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Abstract: Accurate and reliable mid-to-long-term runoff prediction (MLTRP) is of great importance in
water resource management. However, the MLTRP is not suitable in each basin, and how to evaluate
the applicability of MLTRP is still a question. Therefore, the total mutual information (TMI) index is
developed in this study based on the predictor selection method using mutual information (MI) and
partial MI (PMI). The relationship between the TMI and the predictive performance of five AI models
is analyzed by applying five models to 222 forecasting scenarios in Australia. This results in over
222 forecasting scenarios which demonstrate that, compared with the MI, the developed TMI index
can better represent the available information in the predictors and has a more significant negative
correlation with the RRMSE, with a correlation coefficient between −0.62 and −0.85. This means that
the model’s predictive performance will become better along with the increase in TMI, and therefore,
the developed TMI index can be used to evaluate the applicability of MLTRP. When the TMI is more
than 0.1, the available information in the predictors can support the construction of MLTRP models.
In addition, the TMI can be used to partly explain the differences in predictive performance among
five models. In general, the complex models, which can better utilize the contained information, are
more sensitive to the TMI and have more significant improvement in terms of predictive performance
along with the increase in TMI.

Keywords: mid-to-long-term runoff prediction; total mutual information; applicability evaluation;
artificial intelligence models; available information

1. Introduction

Driven by both climate change and human activities, the mechanism of runoff gen-
eration and confluence is undergoing significant changes, leading to a more uncertain
evolution trend of water resources [1–4]. Meanwhile, some changing socio-economic fac-
tors, such as growing population and urbanization processes, will cause water supply
demand to increase [5–8]. Under this background, mid-to-long-term runoff prediction
(MLTRP), which predicts the ten-day, monthly, seasonal, or yearly runoff 1 month to 1 year
into the future, is of great importance in water resource management and comprehen-
sive utilization, and has received more and more attention in the research and practice
fields [9–12].

In order to obtain a good predictive performance, many models have been devel-
oped and applied in MLTRP to support the comprehensive management of water re-
sources [9–16]. These models can be broadly divided into two groups: (1) physical-based
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models and (2) data-based models [12,17–20]. In general, the physical-based models require
large amounts of data for model construction and validation, such as rainfall data, char-
acteristics data on basins, geographic data, and climate data, and therefore, these models
cannot achieve a good predictive performance in data-sparse basins [18,21,22]. On the other
hand, along with the development of computer science and data science, there are more
and more hydrological data and climate data, and the data-based models are becoming
more and more popular in many fields, including the MLTRP [23–26]. In addition, the
applicability of monthly or seasonal meteorological forecasts to the MLTRP field has not
been evaluated sufficiently. The applications of physical-based models are limited, and
therefore, data-based models are widely used to generate mid-to-long-term runoff pre-
dictions by establishing teleconnection relationships between future runoff and climate
factors, such as sea surface temperature anomalies (SSTA) and atmospheric circulation
factors [13,17,27–29].

Aiming to improve the predictive skills of the data-driven mid-to-long-term runoff
predictions, many studies have been conducted on the three aspects: (1) model improve-
ment, (2) post-processing of model outputs, and (3) selection of predictors. Among these
studies, most focus on improvement of the models. In early studies, some time series
statistical models were widely applied. For example, the autoregressive moving average
(ARMA) model, which is a typical model in MLTRP, was first used for yearly runoff pre-
diction in four basins in 1970, and thereafter, many variant models based on ARMA have
been widely applied [30–34]. But these models are based on linear correlation and cannot
simulate the nonlinear features underlying the input–output relationship. Therefore, the
artificially intelligent (AI) models, which can simulate nonlinear features, have become
predominant along with the development of computer science [18,32,35–37]. The widely
used AI models include artificial neural networks (ANNs) [21], support vector regression
(SVR) [16], relevance vector machines (RVMs) [38], decision trees [39], genetic program-
ming [40], gated recurrent unit neural networks (GRUs) [41], long short-term memory
(LSTM) [42], etc. [17,43]. In addition, some hybrid models, for which time decomposi-
tion models are generally used to decompose the runoff time series and AI models are
used to forecast different decomposed components, have been developed to integrate
the advantage of different base models and have better predictive performance [17,25,44].
However, the same model may have different predictive performances in different basins,
and a single AI model often generates deterministic predictions and cannot reflect the
uncertainties of future runoff. Therefore, post-processing methods are needed to improve
the predictive accuracy and reliability [16,45]. For example, the model fusion methods are
used to combine the forecasting results to improve model reliability [45–47]. Furthermore,
some studies focus on generating probabilistic predictions to better reflect the forecasting
uncertainties [16,48]. For example, Liang et al. (2018) made probabilistic predictions by
applying a hydrological uncertainty processor to post-process the deterministic predictions
obtained by the SVR model [16].

In terms of the selection of predictors, many previous studies have focused on the
auto-correlation in the runoff time series. Many auto-regressive models, such as the autore-
gressive moving average model and its variant models, have been used and have shown
good performances [21,34,49]. However, when only the auto-correlated factors are used,
the predictive performance is determined by the statistical characteristics of the runoff time
series [27]. And many studies have demonstrated that the number and selection process
of predictors will influence the predictive performance significantly [21,50,51]. Therefore,
considering the teleconnection between the hydrological factors and climate factors (SSTA,
atmospheric circulation factors), many studies select climate factors as predictors and obtain
more accurate predictions with longer forecast lead times [40,52,53]. In order to select more
suitable predictors from numerous climate factors, many selection methods have been used,
such as correlation analysis, sensitivity analysis, the least absolute shrinkage and selection
operator method, mutual information, and principal component analysis [10,16,42,47,53,54].
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Among these methods, mutual information (MI), which can reflect nonlinear relationships
between variables, has been widely used in many fields [55–57].

Based on the studies focused on selecting predictors, improving models, and post-
processing, the mid-to-long-term runoff predictive performance has been significantly
improved. But there are some questions which need to be investigated. Firstly, in some
forecasting scenarios, the forecasting results obtained using data-based models may be
worse than results obtained by averaging the runoff time series, and the differences in
predictive performance among different basins may be larger than those among different
models [35,37,58]. But how can the differences in predictive performance in different
forecasting cases and be explained and evaluated if MLTRP is suitable for a specific case?
Furthermore, can the indices used in the predictor selection process be used to explain the
differences among different forecasting cases? Therefore, the objectives of this study are
(1) to find an index which can be used to explain the differences of predictive performance
among different forecasting cases; and (2) to further analyze the ability of this index to
assess the applicability of MLTRP in a specific forecasting case.

The remaining sections of this paper are organized as follows. The data, case studies,
and methods are introduced in Section 2. The results are demonstrated in Section 3 and
discussed in Section 4. Finally, the main conclusions are summarized in Section 5.

2. Materials and Methods
2.1. Predictor Selection and Total Mutual Information
2.1.1. The Predictor Selection Method

Predictor selection is a process applied to recognize the most valuable predictors from
numerous candidate predictors in order to reduce the model’s complexity and improve its
accuracy [56,59]. Among many predictor selection methods, the MI can reflect the nonlinear
relationship and is used in this study. The selection method based on MI is briefly described
as follows, and details can be found in other studies [55,60,61].

For the prediction Y and candidate predictors X, the MI is defined as follows:

I(X; Y) =
∫ ∫

p(x, y)log
p(x, y)

p(x)p(y)
dx dy (1)

where p(x) and p(y) represent the marginal probability density functions (pdfs) of X and
Y, and p(x, y) is the joint pdf. In the application, the MI can be obtained by a numerical
approximation as follows:

I(X; Y) =
1
n

n

∑
i=1

log
f (xi, yi)

f (xi) f (yi)
(2)

where f denotes the estimated density based on a sample of n observations of (x, y), and
can be estimated with the kernel density estimation (KDE):

f̂ (x) =
1
n

n

∑
i=1

Kh(x − xi) (3)

where f̂ (x) denotes the estimate of the pdf at x; xi denote the ith observation of X; and Kh
is some kernel function for which a common choice is the Gaussian kernel.

The MI can be used to evaluate the correlation between predictand and predictors,
but it cannot identify the internal relation among the predictors and may cause redundant
information in the predictors [61]. Therefore, the partial mutual information (PMI), which
quantifies the nonlinear dependence of Y on the candidate predictor Z that is not accounted
for by the selected predictor X, is introduced. The PMI is calculated by first filtering both Y
and Z via regression on X to obtain residuals u and v, respectively:

u = Y − m̂Y(X) (4)
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v = Z − m̂Z(X) (5)

where m̂Y(X) and m̂Z(X) represent the estimators for the regression of Y and Z on X. Based
on the KDE, the m̂Y(X) can be written as:

m̂Y(X) = E[y|X = x] =
1
n

∑n
i=1 yiKh(x − xi)

∑n
i=1 Kh(x − xi)

(6)

Then, the PMI can be calculated by:

I′(Z; Y|X) = I(v; u) (7)

Based on the previous equations, the process of the predictor selection method based
on the MI and PMI, named PMIS, is showed in Figure 1. The thrn and thrPMI are thresholds.
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2.1.2. Total Mutual Information

The PMIS can be proposed to select suitable predictors from numerous candidate
variables, but the PMI cannot reflect the relation between the whole predictor set and the
prediction, and the MI cannot reflect the internal relationship among the predictor set.
Therefore, the total mutual information (TMI) is developed based on the PMIS method to
reflect the relation between the whole predictor set and the prediction. The TMI can be
calculated using the following equation:

TMI =
m

∑
i=1

wiPMIi (8)

where m is the number of selected predictors; i is the order of selecting the predictor; and
wi and PMIi are the weight and PMI value of the ith selected predictor.

The wi can be determined by calculating the information gained after introducing the
specific predictor. Considering that the residual shown in Equation (4) can represent the
uncertainty in the prediction to some degree, the difference in the standard deviation of
the residual is used to represent the information gained. Then, the wi can be calculated
as follows:

wi = std
(

Y − m̂Y

(
Xi−1

))
− std

(
Y − m̂Y

(
Xi

))
(9)
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where Xi represents the predictor set after introducing the ith predictor and std denote the
standard deviation.

2.2. Case Study and Data Preparing

In order to analyze the relationship between the TMI and the predictive performance of
MLTRP, predictions were generated at 37 hydrologic reference stations in Australia selected
from 221 stations. The station selection occurred according to two criteria: (1) the data
quality, as evaluated by the Bureau of Meteorology (BOM) in Australia, is the “best available
data”; and (2) the starting month of the data is earlier than January 1966. All stations were
located in catchments with minimal anthropogenic interruptions. The 37 stations and
corresponding catchments are shown in Figure 2, and the basic information is listed in
Appendix A.
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The monthly runoff data of the 37 selected stations can be obtained from the website
of BOM, Australia (http://www.bom.gov.au/water/hrs/, accessed on 1 January 2021).
The available runoff records all end in December 2014, and the starting months at different
stations are between January 1951 and July 1982. In order to process the skewness in runoff
data, the runoff data were preprocessed using a widely used log-sinh data transformation

http://www.bom.gov.au/water/hrs/
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method [58,62,63]. And it should be noted that the following results are demonstrated
and discussed based on the transformed data in order to compare the model’s predictive
performances in different basins.

The other data used in this study include rainfall and 130 global climate factors. The
grid rainfall data with 0.05◦ resolution were obtained through Australian Water Availability
Project (http://www.auscover.org.au/purl/australian-gridded-climate-data, accessed on
1 January 2021) and processed to obtain the monthly rainfall in the area. The 130 global
climate factors data, including 88 atmospheric circulation indices, 26 SSTA indices, and
16 other indices, were downloaded from the website of National Climate Center, China
Meteorological Administration (http://cmdp.ncc-cma.net/en/, accessed on 1 January
2021). The climate data were normalized by:

F̂year,month =
Fyear,month − Fmonth

Smonth
(10)

where F is the original data, F̂ is the transformed data, year and month represent time, F is
the mean value, and S is the standard deviation.

2.3. Forecasting Models and Model Development Process
2.3.1. Forecasting Models

Five AI models were used to generate mid-to-long-term runoff predictions in this
study. The five models were the multilayer perceptron (MLP) model, the block-based MLP
(MB) model, the Bayesian SVR (BSVR) model, a coupled BSVR and ARD kernel model
(BSVRARD), and the LSTM model. Because these five models have been widely used
in many fields, their details are not introduced in this study and can be found in other
previous studies [24,56,64–67]. The features of these five models are briefly summarized in
Table 1.

Table 1. Brief introduction of five models applied in this study.

Model Introduction

MLP Commonly used three-layer neural network.

MB Based on the MLP, a block data structure is used to incorporate the time series
information. The details of this method can be found in [56].

BSVR A model in which the Bayesian inference framework is used to optimize the
parameters of SVR. The details can be found in [64–66].

BSVRARD A model integrating the BSVR and ARD kernel. The details can be found in [64–66].

LSTM Commonly used deep learning neural network which is suitable for time series
forecasting. The details of LSTM can be found in [67].

The MLP model is the most widely used ANN model in many fields, and is used
in this study to establish a relationship between the input vector Xt, which includes
the values of selected predictors at a specific time t, and output value Yt, which is the
value of prediction (i.e., the monthly runoff). Similarly to the MLP model, the BSVR
model is also used to establish the Xt-Yt relationship. But the BSVR and MLP models
have different model structures and parameters, which can be found in some previous
studies [16,51,64–66,68]. Based on the BSVR model, the BSVRARD model proposed the
ARD kernel to discriminate the importance of predictors [64–66]. Compared with the
MLP, BSVR, and BSVRARD models, the MB and LSTM models focus more on the time
series information, and they are used to establish the relationship between the input
matrix [Xt−m, . . ., Xt−1, Xt], which includes the time series values of selected predictors
in a time range t − m and t, and the output value Yt [56]. The MB was developed by
integrating the MLP model and the block structure, and the LSTM model was developed
based on the recurrent model [56,69]. The MB and LSTM models mainly differ in terms of
model structure and ability to process input information. In general, the MLP, BSVR, and

http://www.auscover.org.au/purl/australian-gridded-climate-data
http://cmdp.ncc-cma.net/en/
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BSVRARD models focus more on the point information at a specific time, and the MB and
LSTM models focus more on the time series information in a specific time range.

2.3.2. Model Development Process

The commonly used model development process introduced in [56,57] is proposed
and modified in this study. Firstly, the PMIS method was used to select predictors and
organized to meet the input format requirement of the five models. Meanwhile, the TMI
and MI were calculated along with the PMIS process. Secondly, leave-one-year-out cross-
validation was applied in this study to generate predictions using the whole dataset of each
station. Thirdly, the five models were constructed and validated.

The validation metrics included: (1) root mean square error (RMSE) and (2) rela-
tive root mean square error (RRMSE). The two metrics were calculated according to the
following equations.

RMSE =

√
1
n∑n

i=1

(
Ŷi − Yi

)2 ∈ [0,+∞) (11)

RRMSE =
RMSE

σY
∈ [0,+∞) (12)

where Ŷi and Yi are the predicted and observed values, respectively; N is the number of
validation data; and σY is the standard error.

Because the σY can represent the predictive performance of a model using the average
values as predictions (named average model), the RRMSE, which is the ratio of the RMSE
of a specific model to σY, can represent the forecasting model’s applicability to some degree.
A RRMSE value larger than 1 means that the model’s predictive performance is worse than
the average model and cannot generate valuable predictions.

2.4. Experiment Setup

In order to examine the ability of TMI to evaluate the applicability of MLTRP, two
experiments were implemented in this study and are summarized in Table 2. The main
difference in the two experiments was the candidate predictor set. In experiment 1 (E1), the
candidate predictions included 130 climate factors and transformed runoff in the previous
12 months. In experiment 2 (E2), the candidate predictors included those in the E1, as well
as area rainfall in the previous 12 months and future FLT (forecast lead time) months. Based
on the candidate predictors, five AI models were used to predict runoff of the 37 stations
in the future 1–6 months (37 × 6 = 222 forecasting scenarios), and RMSE and RRMSE
were used to evaluate the predictive performance. Meanwhile, the MI and TMI were
calculated. Finally, the relationships of RMSE-TMI, RRMSE-TMI, and RRMSE-MI were
analyzed. In addition, the TMI and predictive performance were further compared between
the two experiments.

Table 2. Experiment setup.

Experiment Candidate Predictors Prediction Validation Metrics Evaluation Indices Analysis

Experiment 1 (E1)

130 climate factors
and transformed

runoff in the
previous 12 months.

Runoff of the
37 stations in the

future 1–6 months. In
total 37 × 6 = 222

forecasting scenarios.

RMSE, RRMSE. MI and TMI.

The relationships of
RMSE-TMI,

RRMSE-TMI, and
RRMSE-MI.

Experiment 2 (E2)

The candidate
predictors in E1 and

rainfall in the
previous 12 months

and future FLT
(forecast lead time)

months.

Runoff of the
37 stations in the

future 1–6 months. In
total 37 × 6 = 222

forecasting scenarios.

RMSE, RRMSE. MI and TMI.

The relationships of
RMSE-TMI,

RRMSE-TMI, and
RRMSE-MI.



Water 2024, 16, 1619 8 of 20

3. Results

The results of the five forecasting models without and with rainfall in candidate predictors (i.e.,
E1 and E2) are presented in terms of the RMSE and RRMSE in Sections 3.1 and 3.2, respectively.

3.1. The Predictive Performance of Five Models without Rainfall in Predictors

The cross-validated predictive performances of the five AI models (i.e., MLP, LSTM,
MB, BSVR, and BSVRARD) were examined using the root mean square error (RMSE) and
relative root mean square error (RRMSE) obtained for the validation data, as shown in
Figure 3. In the figure, the x-axis and y-axis represent the FLT and station ID, and the colors
represent the RMSE and RRMSE values. The difference in predictive performance resulted
from the differences among basins, FLTs, and models. It can be seen from Figure 3 that
the difference in predictive performance caused by the difference in basins was the most
significant. In addition, the basins with smaller RMSE values and the basins with smaller
RRMSE values were different due to the characteristics of the transformed runoff time
series. In terms of the influence of the FLT, it can be seen that the all model will obtain
best predictive performance, which will become worse along with the increase of FLT. In
general, it is obvious that the difference in predictive performance caused by the difference
in forecasting scenarios (different basins and different FLTs) was more significant than that
caused by the models.
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3.2. The Predictive Performance of Five Models with Rainfall as Predictor

The cross-validated predictive performances of the five AI models were examined
using the RMSE and RRMSE obtained over the validation data with rainfall as a predictor,
as shown in Figure 4. It can be seen that the RMSE values of the 222 forecasting scenarios
(37 stations × 6 FLTs) were within 0.4–2.3 and significantly decreased compared with those
obtained in experiment 1 (E1, without rainfall as predictors), as shown in Figure 3. And
the RRMSE values decreased from 0.35–1.25 (Figure 3) to 0.2–0.85 (Figure 4). In addition,
the difference in predictive performance among the different basins was still significant.
In terms of the influence of FLTs on predictive performance, different models showed
different features, which can be seen from Figure 5. In E2, where the observed rainfall was
included as a predictor, the predictive performance became significantly worse for the MLP,
BSVR, and BSVRARD models (i.e., point models) along with the increase in FLTs, which
can be seen in Figure 5a. But the predictive performances of the time series models (i.e.,
MB and LSTM) were steadier among different FLTs, which can be seen in Figure 5b. In
E1, the predictive performances of all models showed similar trend with the increase in
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FLT. Although the LSTM and MB models performed worse in E1, the two models had
better performances after the incorporation of rainfall (E2). In addition, the advantages of
the time series models (MB and LSTM) compared with the point models (MLP, BSVR and
BSVRARD) were more obvious along with the increase in FLT.

Water 2024, 16, x FOR PEER REVIEW 9 of 21 
 

 

3.2. The Predictive Performance of Five Models with Rainfall as Predictor 
The cross-validated predictive performances of the five AI models were examined 

using the RMSE and RRMSE obtained over the validation data with rainfall as a predictor, 
as shown in Figure 4. It can be seen that the RMSE values of the 222 forecasting scenarios 
(37 stations × 6 FLTs) were within 0.4–2.3 and significantly decreased compared with those 
obtained in experiment 1 (E1, without rainfall as predictors), as shown in Figure 3. And 
the RRMSE values decreased from 0.35–1.25 (Figure 3) to 0.2–0.85 (Figure 4). In addition, 
the difference in predictive performance among the different basins was still significant. 
In terms of the influence of FLTs on predictive performance, different models showed dif-
ferent features, which can be seen from Figure 5. In E2, where the observed rainfall was 
included as a predictor, the predictive performance became significantly worse for the 
MLP, BSVR, and BSVRARD models (i.e., point models) along with the increase in FLTs, 
which can be seen in Figure 5a. But the predictive performances of the time series models 
(i.e., MB and LSTM) were steadier among different FLTs, which can be seen in Figure 5b. 
In E1, the predictive performances of all models showed similar trend with the increase 
in FLT. Although the LSTM and MB models performed worse in E1, the two models had 
better performances after the incorporation of rainfall (E2). In addition, the advantages of 
the time series models (MB and LSTM) compared with the point models (MLP, BSVR and 
BSVRARD) were more obvious along with the increase in FLT. 

  
(a) (b) 

Figure 4. The RMSE and RRMSE values over the validation data for predicting in the future 1–6 
months in the 37 stations with observed rainfall as predictor (E2). (a) RMSE; (b) RRMSE. 

  
(a) (b) 

Figure 5. The RMSE values in No. 37 station of different models with 6 FLTs. (a) The point models 
(MLP, BSVR, BSVRARD); (b) time series models (MB and LSTM). The �-OR’ means that the observed 
rainfall was included as a predictor and �-NR’ means that the rainfall was not included. 

Figure 4. The RMSE and RRMSE values over the validation data for predicting in the future
1–6 months in the 37 stations with observed rainfall as predictor (E2). (a) RMSE; (b) RRMSE.

Water 2024, 16, x FOR PEER REVIEW 9 of 21 
 

 

3.2. The Predictive Performance of Five Models with Rainfall as Predictor 
The cross-validated predictive performances of the five AI models were examined 

using the RMSE and RRMSE obtained over the validation data with rainfall as a predictor, 
as shown in Figure 4. It can be seen that the RMSE values of the 222 forecasting scenarios 
(37 stations × 6 FLTs) were within 0.4–2.3 and significantly decreased compared with those 
obtained in experiment 1 (E1, without rainfall as predictors), as shown in Figure 3. And 
the RRMSE values decreased from 0.35–1.25 (Figure 3) to 0.2–0.85 (Figure 4). In addition, 
the difference in predictive performance among the different basins was still significant. 
In terms of the influence of FLTs on predictive performance, different models showed dif-
ferent features, which can be seen from Figure 5. In E2, where the observed rainfall was 
included as a predictor, the predictive performance became significantly worse for the 
MLP, BSVR, and BSVRARD models (i.e., point models) along with the increase in FLTs, 
which can be seen in Figure 5a. But the predictive performances of the time series models 
(i.e., MB and LSTM) were steadier among different FLTs, which can be seen in Figure 5b. 
In E1, the predictive performances of all models showed similar trend with the increase 
in FLT. Although the LSTM and MB models performed worse in E1, the two models had 
better performances after the incorporation of rainfall (E2). In addition, the advantages of 
the time series models (MB and LSTM) compared with the point models (MLP, BSVR and 
BSVRARD) were more obvious along with the increase in FLT. 

  
(a) (b) 

Figure 4. The RMSE and RRMSE values over the validation data for predicting in the future 1–6 
months in the 37 stations with observed rainfall as predictor (E2). (a) RMSE; (b) RRMSE. 

  
(a) (b) 

Figure 5. The RMSE values in No. 37 station of different models with 6 FLTs. (a) The point models 
(MLP, BSVR, BSVRARD); (b) time series models (MB and LSTM). The �-OR’ means that the observed 
rainfall was included as a predictor and �-NR’ means that the rainfall was not included. 

Figure 5. The RMSE values in No. 37 station of different models with 6 FLTs. (a) The point models
(MLP, BSVR, BSVRARD); (b) time series models (MB and LSTM). The ‘-OR’ means that the observed
rainfall was included as a predictor and ‘-NR’ means that the rainfall was not included.

4. Discussion

The results are discussed in this section. First, the five models are compared in terms of
the predictive performance in Section 4.1. Second, the relationship between the total mutual
information (TMI) and the predictive performance of five models is analyzed in Section 4.2.
Finally, the influence of the incorporation of rainfall on the predictive performance is
discussed in Section 4.3.

4.1. The Comparison of Different Models

The predictive performance of the five models (i.e., MLP, LSTM, MB, BSVR, and
BSVRARD) in terms of the RRMSE in 222 forecasting scenarios (37 stations × 6 FLTs)
without rainfall as a predictor (E1) is illustrated in Figure 6a, and that of E2 is illustrated
in Figure 6b. In Figure 6, the y-axis shows the values of the RRMSE, and the x-axis shows
the number of forecasting scenarios with RRMSE below specific values. It can be seen
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from Figure 6a that in the three neural network models (MLP, LSTM and MB), the MLP
model performed best, and the LSTM model performed worst. Though the LSTM models
showed better performances than the simple machine learning models in many fields, such
as flood prediction and rainfall–runoff modelling, some studies have also demonstrated
that the effect of LSTM depends on the available data [23,56,70]. In MLTRP, the data are
all monthly runoff, and the limited data may be not enough to support the application of
the LSTM model. Furthermore, the LSTM is widely used in short-term runoff prediction,
where the prediction (runoff) has a clear physical correlation with the predictors (rainfall
and temperature). But in this study, the forecasting models were constructed based on the
teleconnection between monthly runoff and climate factors in E1, where rainfall was not
included as a predictor. Due to both the limited data and the weak connection between
the predictors and the prediction in the MLTRP, the most complex LSTM model performed
worst, and the complex MB model was worse than the MLP model. But the opposite result
was obtained in E2, as shown in Figure 6b. It is obvious that the LSTM and MB models
performed significantly better than the other three models (i.e., MLP, BSVR, and BSVRARD).
The main difference between E1 and E2 was that the rainfall was incorporated into the
predictors. After the application of rainfall, there was strong physical connection between
the predictors and the prediction. This means that the complex models, which were able
to use the time series information, performed better. In terms of the comparison among
the three point models (MLP, BSVR, and BSVRARD), the BSVR and BSVRARD models
performed better than the MLP model because the uncertainty risks of the model structure
and parameters were incorporated in the SVR model, and the solution of the SVR model
was globally optimized [71].
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4.2. The Relationship between Predictive Performance and TMI, MI
4.2.1. RRMSE and MI in E1

The RRMSE values of 222 forecasting scenarios and the corresponding MIs are shown
in Figure 7, where the linear regression equation and p values are also illustrated. It can
be seen that there is a good linear correlation relationship with the correlation coefficient
around −0.6 and a p value less than 4.53 × 10−21. This means that there is a close connec-
tion between the predictive performance and the available information in the predictors,
which can be represented by the MI. Even if the RRMSE and MI values are combined in
Figure 7f, there is still a good linear correlation relationship. This means that the predic-
tive performance difference caused by the model’s difference is not significant compared
with that caused by the difference among MIs. The overall linear regression equation is
RRMSE = −0.65 × MI + 1.2, which means that the RRMSE is 1.2, showing that the model is
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worse than an average model when the MI is zero. Although the MI can represent the avail-
able information in the predictors to some degree, and there is a good correlation between
RRMSE and MI, the correlation is not very significant and needs to be further improved.
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4.2.2. RMSE, RRMSE and TMI

The RRMSE and RMSE values of 222 forecasting scenarios and the corresponding
TMIs are shown in Figures 8 and 9, respectively. It is clear that the RMSE has a negative
correlation with the TMI, and the correlation coefficient is around −0.65, with a p value less
than 1.48 × 10−26. However, the RMSE in affected not only by the available information in
the predictors (TMI and MI), but also the statistical characteristics of the transformed runoff
time series. Therefore, the RRMSE, which is calculated through dividing the RMSE by the
standard deviation of the time series, has a stronger negative correlation with the TMI,
which can be seen in Figure 8. The correlation coefficients are between −0.8 and −0.85, with
p values less than 1.14 × 10−50. Compared with the correlation coefficients of RRMSE-MI
(Figure 7) and RMSE-TMI (Figure 9), the correlation coefficients of RRMSE-TMI are closer
to −1. This means that the TMI can better represent the available information regarding
the predictors compared with the MI. The main difference between the MI and TMI is the
way to discriminate the predictors. The MI is used to evaluate the mutual information
between all predictors and the prediction, but it cannot discriminate the importance of
the predictors. The TMI is calculated by multiplying the PMIs of predictors with weights
which represent the information gained after incorporating the predictor. Therefore, the
TMI can discriminate the predictors and better represent the available information.
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five models.
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Water 2024, 16, 1619 13 of 20

Because the TMI can represent the available information in the predictors and has
a strong correlation with the predictive performance, the TMI can be used to evaluate
the applicability of MLTRP in a specific forecasting scenario. If the TMI is smaller, it is
inappropriate to make mid-to-long-term runoff predictions using data-based models. It
can be seen from Figure 8 that the RRMSE values of almost all models were less than 1
when the TMI was more than 0.1. This means the model can generate valuable forecasting
information compared with the average model using average values as predictions. When
the TMI is less than 0.1, the RRMSE may be more than 1 in some forecasting scenarios.
In addition, considering the linear regression equation RRMSE = −1.9 TMI + 0.97, the
corresponding RRMSE is 0.78 with TMI equal to 0.1, which means that the predictive
performance is good.

In general, the predictive performance shows a strong correlation with the TMI, which
represents the available information in the predictors, and therefore, the TMI can be used
to evaluate the applicability of MLTRP. A TMI of more than 0.1 may represent that the
corresponding forecasting scenario is suitable for applying a data-based model to generate
valuable predictions.

4.2.3. The Linear Regression Equations between RRMSE and MI and TMI

The linear regression equations between RRMSE and MI and TMI are shown in
Figures 8 and 9, and the slopes and intercepts are summarized in Table 3. It can be seen
that the intercepts were around 1.2 when MI was the independent variable and around 1
when TMI was the independent variable. When the predictor set was empty, the MI and
TMI were 0, and the fitted RRMSE values were 1.2 and 1, respectively. Meanwhile, the
forecasting results show be the average values of the time series and the real RRMSE of
forecasting model should be 1. From this perspective, the TMI can better represent the
predictive performance.

Table 3. The slopes and intercepts of linear regression equations between RRMSE and MI and TMI.

Independent Variable
Model

MLP LSTM MB BSVR BSVRARD All

MI
Slope −0.665 −0.638 −0.681 −0.620 −0.654 −0.652

Intercept 1.192 1.215 1.240 1.142 1.159 1.190

TMI
Slope −1.937 −1.907 −1.976 −1.787 −1.862 −1.894

Intercept 0.970 1.008 1.011 0.932 0.935 0.972

It can also be seen from Table 3 that the slopes and intercepts for different models
different significantly. The difference in slopes can partly explain the differences in the
five models. A lower slope value (larger absolute value) means that the model was more
sensitive to the available information regarding the predictors. It is obvious that the slopes
of the two time series models (MB and LSTM) were less than those of the two SVR models
(point models). The underlying reason is the difference among model characteristics. The
MB and LSTM models have more complex structures and can utilize information better [56].
Therefore, when the available information contained in the predictors increased, which
can be reflected by the increase in TMI, the predictive performances of the MB and LSTM
models became better and faster, which is reflected in the lower slope values. This can also
explain the differences in intercepts. When TMI was equal to 0, the available information
was limited and could not support the establishment of the complex models (MB and
LSTM); thus, the MB and LSTM models performed worse, which is reflected by the larger
intercept values. It should be noted that the MLP model had a significantly smaller slope
than the two SVR models, although the MLP model’s structure is simple and similar to the
SVR model. The underlying reason is that the MLP model may fall into local optima and
has unstable predictive performance in different forecasting cases.
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4.3. The Influence of Rainfall on the Predictive Performance and TMI

In E2, where the rainfall was included as a predictor, five models’ predictive perfor-
mances became significantly better, which may be reflected by the change in TMI. Therefore,
the RRMSE and TMI values in E2 were calculated and are shown in Figure 10. It can be
seen from Figure 10 that the TMI values were between 0.05 and 0.65 and the RRMSE values
were between 0.2 and 0.9 after incorporating the rainfall into the predictor set. Compared
with the results obtained without rainfall as a predictor (Figure 8), the TMI values increased
by 0.01–0.31 and the corresponding RRMSE decreased by −0.01–0.69. It can also be seen
from Figure 10 that the RRMSE leveled off along with the increase in TMI.
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(e) BSVRARD model; and (f) all five models.

After the incorporation of rainfall, the five models showed different features. For the
LSTM and MB models, the TMI values were all more than 0.1, and the RRMSE values were
less than 0.8. But for the MLP, BSVR, and BSVRARD models, there were still 13.5 forecasting
scenarios where the TMI was less than 0.1 and the RRMSE values were around or more
than 0.8. The reason for the difference in TMI among the five models is that the time series
information was used in the LSTM and MB models.

It can be seen from Figure 10 that there was still a significant negative correlation
between the RRMSE and TMI. For the three-point models (MLP, BSVR, and BSVRARD),
the correlation coefficients were around −0.83. But for the LSTM and MB models, the
correlation coefficients were −0.62 and −0.67, respectively. The difference in the five models
in terms of the coefficients was caused by the difference among the models’ structures. The
LSTM and MB models use time series data as model input. But time series characteristics
are not considered in the calculation of PMIS, and therefore, the TMI can only partly explain
the available information in the input time series data. Nevertheless, the overall correlation
coefficient for all five models was −0.80.
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Besides the rainfall, the soil moisture, the vegetation condition, the land cover, and
many other factors influence the runoff by affecting the rainfall–runoff process [19,72,73].
For example, the antecedent soil moisture may influence the runoff yield significantly [72,73].
From the perspective of runoff prediction, the antecedent soil moisture and the land cover
can be added into the predictor set to increase the TMI and improve the predictive perfor-
mance, which can be investigated in a future study.

4.4. The Impact Factors of Predictive Performance

The TMI is a statistical indicator which has a significant correlation with the predictive
performance, but it is not the physical root cause for the differences in predictive perfor-
mance. Therefore, the physical impact factors of predictive performance are analyzed in
this section.

After the incorporation of rainfall, the TMI values increase in most forecasting cases.
However, the increase in TMI values and the improvement of predictive performance are
not significant in some basins. For example, for the No. 36 station, the increase in TMI was
0.01, which means the information gained by using the rainfall factor was not significant.
In order to analyze the reason, the rainfall–runoff in relation to the transformed data is
plotted in Figure 11. It is obvious that the transformed runoff had a significant positive
correlation with the rainfall. However, when the runoff was near 0 (the line at the bottom
of Figure 11), the rainfall was not 0, which means that the rainfall did not yield runoff in
these months. The underlying reason may be the difference between the real rainfall and
“observed” rainfall in some small basins. In this study, the observed rainfall was obtained
from the interpolated gridded rainfall data provided by the Australian Water Availability
Project. In some small basins, the interpolated rainfall used in this study did not reflect the
real situation, and therefore, the incorporation of rainfall cannot provide much information.
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Besides the area, the available data length (DL) and the annual average streamflow
(AS) may also affect the predictive performance [27,56,57]. The relationship between the
predictive performance (RRMSE) and the area, DL, and AS can be seen in Figure 12. It is
clear that the area, DL, and AS may influence the predictive performance, and generally,
the predictive performance will become better in larger basins with greater annual average
streamflows and longer data lengths. However, the correlation coefficients between the
RRMSE and these three factors were near 0, and the correlation was not significant with
the relatively large p-values for the DL and area. The reason is that the predictive perfor-
mance in a specific forecasting case is affected by multiple factors which can influence the
available information in the predictor set, and these factors cannot individually explain the
differences in predictive performance in different forecasting cases. But the comprehensive
impact of these factors on the predictive performance cannot be assessed quantitatively,
and therefore, they cannot be used to evaluate whether there will be a good predictive
performance in a specific forecasting case. Against this background, the TMI index is
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developed. The TMI index can represent the comprehensive impact of multiple factors
to some degree due to its ability to reflect the available information in the predictor set,
and therefore, it can explain the differences in predictive performance among different
forecasting cases more effectively compared with these factors.
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5. Conclusions

In this study, the total mutual information (TMI) index is developed based on the
predictor selection method called PMIS, which recognizes predictors based on the mutual
information (MI) and partial MI (PMI). In order to examine the relationship between
the TMI and the predictive performance, five AI models (MLP, LSTM, MB, BSVR, and
BSVRARD) are applied at 37 hydrological stations in Australia to predict monthly runoff
in the future 1–6 months, and the RMSE and RRMSE are used to evaluate the predictive
performance in 222 forecasting scenarios. The relationship of TMI, RMSE, and RRMSE in
two different experiments is assessed with and without the application of rainfall. The
main conclusions are as follows:

(1) The developed TMI index can represent the available information in the predictors
better than the MI index, and has a significant negative correlation with the RRMSE.
The correlation coefficients are between −0.8 and −0.85 when the rainfall is not in-
cluded as a predictor. And when the rainfall is included as a predictor, the coefficients
are between −0.62 and −0.85.

(2) The developed TMI index can be used to evaluate the applicability of MLTRP. Along
with the increase in TMI, the available information increases and the model’s pre-
dictive performance becomes better. When the TMI is more than 0.1, the available
information of the predictors can support the construction of MLTRP models, and the
model can generate valuable predictions. When the TMI is less than 0.1 and near 0,
the MLTRP may be not suitable in the forecasting scenarios.

(3) The five AI models have significantly different performances in different scenarios.
When the rainfall is not included as a predictor, the complex LSTM and MB models
using time series as inputs perform worse than the MLP, BSVR, and BSVRARD models.
After the incorporation of rainfall as a predictor, the TMI increases significantly, and
the complex LSTM and MB models, which can better utilize the contained information
in the predictors, perform better than the other three models.

(4) The differences in the five models can be partly explained by the developed TMI index.
The slopes of the linear regression equation between the RRMSE of the LSTM and MB
models and the TMI are less than those for the BSVR and BSVRARD models. This
means the LSTM and MB models are more sensitive to the available information of
the predictors (i.e., TMI), and therefore, the changes in the predictive performance for
the LSTM and MB models are more significant than that of the BSVR and BSVRARD
models after the incorporation of rainfall as a predictor.
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(5) The developed TMI index is just a statistical indicator reflecting the available infor-
mation in the predictor set, which affects the predictive performance of data-driven
models, but the root cause for the difference in predictive performance is the charac-
teristics of the basin.
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Appendix A

Table A1. The information of 37 selected stations.

ID in This
Study

ID in
BOM Basin Station Name Upstream Area:

km2
Data

Length
Annual

Streamflow: GL

1 112002A Johnstone River Fisher Creek at Nerada 16.2 768 37.3
2 116010A Herbert River Blencoe Creek at Blencoe Falls 223.7 648 128.6
3 116011A Herbert River Millstream River at Ravenshoe 90.1 648 59.4
4 116013A Herbert River Millstream river at Archer Creek 309.3 636 178.4
5 116014A Herbert River Wild River at Silver Valley 587.6 636 173.6
6 136202D Burnett River Barambah Creek at Litzows 646.6 600 51.1
7 143009A Brisbane River Brisbane River at Gregors Creek 3875.5 624 276.0
8 145101D Logan-Albert Rivers Albert River at Lumeah Number 2 165.9 720 47.7
9 146010A South Coast Coomera River at Army Camp 96.6 624 37.1

10 223202 Mitchell-Thomson Rivers Tambo River at Swifts Creek 899.3 768 76.6
11 224206 Mitchell-Thomson Rivers Wonnangatta River at Crooked River 1099.5 648 305.7

12 231213 Werribee River Lerderderg River at Sardine Creek O’brien
Crossing 152.1 660 25.5

13 235205 Otway Coast Arkins Creek West Branch at Wyelangta 4.5 672 4.1
14 238208 Glenelg River Jimmy Creek at Jimmy Creek 23.3 768 3.3
15 401203 Upper Murray Mitta Mitta River at Hinnomunjie 1518.8 720 422.1
16 401210 Upper Murray Snowy Creek at Below Granite Flat 415.7 732 192.6
17 401212 Upper Murray Nariel Creek at Upper Nariel 251.6 720 131.8
18 401216 Upper Murray Big River at Jokers Creek 356.8 768 227.8
19 403209A Ovens River Reedy Creek at Wangaratta North 5505.8 768 607.5
20 403213A Ovens River Fifteen Mile Creek at Greta South 230.9 672 55.6
21 403214 Ovens River Happy Valley Creek at Rosewhite 138 636 24.1
22 403221 Ovens River Reedy Creek at Woolshed 205.5 600 33.8
23 404207 Broken River Holland Creek at Kelfeera 448 648 80.4
24 405218 Goulburn Jamieson River at Gerrang Bridge 364.2 660 205.9
25 406208 Campaspe River Campaspe River at Ashborne 37.6 768 7.1
26 407214 Loddon River Creswick Creek at Clunes 299.9 768 23.7
27 408200 Avoca River Avoca River at Coonooer 2677.3 597 19.2
28 410705 Murrumbidgee River Molonglo River at Burbong 508.6 768 42.7
29 410730 Murrumbidgee River Cotter River at Gingera 130 612 42.5
30 410731 Murrumbidgee River Gudgenby River at Tennent 671.6 600 57.0
31 415207 Wimmera Wimmera River at Eversley 304.5 612 17.0

32 422202B Barwon-Condamine-
Culgoa Dogwood Creek at Gilweir 2881.5 768 79.9
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Table A1. Cont.

ID in This
Study

ID in
BOM Basin Station Name Upstream Area:

km2
Data

Length
Annual

Streamflow: GL

33 422306A Barwon-Condamine-
Culgoa Swan Creek at Swanfels 82.6 768 10.4

34 604053 Kent River Kent River at Styx Junction 1786 696 75.8
35 613146 Murray River (WA) Clarke Brook at Hillview Farm 18.7 636 4.4
36 614044 Murray River (WA) Yarragil Brook at Yarragil Formation 80 720 2.9
37 925001A Wenlock River Wenlock river at Moreton 3290.3 672 1437.5

References
1. Nguyen, Q.H.; Tran, V.N. Temporal Changes in Water and Sediment Discharges: Impacts of Climate Change and Human

Activities in the Red River Basin (1958–2021) with Projections up to 2100. Water 2024, 16, 1155. [CrossRef]
2. Jia, L.; Niu, Z.; Zhang, R.; Ma, Y. Sensitivity of Runoff to Climatic Factors and the Attribution of Runoff Variation in the Upper

Shule River, North-West China. Water 2024, 16, 1272. [CrossRef]
3. Xu, H.; Liu, L.; Wang, Y.; Wang, S.; Hao, Y.; Ma, J.; Jiang, T. Assessment of climate change impact and difference on the river

runoff in four basins in China under 1.5 and 2.0 ◦C global warming. Hydrol. Earth Syst. Sci. 2019, 23, 4219–4231. [CrossRef]
4. Zou, L.; Zhou, T. Near future (2016–40) summer precipitation changes over China as projected by a regional climate model (RCM)

under the RCP8.5 emissions scenario: Comparison between RCM downscaling and the driving GCM. Adv. Atmos. Sci. 2013, 30,
806–818. [CrossRef]

5. Piao, S.L.; Ciais, P.; Huang, Y.; Shen, Z.H.; Peng, S.S.; Li, J.S.; Zhou, L.P.; Liu, H.Y.; Ma, Y.C.; Ding, Y.H.; et al. The impacts of
climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [CrossRef] [PubMed]

6. Larraz, B.; García-Rubio, N.; Gámez, M.; Sauvage, S.; Cakir, R.; Raimonet, M.; Pérez, J.M.S. Socio-Economic Indicators for Water
Management in the South-West Europe Territory: Sectorial Water Productivity and Intensity in Employment. Water 2024, 16, 959.
[CrossRef]

7. Haj-Amor, Z.; Acharjee, T.K.; Dhaouadi, L.; Bouri, S. Impacts of climate change on irrigation water requirement of date palms
under future salinity trend in coastal aquifer of Tunisian oasis. Agric. Water Manag. 2020, 228, 105843. [CrossRef]

8. Shukla, P.R.; Skeg, J.; Buendia, E.C.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; Van
Diemen, S.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable
Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019.

9. Bărbulescu, A.; Zhen, L. Forecasting the River Water Discharge by Artificial Intelligence Methods. Water 2024, 16, 1248. [CrossRef]
10. Chu, H.; Wei, J.; Wu, W. Streamflow prediction using LASSO-FCM-DBN approach based on hydro-meteorological condition

classification. J. Hydrol. 2020, 580, 124253. [CrossRef]
11. Xie, S.; Huang, Y.F.; Li, T.J.; Liu, C.Y.; Wang, J.H. Mid-long term runoff prediction based on a Lasso and SVR hybrid method.

J. Basic Sci. Eng. 2018, 26, 709–722.
12. Feng, Z.-K.; Niu, W.-J.; Tang, Z.-Y.; Jiang, Z.-Q.; Xu, Y.; Liu, Y.; Zhang, H.-R. Monthly runoff time series prediction by variational

mode decomposition and support vector machine based on quantum-behaved particle swarm optimization. J. Hydrol. 2020,
583, 124627. [CrossRef]

13. Sunday, R.; Masih, I.; Werner, M.; van der Zaag, P. Streamflow forecasting for operational water management in the Incomati
River Basin, Southern Africa. Phys. Chem. Earth Parts A/B/C 2014, 72, 1–12. [CrossRef]

14. Shamir, E. The value and skill of seasonal forecasts for water resources management in the Upper Santa Cruz River basin,
southern Arizona. J. Arid. Environ. 2017, 137, 35–45. [CrossRef]

15. Zhao, H.; Li, H.; Xuan, Y.; Bao, S.; Cidan, Y.; Liu, Y.; Li, C.; Yao, M. Investigating the critical influencing factors of snowmelt runoff
and development of a mid-long term snowmelt runoff forecasting. J. Geogr. Sci. 2023, 33, 1313–1333. [CrossRef]

16. Liang, Z.; Li, Y.; Hu, Y.; Li, B.; Wang, J. A data-driven SVR model for long-term runoff prediction and uncertainty analysis based
on the Bayesian framework. Theor. Appl. Clim. 2018, 133, 137–149. [CrossRef]

17. He, C.; Chen, F.; Long, A.; Qian, Y.; Tang, H. Improving the precision of monthly runoff prediction using the combined
non-stationary methods in an oasis irrigation area. Agric. Water Manag. 2023, 279, 108161. [CrossRef]

18. Samsudin, R.; Saad, P.; Shabri, A. River flow time series using least squares support vector machines. Hydrol. Earth Syst. Sci. 2011,
15, 1835–1852. [CrossRef]

19. Bennett, J.C.; Wang, Q.J.; Li, M.; Robertson, D.E.; Schepen, A. Reliable long-range ensemble streamflow forecasts: Combining
calibrated climate forecasts with a conceptual runoff model and a staged error model. Water Resour. Res. 2016, 52, 8238–8259.
[CrossRef]

20. Crochemore, L.; Ramos, M.-H.; Pappenberger, F. Bias correcting precipitation forecasts to improve the skill of seasonal streamflow
forecasts. Hydrol. Earth Syst. Sci. 2016, 20, 3601–3618. [CrossRef]

21. Jain, A.; Kumar, A.M. Hybrid neural network models for hydrologic time series forecasting. Appl. Soft Comput. 2007, 7, 585–592.
[CrossRef]

22. Firat, M.; Turan, M.E. Monthly river flow forecasting by an adaptive neuro-fuzzy inference system. Water Environ. J. 2010, 24,
116–125. [CrossRef]

https://doi.org/10.3390/w16081155
https://doi.org/10.3390/w16091272
https://doi.org/10.5194/hess-23-4219-2019
https://doi.org/10.1007/s00376-013-2209-x
https://doi.org/10.1038/nature09364
https://www.ncbi.nlm.nih.gov/pubmed/20811450
https://doi.org/10.3390/w16070959
https://doi.org/10.1016/j.agwat.2019.105843
https://doi.org/10.3390/w16091248
https://doi.org/10.1016/j.jhydrol.2019.124253
https://doi.org/10.1016/j.jhydrol.2020.124627
https://doi.org/10.1016/j.pce.2014.09.002
https://doi.org/10.1016/j.jaridenv.2016.10.011
https://doi.org/10.1007/s11442-023-2131-9
https://doi.org/10.1007/s00704-017-2186-6
https://doi.org/10.1016/j.agwat.2023.108161
https://doi.org/10.5194/hess-15-1835-2011
https://doi.org/10.1002/2016WR019193
https://doi.org/10.5194/hess-20-3601-2016
https://doi.org/10.1016/j.asoc.2006.03.002
https://doi.org/10.1111/j.1747-6593.2008.00162.x


Water 2024, 16, 1619 19 of 20

23. Le, X.H.; Ho, H.V.; Lee, G.; Jung, S. Application of long short-term memory (LSTM) neural network for flood forecasting. Water
2019, 11, 1387. [CrossRef]

24. Choi, J.; Won, J.; Jang, S.; Kim, S. Learning Enhancement Method of Long Short-Term Memory Network and Its Applicability in
Hydrological Time Series Prediction. Water 2022, 14, 2910. [CrossRef]

25. Mount, N.; Maier, H.; Toth, E.; Elshorbagy, A.; Solomatine, D.; Chang, F.-J.; Abrahart, R. Data-driven modelling approaches for
socio-hydrology: Opportunities and challenges within the Panta Rhei Science Plan. Hydrol. Sci. J. 2016, 61, 1192–1208. [CrossRef]

26. Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process
understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [CrossRef] [PubMed]

27. Xie, S.; Huang, Y.; Li, T.; Chen, B. Performance Comparison of Autoregressive Runoff Prediction Methods for Different River
Basins. J. Basic Sci. Eng. 2018, 26, 723–736.

28. Jónsdóttir, J.F.; Uvo, C.B. Long-term variability in precipitation and streamflow in Iceland and relations to atmospheric circulation.
Int. J. Clim. 2010, 29, 1369–1380. [CrossRef]

29. Omondi, P.; Ogallo, L.A.; Anyah, R.; Muthama, J.M.; Ininda, J. Linkages between global sea surface temperatures and decadal
rainfall variability over Eastern Africa region. Int. J. Clim. 2013, 33, 2082–2104. [CrossRef]

30. Carlson, R.F.; MacCormick, A.J.A.; Watts, D.G. Application of Linear Random Models to Four Annual Streamflow Series. Water
Resour. Res. 1970, 6, 1070–1078. [CrossRef]

31. Valipour, M. Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorol. Appl. 2015, 22, 592–598.
[CrossRef]

32. Valipour, M. Number of Required Observation Data for Rainfall Forecasting According to the Climate Conditions. Am. J. Sci. Res.
2012, 74, 79–86.

33. Valipour, M.; Banihabib, M.E.; Behbahani, S.M.R. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural
network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 2013, 476, 433–441. [CrossRef]

34. Tesfaye, Y.G.; Meerschaert, M.M.; Anderson, P.L. Identification of periodic autoregressive moving average models and their
application to the modeling of river flows. Water Resour. Res. 2006, 42, 87–94. [CrossRef]

35. Wang, W.-C.; Chau, K.-W.; Cheng, C.-T.; Qiu, L. A comparison of performance of several artificial intelligence methods for
forecasting monthly discharge time series. J. Hydrol. 2009, 374, 294–306. [CrossRef]

36. Yaseen, Z.M.; El-Shafie, A.; Jaafar, O.; Afan, H.A.; Sayl, K.N. Artificial intelligence based models for stream-flow forecasting:
2000–2015. J. Hydrol. 2015, 530, 829–844. [CrossRef]

37. Yang, T.; Asanjan, A.A.; Welles, E.; Gao, X.; Sorooshian, S.; Liu, X. Developing reservoir monthly inflow forecasts using artificial
intelligence and climate phenomenon information. Water Resour. Res. 2017, 53, 2786–2812. [CrossRef]

38. Zhang, W.; Hu, J.; Wang, Y.; Wang, L.; Li, L.; Cao, S. Mid-long term runoff forecasting model based on RS-RVM. MATEC Web Conf.
2018, 246, 02039. [CrossRef]

39. Erdal, H.I.; Karakurt, O. Advancing monthly streamflow prediction accuracy of CART models using ensemble learning paradigms.
J. Hydrol. 2013, 477, 119–128. [CrossRef]

40. Kashid, S.; Ghosh, S.; Maity, R. Streamflow prediction using multi-site rainfall obtained from hydroclimatic teleconnection.
J. Hydrol. 2010, 395, 23–38. [CrossRef]

41. Wang, W.-C.; Wang, B.; Chau, K.-W.; Zhao, Y.-W.; Zang, H.-F.; Xu, D.-M. Monthly runoff prediction using gated recurrent unit
neural network based on variational modal decomposition and optimized by whale optimization algorithm. Environ. Earth Sci.
2024, 83, 83. [CrossRef]

42. Zhang, D.; Lin, J.; Peng, Q.; Wang, D.; Yang, T.; Sorooshian, S.; Liu, X.; Zhuang, J. Modeling and simulating of reservoir operation
using the artificial neural network, support vector regression, deep learning algorithm. J. Hydrol. 2018, 565, 720–736. [CrossRef]

43. Xu, D.-M.; Wang, X.; Wang, W.-C.; Chau, K.-W.; Zang, H.-F. Improved monthly runoff time series prediction using the SOA-SVM
model based on ICEEMDAN-WD decomposition. J. Hydroinformatics 2023, 25, 943–970. [CrossRef]

44. Kelly, R.A.; Jakeman, A.J.; Barreteau, O.; Borsuk, M.E.; ElSawah, S.; Hamilton, S.H.; Henriksen, H.J.; Kuikka, S.; Maier,
H.R.; Rizzoli, A.E.; et al. Selecting among five common modelling approaches for integrated environmental assessment and
management. Environ. Model. Softw. 2013, 47, 159–181. [CrossRef]

45. Azmi, M.; Araghinejad, S.; Kholghi, M. Multi model data fusion for hydrological forecasting using k-nearest neighbour method.
Iran. J. Sci. Technol. 2010, 34, 81.

46. See, L.; Abrahart, R.J. Multi-model data fusion for hydrological forecasting. Comput. Geosci. 2001, 27, 987–994. [CrossRef]
47. Liu, Y.; Yin, Z.; Zhang, Y.; Wang, Q. Mid and long-term hydrological classification forecasting model based on KDE-BDA and its

application research. IOP Conf. Ser. Earth Environ. Sci. 2019, 330, 032010. [CrossRef]
48. Wang, Q.J.; Robertson, D.E.; Chiew, F.H.S. A Bayesian joint probability modeling approach for seasonal forecasting of streamflows

at multiple sites. Water Resour. Res. 2009, 45, 641–648. [CrossRef]
49. Maity, R.; Bhagwat, P.P.; Bhatnagar, A. Potential of support vector regression for prediction of monthly streamflow using

endogenous property. Hydrol. Process. 2010, 24, 917–923. [CrossRef]
50. Zhang, G.; Hu, M.Y. Neural network forecasting of the British Pound/US Dollar exchange rate. Omega 1998, 26, 495–506.

[CrossRef]
51. Coulibaly, P.; Bobée, B.; Anctil, F. Improving extreme hydrologic events forecasting using a new criterion for artificial neural

network selection. Hydrol. Process. 2010, 15, 1533–1536. [CrossRef]

https://doi.org/10.3390/w11071387
https://doi.org/10.3390/w14182910
https://doi.org/10.1080/02626667.2016.1159683
https://doi.org/10.1038/s41586-019-0912-1
https://www.ncbi.nlm.nih.gov/pubmed/30760912
https://doi.org/10.1002/joc.1781
https://doi.org/10.1002/joc.3578
https://doi.org/10.1029/WR006i004p01070
https://doi.org/10.1002/met.1491
https://doi.org/10.1016/j.jhydrol.2012.11.017
https://doi.org/10.1029/2004WR003772
https://doi.org/10.1016/j.jhydrol.2009.06.019
https://doi.org/10.1016/j.jhydrol.2015.10.038
https://doi.org/10.1002/2017WR020482
https://doi.org/10.1051/matecconf/201824602039
https://doi.org/10.1016/j.jhydrol.2012.11.015
https://doi.org/10.1016/j.jhydrol.2010.10.004
https://doi.org/10.1007/s12665-023-11377-1
https://doi.org/10.1016/j.jhydrol.2018.08.050
https://doi.org/10.2166/hydro.2023.172
https://doi.org/10.1016/j.envsoft.2013.05.005
https://doi.org/10.1016/S0098-3004(00)00136-9
https://doi.org/10.1088/1755-1315/330/3/032010
https://doi.org/10.1029/2008WR007355
https://doi.org/10.1002/hyp.7535
https://doi.org/10.1016/S0305-0483(98)00003-6
https://doi.org/10.1002/hyp.445


Water 2024, 16, 1619 20 of 20

52. Nilsson, P.; Uvo, C.B.; Berndtsson, R. Monthly runoff simulation: Comparing and combining conceptual and neural network
models. J. Hydrol. 2006, 321, 344–363. [CrossRef]

53. Kirono, D.G.C.; Chiew, F.H.S.; Kent, D.M. Identification of best predictors for forecasting seasonal rainfall and runoff in Australia.
Hydrol. Process. 2010, 24, 1237–1247. [CrossRef]

54. Li, H.; Xie, M.; Jiang, S. Recognition method for mid- to long-term runoff forecasting factors based on global sensitivity analysis
in the Nenjiang River Basin. Hydrol. Process. 2012, 26, 2827–2837. [CrossRef]

55. May, R.; Dandy, G.; Maier, H. Review of input variable selection methods for artificial neural networks. Artif. Neural Netw.-
Methodol. Adv. Biomed. Appl. 2011, 10, 16004.

56. Xie, S.; Wu, W.; Mooser, S.; Wang, Q.; Nathan, R.; Huang, Y. Artificial neural network based hybrid modeling approach for flood
inundation modeling. J. Hydrol. 2021, 592, 125605. [CrossRef]

57. Wu, W.; Dandy, G.C.; Maier, H.R. Protocol for developing ANN models and its application to the assessment of the quality of the
ANN model development process in drinking water quality modelling. Environ. Model. Softw. 2014, 54, 108–127. [CrossRef]

58. Zhao, T.; Schepen, A.; Wang, Q. Ensemble forecasting of sub-seasonal to seasonal streamflow by a Bayesian joint probability
modelling approach. J. Hydrol. 2016, 541, 839–849. [CrossRef]

59. Hejazi, M.I.; Cai, X. Input variable selection for water resources systems using a modified minimum redundancy maximum
relevance (mMRMR) algorithm. Adv. Water Resour. 2009, 32, 582–593. [CrossRef]

60. May, R.J.; Dandy, G.C.; Maier, H.R.; Nixon, J.B. Application of partial mutual information variable selection to ANN forecasting
of water quality in water distribution systems. Environ. Model. Softw. 2008, 23, 1289–1299. [CrossRef]

61. May, R.J.; Maier, H.R.; Dandy, G.C.; Fernando, T.G. Non-linear variable selection for artificial neural networks using partial
mutual information. Environ. Model. Softw. 2008, 23, 1312–1326. [CrossRef]

62. Wang, Q.J.; Shrestha, D.L.; Robertson, D.E.; Pokhrel, P. A log-sinh transformation for data normalization and variance stabilization.
Water Resour. Res. 2012, 48, W05514. [CrossRef]

63. Wang, Q.J.; Zhao, T.; Yang, Q.; Robertson, D. A Seasonally Coherent Calibration (SCC) Model for Postprocessing Numerical
Weather Predictions. Mon. Weather. Rev. 2019, 147, 3633–3647. [CrossRef]

64. Van Gestel, T.; Suykens, J.; De Moor, B.; Vandewalle, J. Automatic relevance determination for least squares support vector
machine regression. IJCNN’01 Int. Jt. Conf. Neural Networks. Proc. 2001, 4, 2416–2421.

65. Van Gestel, T.; Suykens, J.; Baestaens, D.-E.; Lambrechts, A.; Lanckriet, G.; Vandaele, B.; De Moor, B.; Vandewalle, J. Financial
time series prediction using least squares support vector machines within the evidence framework. IEEE Trans. Neural Netw. 2001,
12, 809–821. [CrossRef]

66. Van Gestel, T.; Suykens, J.A.K.; Lanckriet, G.; Lambrechts, A.; De Moor, B.; Vandewalle, J. Bayesian framework for least-squares
support vector machine classifiers, Gaussian processes, and kernel Fisher discriminant analysis. Neural Comput. 2002, 14,
1115–1147. [CrossRef]

67. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
68. Maier, H.R.; Jain, A.; Dandy, G.C.; Sudheer, K. Methods used for the development of neural networks for the prediction of water

resource variables in river systems: Current status and future directions. Environ. Model. Softw. 2010, 25, 891–909. [CrossRef]
69. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw.

Learn. Syst. 2016, 28, 2222–2232. [CrossRef] [PubMed]
70. Kratzert, F.; Klotz, D.; Brenner, C.; Schulz, K.; Herrnegger, M. Rainfall-runoff modelling using Long Short-Term Memory (LSTM)

networks. Hydrol. Earth Syst. Sci. 2018, 22, 6005–6022. [CrossRef]
71. Lin, J.-Y.; Cheng, C.-T.; Chau, K.-W. Using support vector machines for long-term discharge prediction. Hydrol. Sci. J. 2006, 51,

599–612. [CrossRef]
72. Tramblay, Y.; Amoussou, E.; Dorigo, W.; Mahé, G. Flood risk under future climate in data sparse regions: Linking extreme value

models and flood generating processes. J. Hydrol. 2014, 519, 549–558. [CrossRef]
73. Tramblay, Y.; Villarini, G.; Saidi, M.E.; Massari, C.; Stein, L. Classification of flood-generating processes in Africa. Sci. Rep. 2022,

12, 18920. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jhydrol.2005.08.007
https://doi.org/10.1002/hyp.7585
https://doi.org/10.1002/hyp.9211
https://doi.org/10.1016/j.jhydrol.2020.125605
https://doi.org/10.1016/j.envsoft.2013.12.016
https://doi.org/10.1016/j.jhydrol.2016.07.040
https://doi.org/10.1016/j.advwatres.2009.01.009
https://doi.org/10.1016/j.envsoft.2008.03.008
https://doi.org/10.1016/j.envsoft.2008.03.007
https://doi.org/10.1029/2011WR010973
https://doi.org/10.1175/MWR-D-19-0108.1
https://doi.org/10.1109/72.935093
https://doi.org/10.1162/089976602753633411
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.1016/j.envsoft.2010.02.003
https://doi.org/10.1109/TNNLS.2016.2582924
https://www.ncbi.nlm.nih.gov/pubmed/27411231
https://doi.org/10.5194/hess-22-6005-2018
https://doi.org/10.1623/hysj.51.4.599
https://doi.org/10.1016/j.jhydrol.2014.07.052
https://doi.org/10.1038/s41598-022-23725-5
https://www.ncbi.nlm.nih.gov/pubmed/36344815

	Introduction 
	Materials and Methods 
	Predictor Selection and Total Mutual Information 
	The Predictor Selection Method 
	Total Mutual Information 

	Case Study and Data Preparing 
	Forecasting Models and Model Development Process 
	Forecasting Models 
	Model Development Process 

	Experiment Setup 

	Results 
	The Predictive Performance of Five Models without Rainfall in Predictors 
	The Predictive Performance of Five Models with Rainfall as Predictor 

	Discussion 
	The Comparison of Different Models 
	The Relationship between Predictive Performance and TMI, MI 
	RRMSE and MI in E1 
	RMSE, RRMSE and TMI 
	The Linear Regression Equations between RRMSE and MI and TMI 

	The Influence of Rainfall on the Predictive Performance and TMI 
	The Impact Factors of Predictive Performance 

	Conclusions 
	Appendix A
	References

