Antibiotics in Wastewater Treatment Plants in Tangshan: Perspectives on Temporal Variation, Residents’ Use and Ecological Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Reagents and Instruments
2.2. Sample Collection and Processing
2.3. Qualitative and Quantitative Analysis
2.4. Quality Control
2.5. Ecological Risk Assessment Method
2.6. Estimation of Use and Emissions
3. Results and Discussion
3.1. Influent
3.2. Effluent
3.3. Ecological Risk Assessment
3.4. Estimation of Usage and Sewage Discharge
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, S.Z.; Wang, J.L. Single atom cobalt catalyst derived from co-pyrolysis of vitamin B12 and graphitic carbon nitride for PMS activation to degrade emerging pollutants. Appl. Catal. B Environ. 2023, 321, 122051. [Google Scholar] [CrossRef]
- Wang, S.Z.; Xu, L.J.; Wang, J.L. Iron-based dual active site-mediated peroxymonosulfate activation for the degradation of emerging organic pollutants. Environ. Sci. Technol. 2021, 55, 15412–15422. [Google Scholar] [CrossRef]
- Zhuang, S.T.; Wang, J.L. Magnetic COFs as catalyst for Fenton-like degradation of sulfamethazine. Chemosphere 2021, 264, 128561. [Google Scholar] [CrossRef]
- Atif, M.; Sadeeqa, S.; Afzal, H.; Latif, S. Knowledge, Attitude and Practices regarding Antibiotics Use among Parents for their Children. Int. J. Pharm. Sci. Res. 2018, 9, 2140–2148. [Google Scholar] [CrossRef]
- Li, S.N.; Ondon, B.S.; Ho, S.H.; Jiang, J.W.; Li, F.X. Antibiotic resistant bacteria and genes in wastewater treatment plants: From occurrence to treatment strategies. Sci. Total Environ. 2022, 838, 156544. [Google Scholar] [CrossRef] [PubMed]
- Kovalakova, P.; Cizmas, L.; McDonald, T.J.; Marsalek, B.; Feng, M.; Sharma, V.K. Occurrence and Toxicity of Antibiotics in the Aquatic Environment: A Review. Chemosphere 2020, 251, 126351. [Google Scholar] [CrossRef]
- Qi, L.H.; Fan, W.H.; Li, J.; Cui, H.F.; Xu, J.X.; Gu, D.M.; Meng, J.J.; Liu, J. Persistent Nocardia beijingensis infection in a patient with postoperative abscess and misuse of antibiotics in China. Infect. Med. 2023, 2, 343–348. [Google Scholar] [CrossRef]
- Shao, Y.T.; Wang, Y.P.; Yuan, Y.W.; Xie, Y.J. A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Sci. Total Environ. 2021, 798, 149205. [Google Scholar] [CrossRef]
- Luo, X.Z.; Han, S.; Wang, Y.; Du, P.; Li, X.Q.; Thai, P.K. Significant differences in usage of antibiotics in three Chinese cities measured by wastewater-based epidemiology. Water Res. 2024, 254, 121335. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.H.; Li, L.J. Legislation of clinical antibiotic use in China. Lancet Infect. Dis. 2013, 13, 189–191. [Google Scholar] [CrossRef]
- Lenart-Boron, A.; Prajsnar, J.; Guzik, M.; Boron, P.; Chmiel, M. How much of antibiotics can enter surface water with treated wastewater and how it affects the resistance of waterborne bacteria: A case study of the Białka river sewage treatment plant. Environ. Res. 2020, 191, 110037. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.W.; Zeng, S.Y.; Dong, X.; Li, D.; Zhang, Y.; He, M.; Du, P.F. Diverse and abundant antibiotics and antibiotic resistance genes in an urban water system. J. Environ. Manag. 2019, 231, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Perez-Bou, L.; Gonzalez-Martinez, A.; Gonzalez-Lopez, J.; Correa-Galeote, D. Promising bioprocesses for the efficient removal of antibiotics and antibiotic-resistance genes from urban and hospital wastewaters: Potentialities of aerobic granular systems. Environ. Pollut. 2024, 342, 123115. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.Y.; Tian, W.J.; Zhao, J.; Chu, M.L.; Song, T.T. Quinolone antibiotics in WWTPs with activated sludge treatment processes: A review on source, concentration and removal. Process Saf. Environ. 2022, 160, 116–129. [Google Scholar] [CrossRef]
- Yin, S.Y.; Gao, L.; Fan, X.M.; Gao, S.H.; Zhou, X.; Jin, W.B.; He, Z.Q.; Wang, Q.L. Performance of sewage sludge treatment for the removal of antibiotic resistance genes: Status and prospects. Sci. Total Environ. 2024, 907, 167862. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.; Almeida, C.M.M.; Rodrigues, J.A.; Silva, S.; Coelho, M.D.; Martins, A.; Lourinho, R.; Cardoso, E.; Cardoso, V.V.; Benoliel, M.J.; et al. Improving the control of pharmaceutical compounds in activated sludge wastewater treatment plants: Key operating conditions and monitoring parameters. J. Water Process Eng. 2023, 54, 103985. [Google Scholar] [CrossRef]
- Nasir, A.; Saleh, M.; Aminzai, M.T.; Alary, R.; Dizge, N.; Yabalak, E. Adverse effects of veterinary drugs, removal processes and mechanisms: A review. J. Environ. Chem. Eng. 2024, 12, 111880. [Google Scholar] [CrossRef]
- Omar, T.F.T.; Aris, A.Z.; Yusoff, F.M.; Mustafa, S. An improved SPE-LC-MS/MS method for multiclass endocrine disrupting compound determination in tropical estuarine sediments. Talanta 2017, 173, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Samaras, V.G.; Thomaidis, N.S.; Stasinakis, A.S.; Lekkas, T.D. An analytical method for the simultaneous trace determination of acidic pharmaceuticals and phenolic endocrine disrupting chemicals in wastewater and sewage sludge by gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 2011, 399, 2549–2561. [Google Scholar] [CrossRef]
- European Commission Joint Research Centre (EC-JRC). Technical Guidance Document on Risk Assessment in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for Existing Substances, and Directive 98/8/EC of the European Parliament and of the Council Concerning the Placing of Biocidal Products on the Market; Part I–IV, European Chemicals Bureau (ECB), JRC-ISPRA (VA), Italy, April 2003; Part II. EUR; Institute for Health and Consumer Protection: Ispra, Italy, 2003. [Google Scholar]
- Shams, D.F.; Izaz, M.; Khan, W.; Nayab, S.; Tawab, A.; Baig, S.A. Occurrence of selected antibiotics in urban rivers in northwest Pakistan and assessment of ecotoxicological and antimicrobial resistance risks. Chemosphere 2024, 352, 141357. [Google Scholar] [CrossRef]
- Letsinger, S.; Kay, P. Comparison of prioritisation schemes for human pharmaceuticals in the aquatic environment. Environ. Sci. Pollut. Res. 2019, 26, 3479–3491. [Google Scholar] [CrossRef] [PubMed]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-a review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sànchez-Melsió, A.; Borrego, C.M.; Barceló, D.; Balcázar, J.L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.M.; Yan, Q.; Gao, X.; Zhang, Y.X.; Zi, C.F.; Peng, X.Y.; Guo, J.S. Occurrence and Fate of Typical Antibiotics in a Wastewater Treatment Plant in Southwest China. Environ. Sci. 2014, 35, 1817–1823. (In Chinese) [Google Scholar]
- Liu, W.R.; Yang, Y.Y.; Liu, Y.S.; Zhang, L.J.; Zhao, J.L.; Zhang, Q.Q.; Zhang, M.; Zhang, J.N.; Jiang, Y.X.; Ying, G.G. Biocides in wastewater treatment plants: Mass balance analysis and pollution load estimation. J. Hazard. Mater. 2017, 329, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhao, J.L.; Yang, Y.Y.; Jia, Y.W.; Zhang, Q.Q.; Chen, C.E.; Liu, Y.S.; Yang, B.; Xie, L.T.; Ying, G.G. Occurrence, mass loads and risks of bisphenol analogues in the Pearl River Delta region, South China: Urban rainfall runoff as a potential source for receiving rivers. Environ. Pollut. 2020, 263, 114361. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.J.; Yang, B.; Ye, P.; Yang, Y.Y.; Zhao, J.L.; Liu, Y.S.; Xie, L.T.; Ying, G.G. Occurrence, fate and mass loading of benzodiazepines and their transformation products in eleven wastewater treatment plants in Guangdong province, China. Sci. Total Environ. 2021, 755, 142648. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.Y.; Tu, W.X.; Feng, Y.N.; Bai, W.Q.; Xie, Y.R.; Zhang, Q.; Ren, J.H.; Shi, G.Q.; Xiang, N.J.; Meng, L. Risk assessment of public health emergencies concerned in China, December 2023. Dis. Surveill. 2023, 38, 1421–1424. [Google Scholar]
- Zheng, H.S.; Zhang, Y.F.; Li, S.; Feng, X.C.; Wu, Q.L.; Leong, Y.K.; Chang, J.S. Antibiotic sulfadiazine degradation by persulfate oxidation: Intermediates dependence of ecotoxicity and the induction of antibiotic resistance genes. Bioresour. Technol. 2023, 368, 128306. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, G.; Wang, Q.; Wang, X.; Wang, P. Effect of Microwave Heating on Persulfate Activation for Rapid Degradation and Mineralization of p-Nitrophenol. ACS Sustain. Chem. Eng. 2019, 7, 11662–11671. [Google Scholar] [CrossRef]
- Duan, W.; Cui, H.; Jia, X.; Huang, X. Occurrence and ecotoxicity of sulfonamides in the aquatic environment: A review. Sci. Total Environ. 2022, 820, 153178. [Google Scholar] [CrossRef] [PubMed]
- Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 2013, 11, 20–227. [Google Scholar] [CrossRef]
- Xu, L.Y.; Zhang, H.; Xiong, P.; Zhu, Q.Q.; Liao, C.Y.; Jiang, G.B. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ. 2020, 753, 141975. [Google Scholar] [CrossRef] [PubMed]
- Leichtweis, J.; Vieira, Y.; Welter, N.; Silvestri, S.; Dotto, G.L.; Carissimi, E. A review of the occurrence, disposal, determination, toxicity and remediation technologies of the tetracycline antibiotic. Process Saf. Environ. 2022, 160, 25–40. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhang, G.D.; Liu, Y.; Lu, S.Y.; Qin, P.; Guo, X.C.; Bi, B.; Wang, L.; Xi, B.D.; Wu, F.C.; et al. Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China. Environ. Pollut. 2019, 246, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, H.B.; Qu, J.; Qu, L.L.; Wang, S.; Wang, N.; Zheng, X.B.; Zhang, X. Characteristics of Typical Antibiotics in Effluent from Shenyang Sewage Treatment Plant and Its Ecological Risk Assessment. Sci. Technol. Innov. 2023, 468, 87–91. (In Chinese) [Google Scholar]
- Li, Y.; Wang, J.; Lin, C.Y.; Lian, M.S.; He, M.C.; Liu, X.T.; Ouyang, W. Occurrence, removal efficiency, and emission of antibiotics in the sewage treatment plants of a low-urbanized basin in China and their impact on the receiving water. Sci. Total Environ. 2024, 921, 171134. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.T.; Zhao, Z.Y.; Wang, Y.; Qiao, X.J.; Gu, B.C.; Wang, W.Q. Antibiotic Pollution Level and Ecological Risk Assessment of Township Wastewater Treatment Plants. Environ. Sci. 2024. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, D.; Cao, Y.X.; Yu, X.D.; Hui, Y.M.; Li, W.C.; Wang, D.H. Seasonal changes and ecological risk assessment of pharmaceutical and personal care products in the effluents of wastewater treatment plants in Beijing. Acta Sci. Circumstantiae 2021, 41, 2922–2932. [Google Scholar] [CrossRef]
- Lan, Z.H.; Zhang, Y.P.; Liang, R.L.; Wang, Z.Q.; Sun, J.; Lu, X.W.; He, Y.; Wang, Y.J. Comprehensive comparison of integrated fixed-film activated sludge (IFAS) and AAO activated sludge methods: Influence of different operational parameters. Chemosphere 2024, 357, 142068. [Google Scholar] [CrossRef]
- Pu, M.; Ailijiang, N.; Mamat, A.W.; Chang, J.L.; Zhang, Q.F.; Liu, Y.F.; Li, N.X. Occurrence of antibiotics in the different biological treatment processes, reclaimed wastewater treatment plants and effluent-irrigated soils. J. Environ. Chem. Eng. 2022, 10, 107715. [Google Scholar] [CrossRef]
- Wang, R.M.; Ji, M.; Zhai, H.Y.; Guo, Y.J.; Liu, Y. November Occurrence of antibiotics and antibiotic resistance genes in WWTP effluent-receiving water bodies and reclaimed wastewater treatment plants. Sci. Total Environ. 2021, 796, 148919. [Google Scholar] [CrossRef]
- Li, W.H.; Shi, Y.L.; Gao, L.H.; Liu, J.M.; Cai, Y.Q. Occurrence, distribution and potential affecting factors of antibiotics in sewage sludge of wastewater treatment plants in China. Sci. Total Environ. 2013, 445–446, 306–313. [Google Scholar] [CrossRef]
- Liu, Z.G.; Zhang, Y.; Zhou, W.; Wang, W.; Dai, X.H. Comparison of Nitrogen and Phosphorus Removal between Two Typical Processes under Low Temperature in a Full-Scale Municipal Wastewater Treatment Plant. Water 2022, 14, 3874. [Google Scholar] [CrossRef]
- Zhang, H.; Du, M.M.; Jiang, H.Y.; Zhang, D.D.; Lin, L.F.; Yea, H.; Zhang, X. Occurrence, seasonal variation and removal efficiency of antibiotics and their metabolites in wastewater treatment plants, Jiulongjiang River Basin, South China. Environ. Sci. Process. Impacts 2015, 17, 225. [Google Scholar] [CrossRef]
- Liu, J.; Lu, J.J.; Tong, Y.B.; Li, C. Occurrence and elimination of antibiotics in three sewage treatment plants with different treatment technologies in Urumqi and Shihezi, Xinjiang. Water Sci. Technol. 2017, 75, 1474–1484. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.H.; Cao, Y.; Li, Q.; Meng, T.; Zhang, S. Pollution Characteristics and Ecological Risk Assessment of Typical Antibiotics in Environmental Media in China. Environ. Sci. 2023, 44, 6894–6908. [Google Scholar] [CrossRef] [PubMed]
- Debnath, S.K.; Debnath, M.; Srivastava, R. Opportunistic etiological agents causing lung infections: Emerging need to transform lung-targeted delivery. Heliyon 2022, 8, e12620. [Google Scholar] [CrossRef] [PubMed]
- Belizário, J.; Garay-Malpartida, M.; Faintuch, J. Lung microbiome and origins of the respiratory diseases. Curr. Res. Immunol. 2023, 4, 100065. [Google Scholar] [CrossRef]
- Bebear, C.; Dupon, M.; Renaudin, H.; Debarbeyrac, B. Potential Improvements in Therapeutic Options for Mycoplasmal Respiratory-infections. Clin. Infect. Dis. 1993, 17, S202–S207. [Google Scholar] [CrossRef]
- Tsai, T.A.; Tsai, C.K.; Kuo, K.C.; Yu, H.R. Rational stepwise approach for Mycoplasma pneumoniae pneumonia in children. J. Microbiol. Immunol. 2021, 54, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Rafei, R.; Al Iaali, R.; Osman, M.; Dabboussi, F.; Hamze, M. A global snapshot on the prevalent macrolide-resistant emm types of Group A Streptococcus worldwide, their phenotypes and their resistance marker genotypes during the last two decades: A systematic review. Infect. Genet. Evol. 2022, 99, 105258. [Google Scholar] [CrossRef] [PubMed]
Target Antibiotic | PNEC |
---|---|
Roxithromycin | 1.5 |
Tetracycline | 1.0 |
Aureomycin | 1.0 |
Oxytetracycline | 1.0 |
Ciprofloxacin | 20,000 |
Norfloxacin | 23,000 |
Ofloxacin | 22,000 |
Sulfadiazine | 15 |
Sulfamethoxazole | 6.4 |
Urban | Suburban | ||||||||
---|---|---|---|---|---|---|---|---|---|
Antibiotics | Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | |
Roxithromycin | Mean | 170.40 | 46.23 | 78.19 | 353.33 | 148.20 | 34.14 | 62.42 | 270.22 |
SD | 26.78 | 15.52 | 3.77 | 27.34 | 31.39 | 1.78 | 12.55 | 38.40 | |
Tetracycline | Mean | 76.83 | 18.03 | 14.72 | 104.23 | 61.19 | 14.17 | 12.88 | 71.22 |
SD | 9.66 | 4.29 | 3.89 | 43.13 | 12.34 | 1.75 | 2.49 | 17.70 | |
Aureomycin | Mean | 50.33 | 52.98 | 18.54 | 96.85 | 28.21 | 49.68 | 16.12 | 85.15 |
SD | 13.67 | 21.24 | 2.91 | 51.27 | 21.58 | 10.48 | 3.42 | 63.47 | |
Oxytetracycline | Mean | 40.41 | 44.87 | 36.22 | 256.70 | 42.30 | 36.62 | 62.33 | 101.67 |
SD | 15.46 | 1.56 | 6.86 | 17.96 | 1.41 | 7.79 | 33.01 | 10.80 | |
Ciprofloxacin | Mean | 99.83 | 123.96 | 79.68 | 451.79 | 86.73 | 107.31 | 68.25 | 316.84 |
SD | 15.32 | 22.69 | 12.52 | 19.76 | 18.37 | 31.82 | 13.77 | 9.56 | |
Norfloxacin | Mean | 122.10 | 135.17 | 97.50 | 458.49 | 105.76 | 116.56 | 84.89 | 321.42 |
SD | 17.91 | 17.68 | 15.32 | 20.05 | 22.41 | 24.70 | 18.04 | 9.87 | |
Ofloxacin | Mean | 125.37 | 47.87 | 122.62 | 491.53 | 106.53 | 87.72 | 89.93 | 422.56 |
SD | 64.02 | 1.18 | 21.57 | 14.12 | 53.25 | 2.19 | 4.76 | 93.96 | |
Sulfadiazine | Mean | 96.48 | 133.34 | 87.67 | 145.70 | 117.63 | 103.14 | 142.60 | 110.25 |
SD | 21.47 | 15.57 | 19.43 | 17.01 | 11.37 | 20.24 | 42.62 | 20.06 | |
Sulfamethoxazole | Mean | 171.60 | 235.80 | 140.55 | 275.04 | 213.65 | 121.98 | 164.26 | 217.34 |
SD | 36.39 | 27.53 | 49.70 | 32.12 | 25.01 | 16.23 | 53.80 | 46.54 |
Urban | Suburban | ||||||||
---|---|---|---|---|---|---|---|---|---|
Antibiotics | Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | |
Roxithromycin | Mean | 107.23 | 22.82 | 35.68 | 322.58 | 104.93 | 15.80 | 24.75 | 248.95 |
SD | 3.17 | 9.78 | 6.62 | 15.06 | 13.54 | 2.64 | 1.91 | 38.02 | |
Tetracycline | Mean | 9.53 | ND | 1.85 | 93.60 | 7.51 | 2.98 | ND | 64.32 |
SD | 1.60 | ND | 2.62 | 39.69 | 4.22 | 0.87 | ND | 15.72 | |
Aureomycin | Mean | 5.63 | 6.13 | ND | 89.74 | 6.11 | 5.27 | ND | 78.82 |
SD | 0.95 | 0.71 | ND | 50.21 | 3.07 | 1.13 | ND | 60.22 | |
Oxytetracycline | Mean | 5.48 | 5.77 | 2.36 | 234.56 | 6.50 | 4.90 | 9.12 | 91.94 |
SD | 0.60 | 0.43 | 3.34 | 14.46 | 2.19 | 0.90 | 5.49 | 10.61 | |
Ciprofloxacin | Mean | 26.28 | 16.16 | 14.65 | 418.72 | 20.27 | 31.22 | 21.11 | 297.48 |
SD | 4.35 | 1.85 | 4.17 | 18.31 | 1.09 | 3.80 | 9.56 | 2.77 | |
Norfloxacin | Mean | 29.71 | 20.38 | 21.59 | 424.86 | 27.51 | 33.13 | 25.88 | 295.44 |
SD | 3.51 | 1.07 | 3.16 | 18.58 | 4.25 | 8.25 | 10.14 | 8.82 | |
Ofloxacin | Mean | 29.10 | 9.03 | 20.78 | 442.08 | 34.32 | 26.27 | 28.48 | 394.54 |
SD | 12.45 | 0.85 | 4.22 | 13.32 | 20.34 | 2.49 | 3.28 | 81.54 | |
Sulfadiazine | Mean | 34.22 | 12.23 | 139.90 | 135.16 | 42.88 | 133.59 | 28.73 | 101.28 |
SD | 7.38 | 0.75 | 1.70 | 15.78 | 5.16 | 14.88 | 12.17 | 17.56 | |
Sulfamethoxazole | Mean | 37.18 | 19.60 | 21.13 | 256.67 | 52.20 | 145.73 | 39.51 | 201.87 |
SD | 7.90 | 4.53 | 14.20 | 34.42 | 6.84 | 24.76 | 6.86 | 44.41 |
Urban | Suburban | |||||||
---|---|---|---|---|---|---|---|---|
Antibiotics | Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter |
Roxithromycin | 63.11 | 17.12 | 28.96 | 130.86 | 5.49 | 1.26 | 2.31 | 10.01 |
Tetracycline | 28.46 | 6.68 | 5.45 | 38.60 | 2.27 | 0.52 | 0.48 | 2.64 |
Aureomycin | 18.64 | 19.62 | 6.87 | 35.87 | 1.04 | 1.84 | 0.60 | 3.15 |
Oxytetracycline | 14.96 | 16.62 | 13.41 | 95.07 | 1.57 | 1.36 | 2.31 | 3.77 |
Ciprofloxacin | 36.98 | 45.91 | 29.51 | 167.30 | 3.21 | 3.97 | 2.53 | 11.73 |
Norfloxacin | 45.19 | 50.06 | 36.11 | 169.81 | 3.92 | 4.32 | 3.14 | 11.90 |
Ofloxacin | 46.43 | 17.73 | 45.41 | 182.05 | 3.95 | 3.25 | 3.26 | 15.65 |
Sulfadiazine | 35.73 | 49.39 | 32.47 | 53.96 | 4.36 | 3.82 | 5.28 | 4.08 |
Sulfamethoxazole | 63.56 | 87.33 | 52.06 | 101.87 | 7.91 | 4.52 | 6.08 | 8.05 |
Total | 353.06 | 310.46 | 250.25 | 975.40 | 33.71 | 24.86 | 25.99 | 70.99 |
Urban | Suburban | |||||||
---|---|---|---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | |
Use | ||||||||
Roxithromycin | 5.87 | 1.49 | 2.90 | 12.54 | 0.13 | 0.03 | 0.06 | 0.23 |
Tetracycline | 2.93 | 0.60 | 0.49 | 3.25 | 0.05 | 0.01 | 0.01 | 0.05 |
Aureomycin | 2.01 | 1.66 | 0.64 | 4.20 | 0.03 | 0.04 | 0.01 | 0.09 |
Oxytetracycline | 1.28 | 1.66 | 1.23 | 9.60 | 0.04 | 0.03 | 0.06 | 0.09 |
Ciprofloxacin | 3.45 | 4.23 | 2.75 | 16.23 | 0.08 | 0.10 | 0.06 | 0.26 |
Norfloxacin | 4.22 | 4.71 | 3.36 | 16.48 | 0.09 | 0.10 | 0.08 | 0.26 |
Ofloxacin | 3.75 | 1.73 | 4.20 | 17.76 | 0.07 | 0.07 | 0.07 | 0.32 |
Sulfadiazine | 3.24 | 5.07 | 2.95 | 5.54 | 0.09 | 0.09 | 0.10 | 0.10 |
Sulfamethoxazole | 5.79 | 8.96 | 5.77 | 10.45 | 0.17 | 0.09 | 0.12 | 0.19 |
Emissions | ||||||||
Roxithromycin | 3.87 | 0.71 | 1.39 | 11.58 | 0.09 | 0.01 | 0.02 | 0.22 |
Tetracycline | 0.33 | 0.00 | 0.03 | 2.90 | 0.01 | 0.00 | 0.00 | 0.05 |
Aureomycin | 0.22 | 0.21 | 0.00 | 3.92 | 0.01 | 0.00 | 0.00 | 0.08 |
Oxytetracycline | 0.19 | 0.20 | 0.04 | 8.75 | 0.01 | 0.00 | 0.01 | 0.08 |
Ciprofloxacin | 0.90 | 0.57 | 0.48 | 15.05 | 0.02 | 0.03 | 0.02 | 0.24 |
Norfloxacin | 1.04 | 0.73 | 0.75 | 15.27 | 0.02 | 0.03 | 0.02 | 0.24 |
Ofloxacin | 0.90 | 0.32 | 0.70 | 15.96 | 0.02 | 0.02 | 0.02 | 0.30 |
Sulfadiazine | 1.15 | 0.44 | 0.49 | 5.14 | 0.03 | 0.11 | 0.02 | 0.09 |
Sulfamethoxazole | 1.26 | 0.66 | 0.95 | 9.81 | 0.04 | 0.11 | 0.03 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Hu, J.; Wang, P.; Han, G.; Jia, Z. Antibiotics in Wastewater Treatment Plants in Tangshan: Perspectives on Temporal Variation, Residents’ Use and Ecological Risk Assessment. Water 2024, 16, 1627. https://doi.org/10.3390/w16111627
Dong Z, Hu J, Wang P, Han G, Jia Z. Antibiotics in Wastewater Treatment Plants in Tangshan: Perspectives on Temporal Variation, Residents’ Use and Ecological Risk Assessment. Water. 2024; 16(11):1627. https://doi.org/10.3390/w16111627
Chicago/Turabian StyleDong, Zhuo, Jian Hu, Pengjie Wang, Gengtao Han, and Zheng Jia. 2024. "Antibiotics in Wastewater Treatment Plants in Tangshan: Perspectives on Temporal Variation, Residents’ Use and Ecological Risk Assessment" Water 16, no. 11: 1627. https://doi.org/10.3390/w16111627
APA StyleDong, Z., Hu, J., Wang, P., Han, G., & Jia, Z. (2024). Antibiotics in Wastewater Treatment Plants in Tangshan: Perspectives on Temporal Variation, Residents’ Use and Ecological Risk Assessment. Water, 16(11), 1627. https://doi.org/10.3390/w16111627