset takes up a large proportion, it may cause the overfitting
of the data-driven model. Actually, since there is no fixed ratio in the training dataset
and prediction dataset, how to divide data sets accurately has always been a controversial
problem. According to the results of previous studies, the proportion of the training dataset
must be more than 50% of whole dataset. In this study, the dataset is split into three subsets,
including a training subset and prediction subset. The proportion of the two subsets is 7:3.
The training subset and validation subset are introduced to optimize the data-driven model
parameters.

4.2. Data Normalization and Error Metric

The min–max normalization method is applied to eliminate the data dimensional
influence, which normalizes the input variables into [0, 1]. It is defined as follows:

xnorm =
x − xmin

xmax − xmin
(2)

where x and xnorm represent the monitored value and the normalized value, respectively.
xmax and xmin are the maximum monitored value and the minimum monitored value,
respectively. After the model is trained, the predictive results are retransformed through
the inverse transformation of Equation (2).

Four different error metrics are introduced to evaluate the predictive efficiency of
data-driven model, as follows:

The coefficient of determination [2,34,35]:

R2 = 1 − ∑N
i=1 (yi − y∗i )

2

∑N
i=1 y2

i −
∑N

i=1 y∗2
i

N

(3)

The root mean square error (RMSE) [2,34,35]:

RMSE =

√
∑N

i=1 (yi − y∗i )
2

N
(4)

The mean absolute percentage error (MAPE) [2,34,35]:

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − y∗i
yi

∣∣∣∣ ∗ 100% (5)



Water 2024, 16, 1611 8 of 17

The Nash–Sutcliffe efficiency (NSE) [2,34,35]:

NSE = 1 − ∑N
i=1 (yi − y∗i )

2

∑N
i=1 (yi −

_
yi)

2 (6)

where yi is the observed value, y∗i and
_
yi represent the simulated value and the mean

of observed values, respectively. N is the number of observations. R2 calculates the
error metrics between monitored values and simulated values [35]. RMSE evaluates the
deviation between monitored values and simulated values. MAPE is applied to calculate
the predictability accuracy of data-driven models as a percentage. NSE is applied to
evaluate the hydrological model accuracy.

4.3. Input Variable Selection

The prerequisite for improving the predicted accuracy of the hydrological model is the
selection of proper input variables, as it could provide the basic hydrological information.
However, no guideline exists on how to select the proper input variables for constructing
the hydrologic model using a machine learning algorithm. In this study, the hydrochemistry
analysis and continuous wavelet coherence method are combined to analyze the external
influencing factors on the anomalous change in the groundwater level caused by mining
activities, which provides an effective method for determining the input variables of the
data-driven model.

5. Results and Discussion
5.1. Hydrochemistry Change Induced by the Mining Activities

The ionic ratio and saturation indices are introduced to identify the genetic mechanism
of the hydrochemical characteristic. As is shown in Figure 4, the groundwater samples
are distributed in the middle part of a Gibbs diagram. It is indicated that the water–rock
interaction is the main hydrochemical process for controlling ionic concentration.
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All groundwater samples are characterized by high Na+, Ca2+, HCO3
− and SO4

2−,
which indicates that they are primarily derived from the dissolution of evaporite (e.g.,
halite and gypsum) and carbonate (e.g., calcite and dolomite). The saturation indices of
gypsum, halite, calcite and dolomite are calculated. SIgypsum and SIhalite are <0 (Figure 5a),
indicating that gypsum and halite tend to dissolve, while SIcalcite and SIdolomite in most of
the groundwater samples are >0 (Figure 5b), revealing that calcite and dolomite tend to
saturate. If halite is the sole source of Na+, the Na+/Cl− value should be equal to 1 [8].
As shown in Figure 5c, the Na+/Cl− value in all the groundwater samples is >1, and the
value of Ca2+/SO4

2− in some groundwater samples is <1 (Figure 5d), which indicates that
there is another hydrochemical process leading to the increase in Na+ concentration and
the decrease in Ca2+ concentration (e.g., cation exchange function). The chloro-alkaline
indices of CAI 1 and CAI 2, and (Na+ + K+ − Cl−)/((Ca2+ + Mg2+) − (SO4

2− + HCO3
−))

are introduced to evaluate the interaction of cation exchange. The value of CAI 1 and CAI 2
in most groundwater samples is <0 (Figure 5e), and the value of (Na+ + K+ − Cl−)/((Ca2+ +
Mg2+) − (SO4

2− + HCO3
−)) in most groundwater samples is distributed along the 1:1 line

(Figure 5f). Both of the above calculated results indicate that the cation exchange function
regulates the ionic concentration of Na+ and Ca2+. The values of (Ca2+ + Mg2+)/(SO4

2− +
HCO3

−), Ca2+/HCO3
− and Ca2+/SO4

2− in most groundwater samples are located near
the 1:1 line (Figure 5d,g,h), which indicates that the dissolution of carbonate and gypsum
are the main sources of Ca2+ and Mg2+ [5]. Some groundwater samples are located above
the 1:1 line in Figure 5g, which are attributed to the decrease in Ca2+ and Mg2+ and the
increase in Na+ and K+ under the cation exchange function.

As is shown in Figure 6, the mining activities cause the anomalous change in the
hydrochemistry characteristic in the phreatic and confined aquifers. Before the mining
activities, the groundwater flow speed in the phreatic aquifer is fast, resulting in the weak-
ness of the water–rock interaction and low mineralization. In contrast, the groundwater
environment of the confined aquifer is relatively stable and the groundwater circulation is
slow, which is characterized by the strong water–rock interaction and high mineralization.
Previous studies have revealed that the mining activities cause the aquifer’s parameters
to change and enhance the hydraulic connection between the different aquifers caused by
the mining activities. In this study, the hydrochemical characteristics of the phreatic and
confined aquifers have changed due to the increased hydraulic connection between them.
After the mining activities, the hydrochemistry type of the phreatic aquifer changes from
HCO3-Ca and HCO3-Na to SO4-Ca and SO4-Na with increasing TDS. It is attributed to
the inflow of high mineralization groundwater from the confined aquifer. In addition, the
mining activities promote the occurrence of low-mineralization and high-mineralization
groundwater. The inflow of groundwater with low TDS in the phreatic aquifer results in
the mineralization decrease in the confined aquifer with high TDS. After mining activities,
a large number of water-conducting fissures are distributed in the overburden aquifer. In
this case, the renewal time of the groundwater system is shortened, which promotes the
active flushing of groundwater (i.e., groundwater cycling). As a result, the presence of
water-conducting fissures brings more CO2 into the groundwater, which promotes the
dissolution of calcite and dolomite (Equations (7) and (8)) [8]; this causes the mineralization
increase.

CaCO3 + CO2 + H2O → Ca2+ + 2HCO3
− (7)

CaMg(CO3)2 + 2CO2 + 2H2O → Ca2+ + Mg2+ + 4HCO3
− (8)

In summary, the hydrochemistry analysis reveals that the enhancement of the hy-
draulic connection between the phreatic aquifer and confined aquifer induced by mining
activities causes the anomalous change in the hydrochemistry characteristic. Thus, the
phreatic groundwater level can be considered as the input variable data-driven model for
predicting the dynamic change in the groundwater level in the confined aquifer.
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5.2. The External Influencing Factors

The wavelet coherence method is applied to analyze the relationship between the
groundwater level and precipitation (P), mine water inflow (MWI), and the unit goal area
(UGA). The analysis results of PGL and CGL are shown in Figures 7 and 8, respectively.
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As is shown in Figure 7, there is the high coherence between the PGL and precipitation
within the band of 128 days in 2021~2022 and the band of 256 days in 2019~2020. The
coherence between the PGL and mine water inflow strengthens for 64 days during the
interval of 2019~2020 and 128 days in 2022. The PGL is highly coherent with the unit goal
area within the band of 256 days in 2020–2022. As is shown in Figure 8, the CGL and
precipitation shows coherence within the band of 64~128 days from 2019 to 2021. The
coherence between the CGL and mine water inflow is shown to be highly coherent within
the band of 128 days during the period of 2019~2022. The coherence between the CGL and
unit goal area strengthens for 128 days and 256 days from 2020 to 2021.

To sum up, the dynamic change in the groundwater level is highly coherent with
several external influencing factors in different frequency domains over past time periods.
Thus, P, MWI and UGA can be considered as the input variables of the data-driven model
for predicting the anomalous change in the groundwater level induced by mining activities.

5.3. Comparisons of Prediction Performance

Based on the different input variables, the PGL model and the CGL model are con-
structed for predicting the groundwater level change caused by mining activities. A 70%
dataset is considered as the training subset, and the remain 30% dataset is the prediction sub-
set. The results predicted using the Decision Tree and LSTM are shown in Figures 9 and 10.
The errors of the model predictions are summarized in Table 2. Although the anomalous
change in the groundwater level induced by mining activities can be predicted using the
Decision Tree and LSTM, different error indicators indicate that the prediction performance
of the two algorithms is different.
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For the PGL model, the MAPE and RMSE of the LSTM algorithm are smaller than
those of the Decision Tree algorithm. The NSE value of LSTM is larger than that of the
Decision Tree, which is closer to 1. Generally, the MAPE and RMSE values are close to zero,
and the R2 and NSE values are close to one, indicating that the predicted performance of
the data-driven model is perfect. The error metrics indicate that the predicted performance
of the PGL model using the LSTM algorithm is greater than that of the Decision Trees
algorithm. Similar conclusions can be found in the error results of the CGL models.



Water 2024, 16, 1611 13 of 17

Table 2. The errors of PCL model and CGL model in training and testing stage.

Model Algorithm Stage
DG Well

MAPE (%) RMSE NSE R2

PGL
Decision Tree

Training 0.1261 0.1765 0.92 0.93

Testing 0.1366 0.1989 0.86 0.88

LSTM
Training 0.0918 0.1562 0.96 0.95

Testing 0.0986 0.1625 0.93 0.91

CGL
Decision Tree

Training 0.0996 0.1526 0.91 0.91

Testing 0.1026 0.1695 0.85 0.85

LSTM
Training 0.0865 0.1368 0.95 0.96

Testing 0.0958 0.1502 0.91 0.90

In order to further analyze the predictive result of the data-driven model, the scatter
plot of the stimulated value and monitored value in the training and prediction stage
are shown in Figures 11 and 12, respectively. If the data-driven model could predict the
anomalous change in the groundwater level caused by the mining activities accurately, the
predictive results should be distributed over X = Y. In the PGL model, the R2 value of the
Decision Tree is 0.93 for the training stage and 0.88 for the predicting stage, respectively,
and these values regarding the LSTM algorithm are 0.95 in the training stage and 0.91 in
the predicting stage, respectively. In the CGL model, the R2 value of the training stage is
0.91 in the Decision Tree algorithm and 0.85 in the LSTM algorithm, and these values in the
predicting stage are 0.96 in the Decision Tree algorithm and 0.90 in the LSTM algorithm,
respectively. The results reveal that the predictive performance of the LSTM algorithm is
better than the Decision Tree algorithm. Compared with the prediction results calculated
using the Decision Tree algorithm, the prediction accuracy of the hydrological model
constructed using the LSTM algorithm is improved by 6%. Thus, the hydrological model
based on the LSTM algorithm can predict the anomalous change in the groundwater level
caused by the mining activities accurately.

Unlike the structure of the Decision Tree algorithm, the LSTM structure consists of
three different layers, including the input layer, hidden layer and output layer, where
the hidden layer is composed of three gates: input gates, output gates, and forget gates.
The composite structure of the hidden layer could effectively prevent the phenomenon
of the gradient disappearing and the gradient explosion in the process of data training.
In addition, the LSTM algorithm has two significant advantages. One is that it extracts
the valuable information from the previous neurons and transfers them into the current
neurons, which can significantly improve prediction accuracy. Another one is that it
improves the speed of computation through multithreading parallel computing. Based
on the above characteristics, the LSTM algorithm is more accurate than the Decision Tree
algorithm.

Yan et al. [36] used the LSTM algorithm to build the hydrological model for predicting
the anomalous changes in groundwater levels and hydrochemical components caused by
seismic activities. The hydrologic model was trained based on the dynamic changes in
the groundwater level and the hydrochemical component without earthquakes, which
was used to predict the abnormal changes in groundwater level before earthquakes and
then to identify the pre-seismic anomalies. The MAPE, RMSE, NSE and R2 are also used
to evaluate the prediction performance. The results show that the hydrological model
based on the LSTM algorithm has the best performance, which can effectively identify the
pre-seismic anomalies. It is consistent with the conclusions we obtained. The application of
the LSTM algorithm to construct hydrological models can improve the forecast accuracy.
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6. Conclusions

In this study, the hydrochemistry analysis and time series analysis are used to identify
the effect of mining activities on the groundwater regime. The novel data-driven algorithm
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is introduced to accurately predict the variation in the groundwater levels caused by the
mining activities. The main conclusions are listed as follows:

(1) The hydrochemical characteristic in the Yili Coalfield is affected by the cation exchange
function and the dissolution of halite, gypsum, calcite and dolomite. The anomalous
change in the hydrochemistry characteristic in the phreatic aquifer is attributed to the
enhancement of the hydraulic connection between the different aquifers induced by
the mining activities. The groundwater level of the confined aquifer can be considered
as the input variable of the model to predict the phreatic groundwater level.

(2) Precipitation, mine water inflow, and unit goal are highly coherent with the anoma-
lous change in the groundwater level induced by the mining activities, which are
considered as the input variables for constructing the prediction model.

(3) According to the errors of predictive performance, the accuracy of predictive results
calculated using the LSTM algorithm is 8% of NSE and 6% of R2 higher than that of
the Decision Tree algorithm; the predictive error of the LSTM algorithm is 11% of
RMSE and 6% of MAPE lower than that of the Decision Tree algorithm. The predictive
errors indicate that the data-driven model based on the LSTM algorithm yields a
better prediction performance than that of the Decision Tree algorithm, which can be
used to predict the anomalous change in the groundwater level caused by the mining
activities.

Author Contributions: Conceptualization, A.L. and S.Z.; methodology A.L., S.Z. and S.Q.; software
S.D., H.W. and H.C.; validation T.W. and X.H.; formal analysis S.D. and X.H.; investigation, S.D. and
H.W.; data curation, A.L.; writing—original draft preparation, A.L. and S.Z.; writing—review and
editing, S.Z.; visualization, C.W.; project administration, A.L.; funding acquisition, A.L. and S.Q. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (42307092;
42307113) and the Science, Technology and Innovation Fund Project of Xi’an Research Institute of
China Coal Technology & Engineering Group Corp (2023XAYJS12). Natural Science Basic Research
Plan in Shaanxi Province of China (Grant No. 2023-JC-ZD-27). Tiandi Science and Technology Co. Ltd.
Science and Technology Innovation Venture Capital Special Project (Grant No. 2022-2-TD-ZD005).

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author.

Acknowledgments: We would like to thank the editor and three anonymous reviewers for very
constructive comments and suggestions, which helped us improve the quality of the manuscript.

Conflicts of Interest: On behalf of all authors, the corresponding author states that there is no conflicts
of interest.

References
1. Hikouei, I.S.; Eshleman, K.N.; Saharjo, B.H.; Graham, L.L.B.; Applegate, G.; Cochrane, M.A. Using machine learning algorithms

to predict groundwater levels in Indonesian tropical peatlands. Sci. Total Environ. 2023, 857, 159701. [CrossRef] [PubMed]
2. Zhang, S.; Shi, Z.; Wang, G.; Yan, R.; Zhang, Z. Groundwater radon precursor anomalies identification by decision tree method.

Appl. Geochem. 2020, 121, 104696. [CrossRef]
3. Yu, S.; Ma, J. Deep Learning for Geophysics: Current and Future Trends. Rev. Geophys. 2021, 59, e2021RG000742. [CrossRef]
4. Hosono, T.; Yamada, C.; Shibata, T.; Tawara, Y.; Wang, C.Y.; Manga, M.; Rahman, A.T.M.S.; Shimada, J. Coseismic Groundwater

Drawdown Along Crustal Ruptures During the 2016 Mw 7.0 Kumamoto Earthquake. Water Resour. Res. 2019, 55, 5891–5903.
[CrossRef]

5. Miyakoshi, A.; Taniguchi, M.; Ide, K.; Kagabu, M.; Hosono, T.; Shimada, J. Identification of changes in subsurface temperature
and groundwater flow after the 2016 Kumamoto earthquake using long-term well temperature-depth profiles. J. Hydrol. 2020,
582, 10. [CrossRef]

6. Qu, S.; Shi, Z.; Wang, G.; Xu, Q.; Han, J. Using water-level fluctuations in response to Earth-tide and barometric-pressure changes
to measure the in-situ hydrogeological properties of an overburden aquifer in a coalfield. Hydrogeol. J. 2020, 595, 125673.

7. Wang, C.Y.; Wang, L.P.; Manga, M.; Wang, C.H.; Chen, C.H. Basin-scale transport of heat and fluid induced by earthquakes.
Geophys. Res. Lett. 2013, 40, 3893–3897. [CrossRef]

https://doi.org/10.1016/j.scitotenv.2022.159701
https://www.ncbi.nlm.nih.gov/pubmed/36306856
https://doi.org/10.1016/j.apgeochem.2020.104696
https://doi.org/10.1029/2021RG000742
https://doi.org/10.1029/2019WR024871
https://doi.org/10.1016/j.jhydrol.2019.124530
https://doi.org/10.1002/grl.50738


Water 2024, 16, 1611 16 of 17

8. Xiao, Y.; Hao, Q.; Zhang, Y.; Zhu, Y.; Yin, S.; Qin, L.; Li, X. Investigating sources, driving forces and potential health risks of nitrate
and fluoride in groundwater of a typical alluvial fan plain. Sci. Total Environ. 2022, 802, 149909. [CrossRef] [PubMed]

9. Wang, C.; Liao, F.; Wang, G.; Qu, S.; Mao, H.; Bai, Y. Hydrogeochemical evolution induced by long-term mining activities in a
multi-aquifer system in the mining area. Sci. Total Environ. 2023, 854, 158806. [CrossRef]

10. Yang, Y.; Mei, A.; Gao, S.; Zhao, D. Both natural and anthropogenic factors control surface water and groundwater chemistry and
quality in the Ningtiaota coalfield of Ordos Basin, Northwestern China. Environ. Sci. Pollut. Res. 2023, 30, 67227–67249. [CrossRef]

11. Barbieri, M.; Franchini, S.; Barberio, M.D.; Billi, A.; Boschetti, T.; Giansante, L.; Gori, F.; Jónsson, S.; Petitta, M.; Skelton, A.; et al.
Changes in groundwater trace element concentrations before seismic and volcanic activities in Iceland during 2010–2018. Sci.
Total Environ. 2021, 793, 148635. [CrossRef] [PubMed]

12. Schiavo, M. Probabilistic delineation of subsurface connected pathways in alluvial aquifers under geological uncertainty. J. Hydrol.
2022, 615, 128674. [CrossRef]

13. Zhang, S.; Shi, Z.; Wang, G.; Zhang, Z.; Guo, H. The origin of hydrological responses following earthquakes in a confined aquifer:
Insight from water level, flow rate, and temperature observations. Hydrol. Earth Syst. Sci. 2023, 27, 401–415. [CrossRef]

14. Liu, K.; Zhang, Y.; He, Q.; Zhang, S.; Jia, W.; He, X.; Zhang, H.; Wang, L.; Wang, S. Characteristics of thermophysical parameters in
the Wugongshan area of South China and their insights for geothermal genesis. Front. Environ. Sci. 2023, 11, 1112143. [CrossRef]

15. Zhang, H.; Shi, Z.; Wang, G.; Yan, X.; Liu, C.; Sun, X.; Ma, Y.; Wen, D. Different Sensitivities of Earthquake-Induced Water Level
and Hydrogeological Property Variations in Two Aquifer Systems. Water Resour. Res. 2021, 57, e2020WR028217. [CrossRef]

16. Janetti, E.B.; Guadagnini, L.; Riva, M.; Guadagnini, A. Global sensitivity analyses of multiple conceptual models with uncertain
parameters driving groundwater flow in a regional-scale sedimentary aquifer. J. Hydrol. 2019, 574, 544–556. [CrossRef]

17. Tian, X.; Gong, Z.; Fu, L.; You, D.; Li, F.; Wang, Y.; Chen, Z.; Zhou, Y. Determination of Groundwater Recharge Mechanism Based
on Environmental Isotopes in Chahannur Basin. Water 2023, 15, 180. [CrossRef]

18. Mousavi, S.M.; Beroza, G.C. Machine Learning in Earthquake Seismology. Annu. Rev. Earth Planet. Sci. 2023, 51, 2365–2378.
[CrossRef]

19. Okoroafor, E.R.; Smith, C.M.; Ochie, K.I.; Nwosu, C.J.; Gudmundsdottir, H.; Aljubran, M. Machine learning in subsurface
geothermal energy: Two decades in review. Geothermics 2022, 102, 102401. [CrossRef]

20. Mao, H.; Wang, G.; Rao, Z.; Liao, F.; Shi, Z.; Huang, X.; Chen, X.; Yang, Y. Deciphering spatial pattern of groundwater chemistry
and nitrogen pollution in Poyang Lake Basin (eastern China) using self-organizing map and multivariate statistics. J. Clean. Prod.
2021, 329, 129697. [CrossRef]

21. Qu, S.; Duan, L.; Mao, H.; Wang, C.; Liang, X.; Luo, A.; Huang, L.; Yu, R.; Miao, P.; Zhao, Y. Hydrochemical and isotopic
fingerprints of groundwater origin and evolution in the Urangulan River basin, China’s Loess Plateau. Sci. Total Environ. 2023,
866, 161377. [CrossRef]

22. Xu, K.; Dai, G.; Zhao, D.; Xue, X. Hydrogeochemical Evolution of an Ordovician Limestone Aquifer Influenced by Coal Mining:
A Case Study in the Hancheng Mining Area, China. Mine Water Environ. 2018, 37, 238–248. [CrossRef]

23. Bredy, J.; Gallichand, J.; Celicourt, P.; Gumiere, S.J. Water table depth forecasting in cranberry fields using two decision-tree-
modeling approaches. Agric. Water Manag. 2020, 233, 106090. [CrossRef]

24. Rodrigues, E.; Gomes, Á.; Gaspar, A.R.; Henggeler Antunes, C. Estimation of renewable energy and built environment-related
variables using neural networks—A review. Renew. Sustain. Energy Rev. 2018, 94, 959–988. [CrossRef]

25. Wunsch, A.; Liesch, T.; Broda, S. Groundwater level forecasting with artificial neural networks: A comparison of long short-term
memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX).
Hydrol. Earth Syst. Sci. 2021, 25, 1671–1687. [CrossRef]

26. Zhang, S.; Shi, Z.; Wang, G.; Yan, R.; Zhang, Z. Application of the extreme gradient boosting method to quantitatively analyze the
mechanism of radon anomalous change in Banglazhang hot spring before the Lijiang Mw 7.0 earthquake. J. Hydrol. 2022, 612,
128249. [CrossRef]

27. Luque-Espinar, J.A.; López-Chicano, M.; Pardo-Igúzquiza, E.; Chica-Olmo, M. Using numerical methods for map the spatiotem-
poral geogenic and anthropogenic influences on the groundwater in a detrital aquifer in south spain. J. Environ. Manag. 2024, 355,
120442. [CrossRef] [PubMed]

28. Luo, A.; Dong, S.; Wang, H.; Ji, Z.; Wang, T.; Hu, X.; Wang, C.; Qu, S.; Zhang, S. Impact of long-term mining activity on
groundwater dynamics in a mining district in Xinjiang coal Mine Base, Northwest China: Insight from geochemical fingerprint
and machine learning. Environ. Sci. Pollut. Res. 2024, 2024, 1–16. [CrossRef] [PubMed]

29. Wang, L.; Jia, J.; Xia, D.; Liu, H.; Gao, F.; Duan, Y.; Wang, Q.; Xie, H.; Chen, F. Climate change in arid central Asia since MIS 2
revealed from a loess sequence in Yili Basin, Xinjiang, China. Quat. Int. 2019, 502, 258–266. [CrossRef]

30. Wang, L.; Jia, J.; Xia, D.; Liu, H.; Gao, F.; Duan, Y.; Wang, Q.; Xie, H.; Chen, F. Vegetation and climate history in arid western China
during MIS2, New insights from pollen and grain-size data of the Balikun Lake, eastern Tien Shan. Quat. Sci. Rev. 2015, 126,
112–125.

31. Acworth, R.I.; Halloran, L.J.S.; Rau, G.C.; Cuthbert, M.O.; Bernardi, T.L. An objective frequency domain method for quantifying
confined aquifer compressible storage using Earth and atmospheric tides. Geophys. Res. Lett. 2016, 43, 11671–11678. [CrossRef]

32. Qu, S.; Shi, Z.; Wang, G.; Zhang, H.; Han, J.; Liu, T.; Jin, X. Detection of hydrological responses to longwall mining in an
overburden aquifer. J. Hydrol. 2021, 603, 126919. [CrossRef]

https://doi.org/10.1016/j.scitotenv.2021.149909
https://www.ncbi.nlm.nih.gov/pubmed/34525690
https://doi.org/10.1016/j.scitotenv.2022.158806
https://doi.org/10.1007/s11356-023-27147-2
https://doi.org/10.1016/j.scitotenv.2021.148635
https://www.ncbi.nlm.nih.gov/pubmed/34328979
https://doi.org/10.1016/j.jhydrol.2022.128674
https://doi.org/10.5194/hess-27-401-2023
https://doi.org/10.3389/fenvs.2023.1112143
https://doi.org/10.1029/2020WR028217
https://doi.org/10.1016/j.jhydrol.2019.04.035
https://doi.org/10.3390/w15010180
https://doi.org/10.1146/annurev-earth-071822-100323
https://doi.org/10.1016/j.geothermics.2022.102401
https://doi.org/10.1016/j.jclepro.2021.129697
https://doi.org/10.1016/j.scitotenv.2022.161377
https://doi.org/10.1007/s10230-018-0519-z
https://doi.org/10.1016/j.agwat.2020.106090
https://doi.org/10.1016/j.rser.2018.05.060
https://doi.org/10.5194/hess-25-1671-2021
https://doi.org/10.1016/j.jhydrol.2022.128249
https://doi.org/10.1016/j.jenvman.2024.120442
https://www.ncbi.nlm.nih.gov/pubmed/38442656
https://doi.org/10.1007/s11356-024-33401-y
https://www.ncbi.nlm.nih.gov/pubmed/38644426
https://doi.org/10.1016/j.quaint.2018.02.032
https://doi.org/10.1002/2016GL071328
https://doi.org/10.1016/j.jhydrol.2021.126919


Water 2024, 16, 1611 17 of 17

33. Gu, X.; Sun, H.; Zhang, Y.; Zhang, S.; Lu, C. Partial Wavelet Coherence to Evaluate Scale-dependent Relationships Between
Precipitation/Surface Water and Groundwater Levels in a Groundwater System. Water Resour. Manag. 2022, 36, 2509–2522.
[CrossRef]

34. Wang, C.-Y.; Liao, X.; Wang, L.-P.; Wang, C.-H.; Manga, M. Large earthquakes create vertical permeability by breaching aquitards.
Water Resour. Res. 2016, 52, 5923–5937. [CrossRef]

35. An, L.; Hao, Y.; Yeh, T.-C.J.; Liu, Y.; Liu, W.; Zhang, B. Simulation of karst spring discharge using a combination of time-frequency
analysis methods and long short-term memory neural networks. J. Hydrol. 2020, 589, 125320. [CrossRef]

36. Yan, X.; Shi, Z.; Wang, G.; Zhang, H.; Bi, E. Detection of possible hydrological precursor anomalies using long short-term memory:
A case study of the 1996 Lijiang earthquake. J. Hydrol. 2021, 599, 126369. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11269-022-03157-6
https://doi.org/10.1002/2016WR018893
https://doi.org/10.1016/j.jhydrol.2020.125320
https://doi.org/10.1016/j.jhydrol.2021.126369

	Introduction 
	Geological Setting and Data Source 
	Regional Hydrogeological Setting 
	Data Collection 
	Time Series Data 
	Hydrochemistry Data 


	Methods 
	Hydrochemistry Analysis 
	Time Series Analysis (Continuous Wavelet Coherence) 
	Machine Learning 
	Long Short-Term Memory Neural Network 
	Decision Trees 


	Model Development 
	Splitting the Dataset into Different Subsets 
	Data Normalization and Error Metric 
	Input Variable Selection 

	Results and Discussion 
	Hydrochemistry Change Induced by the Mining Activities 
	The External Influencing Factors 
	Comparisons of Prediction Performance 

	Conclusions 
	References

