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Abstract: In 2023, this study monitored nine types of antibiotics in the influent and effluent of
wastewater treatment plants (WWTPs) in the urban and suburban areas of Tangshan. The total
antibiotics concentration detected in influent WWTPs was highest in winter, followed by spring,
summer, and autumn. The antibiotics concentration in influent and effluent urban WWTPs was
higher than that in the suburban WWTPs in spring, summer, and winter, while the trend was reversed
in autumn. Roxithromycin and oxytetracycline had a risk quotient (RQ) value of ≥0.1 in the effluent
of WWTPs in winter, indicating that they are medium-risk antibiotics that pose a risk to the aquatic
ecosystem after discharge. In the study area, the per capita pollution load of antibiotics was highest
in spring, summer, and autumn for sulfamethoxazole, while it was highest in winter for ofloxacin. In
the urban area, the use of roxithromycin, sulfamethoxazole, sulfamethoxazole, and ofloxacin was
highest in spring, summer, autumn, and winter, respectively, while in suburban areas, the use of
sulfamethoxazole, norfloxacin, sulfamethoxazole, and ofloxacin was highest during the same period.
The use of antibiotics in the urban area was one order of magnitude higher than that in suburban
areas, indicating a possible overuse of antibiotics in urban environments.

Keywords: antibiotics; wastewater treatment plant; temporal variation; use; ecological risk

1. Introduction

Antibiotics play a crucial role in human health and are usually prioritized in drug
management [1–3]. However, due to non-compliance with the principles of using antibi-
otics, there have been cases of inappropriate use and other forms of antibiotic abuse [4–6].
Currently, the misuse of antibiotics is a pressing public health and ecological security issue
across various sectors, including medical health, food hygiene, livestock and poultry breed-
ing, and ecological governance, not only in China but also globally [7–9]. China produces
about 210,000 tons of antibiotic raw materials every year. Excluding the export of raw
materials (about 30,000 tons), the remaining 180,000 tons are used domestically (including
medical and agricultural use), with an annual per capita consumption of about 138 g [10].
As veterinary antibiotics, tetracycline antibiotics are the most commonly used, accounting
for 40.5% of the total, followed by sulfonamides and macrolides. Quinolones are highly
used in hospitals due to the high incidence of respiratory tract infections and mycoplasmal
pneumonia in spring, autumn, and winter. Therefore, it is expected that antibiotics are
widely present in urban sewage and agricultural wastewater, entering the water ecosystem
through various pathways [11–13]. Due to the low metabolic rate of biological organisms
against antibiotics, a large amount of antibiotics is excreted with urine and feces, collected
by sewage networks, and entered WWTPs.
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At present, the main purpose of WWTPs is to remove suspended solids, COD (chem-
ical oxygen demand), nitrogen, phosphorus, and other substances in sewage, but they
generally do not have the ability to efficiently remove antibiotics, resulting in high an-
tibiotic concentrations in effluent wastewater [13,14]. It should be noted that sewage
treatment technologies like advanced chemical oxidation, chemical precipitation, ultrafil-
tration, nanofiltration, and ion exchange are not effective at removing antibiotics and may
be better suited for industrial wastewater treatment. In contrast, suburban wastewater
treatment primarily relies on biological processes, with advanced oxidation and other
sewage treatment techniques being less common, resulting in a lower capacity for treating
antibiotics in wastewater. The discharge of antibiotics from WWTPs into natural water
bodies can lead to a decrease in the self-purification capacity and pollution load of the
receiving water bodies, affecting the ecological health of river water environments [15].
Although the mass concentration of antibiotics in surface water is generally between ng/L
and mg/L, they are sufficient to have harmful effects on exposed ecosystems or organ-
isms [16]. It is necessary to conduct an assessment of their discharge volume and ecological
risks [17]. In order to better understand the temporal variation in antibiotics in WWTPs
and their removal rate and potential ecological risks, this study investigated the following:
(1) the temporal variation in four types of nine antibiotics in influent and effluent urban
and suburban WWTPs; (2) estimating the usage and annual discharge of antibiotics in the
urban and suburban environment based on per capita pollution load.

2. Materials and Methods
2.1. Experimental Reagents and Instruments

Ultra-high purity compounds (>99%) of nine antibiotics, including roxithromycin
(macrolides), ofloxacin (quinolones), norfloxacin(quinolones), ciprofloxacin (quinolones),
tetracycline (tetracyclines), chlortetracycline (tetracyclines), oxytetracycline (tetracy-
clines), sulfadiazine(sulfonamides) and sulfamethoxazole (sulfonamides), were bought
from Sigma-Aldrich (St. Louis, MO, USA). The standard concentrations of each antibiotic
were 1000 µg/mL, with a purity of >99% (Tianjin Alta Technology Co., Ltd., Tianjin,
China). Acetonitrile, methanol, and formic acid were chromatographically pure (Thermo
Fisher Corporation, MA, USA), and anhydrous sodium sulfate, sodium chloride, sodium
dihydrogen phosphate dodecahydrate, disodium acetate tetraacetate, etc., were all chem-
ically pure (Sinopharm Chemical Reagent Co., Ltd., Beijing, China). All solutions were
prepared using Milli-Q water.

2.2. Sample Collection and Processing

Seasonal sampling campaigns were conducted in 2023 [January to March (winter),
April to May (spring), July to August (summer), and October (autumn)] in Tangshan.
Samples were collected from influent and effluent WWTPs in the urban (n = 2) and suburban
areas (n = 2). The flow scheme of WWTPs is shown in Figure 1. To reduce experimental
errors, instantaneous water samples were collected every 2 h for a total of 4 times within
1 day. The collected water samples were mixed evenly and stored in brown glass bottles to
avoid light. They were transported back to the laboratory in an ice bath within 24 h. After
filtration with a 0.45 µm glass fiber membrane, 500 mL was accurately measured, 0.25 g
Na2EDTA was added, and the pH was adjusted to about 3.0 with H3PO4. The samples
were stored at 4 ◦C, and solid phase extraction was completed within 48 h.
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Figure 1. Schematic diagram of wastewater treatment plants (WWTPs) in Tangshan. Figure 1. Schematic diagram of wastewater treatment plants (WWTPs) in Tangshan.

2.3. Qualitative and Quantitative Analysis

Take 1 L of the water sample and use a vacuum filtration device to pass it through a
0.45 µm filter membrane. Use a fully automated solid phase extraction instrument and an
HLB extraction column to complete the preliminary extraction and concentration. First,
activate the extraction column with 10 mL of methanol and 10 mL of ultrapure water in
sequence; then extract 1 L of water sample at a rate of 10 mL/min; after completion, use
high-purity nitrogen to dry the extraction column for 20 min; finally, wash the extraction
column with 5 mL of dichloromethane, 5 mL of ethyl acetate, 5 mL of n-hexane, and 5 mL
of methanol in sequence, repeating twice. After extraction, use a rotary evaporator to
concentrate the eluent to about 1 mL and transfer it to a test tube; then, use a nitrogen-
blowing instrument to blow it nearly dry and dilute it to 1 mL with methanol. The
diluted sample passes through a 0.22 µm organic filter membrane and is transferred to a
liquid phase vial for testing. The pretreated samples were analyzed using UPLC-MS/MS
(QTRAPTM5500 LC/MS/MS system, SCIEX, MA, USA), employing a Waters Cortecs T3
column (2.1 mm × 100 mm, 2.7 µm). The injection volume for liquid chromatography was
2 µL, with a flow rate of 0.3 mL·min−1 and a column temperature of 40 ◦C. The mobile
phase was a gradient elution of 0.1% formic acid aqueous solution and acetonitrile. The
qualitative and quantitative analysis of antibiotics was carried out using the multiple
reaction detection scanning mode (MRM) and electrospray ionization mass spectrometry
(ESI/MS) positive and negative ion modes [18,19].

2.4. Quality Control

Using methanol as the solvent, the standard stock solution was diluted to 0.1, 2, 0.5, 1, 2,
5, 10, 20, 50, 100, and 200 µg/L. Linear regression was performed between the concentration
of the antimicrobial drug and the corresponding peak area to draw a standard curve for
the antibiotics. The standard curve had a good linear correlation within the corresponding
linear range (correlation coefficient R2 > 0.99).

2.5. Ecological Risk Assessment Method

The ecological risk assessment is a scientific evaluation of the potential damage of toxic
and harmful pollutants to the ecological environment through quantitative characterization
methods [20]. In this study, the risk quotient (RQ) was used to evaluate the ecological risk
of antibiotics [20,21]. The calculation method of RQ is shown in Equation (1):

RQ = MEC(PEC)/PNEC (1)

In the formula, MEC is the measured environmental concentration of antibiotics, PEC
is the predicted concentration of antibiotics, and PNEC is the predicted no-effect concentra-
tion of antibiotics. In this study, the measured concentration of antibiotics, MEC, was used
to calculate their risk quotient, and the predicted no-effect concentration (PNEC) was deter-
mined using the evaluation factor method. The chronic toxicity data (ChV) of antibiotics
came from the Ecological Structure Activity Relationships Program (ECOSAR) predictive
analyzer developed by the US Environmental Protection Agency. In this study, the ChV
values for roxithromycin, tetracycline, chlortetracycline, oxytetracycline, ciprofloxacin,
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norfloxacin, ofloxacin, sulfadiazine, and sulfamethoxazole were 0.6, 20, 20, 20, 116, 114,
116, 0.101, and 0.068 mg/L, respectively. An extrapolation factor of 100 was selected to
determine the PNEC of each antibiotic [22]. The PNEC values of each antibiotic are shown
in Table 1. When RQ < 0.1, it is low risk; when 0.1 ≤ RQ < 1, it is medium risk; and when
RQ ≥ 1, it is high risk [23,24].

Table 1. PNEC (µg/L) of the target antibiotic in effluents from wastewater treatment plants (WWTPs).

Target Antibiotic PNEC

Roxithromycin 1.5
Tetracycline 1.0
Aureomycin 1.0

Oxytetracycline 1.0
Ciprofloxacin 20,000
Norfloxacin 23,000
Ofloxacin 22,000

Sulfadiazine 15
Sulfamethoxazole 6.4

2.6. Estimation of Use and Emissions

The daily mass load of antibiotics per capita in the influent of WWTPs [µg/(d·person)]
can reflect the use of antibiotics in the service area of WWTPs, as shown in Equation (2) [25]:

Linfluent = (Q × Cinfluent)/Ptotal (2)

In the formula, Q is the daily sewage flow of WWTP (m3/day) (Table S1), Cinfluent
is the average concentration of antibiotics detected in the influent of WWTP (ng/L), and
Ptotal is the number of residents in the service area of WWTPs (Table S1). Ptotal in the urban
and suburban areas of Tangshan were, respectively, provided by the Tangshan Municipal
Design Institute. The usage amount of antibiotics (U, kg/year) and the mass load of
antibiotics in the effluent of WWTP (M, g/year) are shown in Equations (3) and (4) [26–28]:

U = Linfluent × Ptotal × 365× 10−9 (3)

M = Ceffluent × Q × 365× 10−6 (4)

In the formula, Linfluent represents the per capita pollution load of antibiotics
[µg/(d·person)], and Ceffluent represents the average detection concentration of target
antibiotics in the effluent of WWTPs (ng/L).

3. Results and Discussion
3.1. Influent

The seasonal variation trend of the total antibiotics concentration in the inflow of
WWTPs in the Tangshan area was the highest in winter, followed by spring, summer, and
autumn (Figures 2 and 3). In spring, summer, and winter, the concentration of antibiotics
in the inflow of urban WWTPs was higher than that of suburban WWTPs, while the
opposite trend was observed in autumn (Figure 2). China announced that from 8 January
2023, COVID-19 infection will be adjusted from “Class A” to “Class B”. The monitoring
data released by the National Influenza Center of China shows that since January 2023,
the positive rate of influenza virus testing in the southern and northern provinces of
China has continued to rise, and various regions have entered a high-incidence season
of respiratory infectious diseases, with a significant increase in the number of infected
individuals compared to previous years [29].
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Figure 2. The occurrence of antibiotics in the influent and effluent of wastewater treatment plants
(WWTPs) in Tangshan.
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Figure 3. The occurrence of antibiotics in the influent and effluent of urban and suburban WWTPs
in Tangshan.

This study selected the winter collection of inlet and outlet water samples from four
WWTPs from January to March 2023. It is currently in a period of high incidence of
respiratory diseases in the north, as represented by pneumonia. The increase in the use of
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antibiotic samples by urban populations has led to a much higher total concentration of
antibiotics in the inlet water samples of WWTPs than in the other three seasons.

Among the quinolone antibiotics, ofloxacin had the highest concentration detected
in the influent water of WWTPs in spring and autumn, followed by norfloxacin and
ciprofloxacin. The concentrations of the three quinolone antibiotics detected in the influent
water of urban WWTPs were higher than those in the suburban WWTPs (Table 2). In
summer and winter, norfloxacin had the highest concentration detected in the influent
water of WWTPs, while ofloxacin had the lowest concentration detected. Norfloxacin
and ciprofloxacin had the highest concentrations detected in the influent water of ur-
ban WWTPs, while ofloxacin showed the opposite trend (Table 2). The concentrations
of tetracycline antibiotics detected in the influent water of urban WWTPs were higher
than those in the suburban WWTPs in all four seasons, except for oxytetracycline, which
had lower concentrations detected in the influent water of urban WWTPs in spring and
autumn compared to those in the suburban WWTPs. Among the three tetracycline antibi-
otics, tetracycline, chlortetracycline, oxytetracycline, and oxytetracycline had the highest
concentrations detected in spring, summer, autumn, and winter, respectively, while chlorte-
tracycline (suburban WWTPs), tetracycline (suburban WWTPs), tetracycline (suburban
WWTPs), and chlortetracycline (suburban WWTPs) had the lowest concentrations detected
(Table 2).

Table 2. The occurrence of antibiotics (ng/L) in the influent of wastewater treatment plants (WWTPs).

Urban Suburban
Antibiotics Spring Summer Autumn Winter Spring Summer Autumn Winter

Roxithromycin Mean 170.40 46.23 78.19 353.33 148.20 34.14 62.42 270.22
SD 26.78 15.52 3.77 27.34 31.39 1.78 12.55 38.40

Tetracycline Mean 76.83 18.03 14.72 104.23 61.19 14.17 12.88 71.22
SD 9.66 4.29 3.89 43.13 12.34 1.75 2.49 17.70

Aureomycin Mean 50.33 52.98 18.54 96.85 28.21 49.68 16.12 85.15
SD 13.67 21.24 2.91 51.27 21.58 10.48 3.42 63.47

Oxytetracycline Mean 40.41 44.87 36.22 256.70 42.30 36.62 62.33 101.67
SD 15.46 1.56 6.86 17.96 1.41 7.79 33.01 10.80

Ciprofloxacin Mean 99.83 123.96 79.68 451.79 86.73 107.31 68.25 316.84
SD 15.32 22.69 12.52 19.76 18.37 31.82 13.77 9.56

Norfloxacin
Mean 122.10 135.17 97.50 458.49 105.76 116.56 84.89 321.42
SD 17.91 17.68 15.32 20.05 22.41 24.70 18.04 9.87

Ofloxacin
Mean 125.37 47.87 122.62 491.53 106.53 87.72 89.93 422.56
SD 64.02 1.18 21.57 14.12 53.25 2.19 4.76 93.96

Sulfadiazine
Mean 96.48 133.34 87.67 145.70 117.63 103.14 142.60 110.25
SD 21.47 15.57 19.43 17.01 11.37 20.24 42.62 20.06

Sulfamethoxazole
Mean 171.60 235.80 140.55 275.04 213.65 121.98 164.26 217.34
SD 36.39 27.53 49.70 32.12 25.01 16.23 53.80 46.54

During the study period, the macrolide antibiotic drug, roxithromycin, had the highest
concentration detected in influent urban WWTPs, which was 1.15 times higher (spring),
1.35 times higher (summer), 1.25 times higher (autumn), and 1.31 times higher (winter) than
that in suburban WWTPs (Table 2). The concentrations of sulfa antibiotics, sulfadiazine,
and sulfamethoxazole, detected in influent suburban WWTPs were higher than that in
urban WWTPs in spring and autumn while showing an opposite trend in summer and
winter (Table 2). Sulfadiazine and sulfamethoxazole are antibiotics shared by humans
and animals [30–32]. The breeding industry in suburban Tangshan is concentrated, and
the use of veterinary antibiotics is high. Most veterinary antibiotics are excreted in the
form of raw drugs or metabolites through animal feces and urine after administration and
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eventually enter the urban drainage system after sewage treatment [33–35]. Despite the
legitimate reasons for their use, the current standards for the dosage of various veterinary
antibiotics are inconsistent and imprecise, leading to the potential overuse of these drugs in
livestock farming. This, in turn, raises the concentration of antibiotics in influent wastewater
treatment plants within the farming region.

In influent WWTPs, (1) the concentration ranges of the nine antibiotics selected in
this study, except for aureomycin, oxytetracycline, and ciprofloxacin, were much lower
than those in Beijing (2018) in winter [36]; (2) the concentration of tetracycline antibiotics in
summer was lower than existing research data, while the concentration of aureomycin and
oxytetracycline in summer was higher than existing research data (except for Jiulongjiang
River Basin), and the concentration of ciprofloxacin in quinolone antibiotics in summer and
winter was higher than existing research data (except for Urumqi and Shihezi). In summer,
the concentration of norfloxacin surpassed that of the Jiulongjiang River Basin yet remained
lower than that of Urumqi and Shihezi at its peak. In summer, the concentration of ofloxacin
was lower than that of the Jiulongjiang River Basin yet surpassed that of Yibin, Urumqi, and
Shihezi [37–40]. (3) Among the sulfa antibiotics, sulfadiazine’s concentration in summer
and autumn surpassed that of the Jiulongjiang River Basin yet remained lower than that of
Urumqi and Shihezi. The concentration of sulfamethoxazole in summer exceeded that of
the Jiulongjiang River Basin, though its peak value was lower than that observed in Beijing
(2019) [38–40] (Table S2).

3.2. Effluent

The removal effect of antibiotics in WWTPs in different seasons is closely related to
treatment processes, operating parameters, influent properties, and types of antibiotics.
Currently, most WWTPs employ biological treatment processes to degrade organic mat-
ter, including antibiotics. These processes primarily involve microorganisms in activated
sludge attaching to the cell surface through adsorption and absorption. Different types of
microorganisms utilize their metabolic capabilities to decompose and transform antibiotics.
Ultimately, these microorganisms break down the molecular structure of the antibiotics
into smaller organic compounds or CO2 through enzyme production and oxidation, re-
leasing corresponding metabolites. The seasonal variation characteristics of the detected
concentration of antibiotics in the effluent of both urban and suburban WWTPs are shown
in Figure 3. The total antibiotics concentration in effluent WWTPs in the winter was the
highest, followed by spring, autumn, and summer. In winter, the concentration of antibi-
otics detected in the wastewater from urban WWTPs was higher than that from suburban
WWTPs, while the trend was reversed in the other three seasons (Figure 3).

Currently, the WWTPs in Tangshan mainly use the A2O (anaerobic–anoxic–aerobic)
process for sewage treatment. The A2O method is widely used in the sewage treatment
system of northern China [41]. However, northern China experiences lengthy cold seasons,
making it challenging for small-scale sewage biochemical treatment processes to operate
stably [42]. Low temperatures decrease the activity of nitrifying and denitrifying bacteria,
leading to a decline in the nitrogen removal efficiency of the A2O process and challenges in
its stable operation [43,44]. Previous studies have found that temperature has a significant
impact on the nitrogen removal efficiency of the A2O process. Nitrification reactions occur
at 20–30 ◦C and almost stop at temperatures below 5 ◦C; denitrification reactions occur
at 20–40 ◦C and rapidly decrease at temperatures below 15 ◦C. The winter temperatures
in Tangshan and the surrounding areas are low, with average temperatures below 0 ◦C
from January to February, which is not conducive to the degradation of antibiotics by
microorganisms in activated sludge. Therefore, due to the impact of low temperatures
on the efficiency of the A2O process, the total concentration of antibiotics in the effluent
of WWTPs in winter is one order of magnitude higher than that in spring, autumn, and
summer (Figure 2).

In the effluent of both urban and suburban WWTPs, macrolide antibiotics, such as
roxithromycin, have the highest detection concentration in spring, while this corresponds
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with quinolone antibiotics in autumn and winter (Table 3). In the effluent samples of
suburban WWTPs in summer, the concentration of sulfa antibiotics in the effluent is higher
than that in the influent (Table 3) [45]. Previous studies have also observed a similar
phenomenon, where the concentration of sulfa antibiotics in the effluent after treatment by
activated sludge processes has increased. This phenomenon may be due to the following
reasons: (1) antibiotics adsorbed in activated sludge are released into the water, resulting in
an increase in the concentration of these drugs in the effluent from WWTPs. (2) During the
A2O process, sulfa antibiotics are converted into other substances in the aerobic stage, and
these substances are converted back into sulfa antibiotics in the anaerobic stage, resulting
in an increase in the concentration of sulfa antibiotics in the effluent. In this study, the
removal rates of nine antibiotics in urban and suburban WWTPs increased from 8.18% and
7.30% in winter to 70.14% and 66.82% in spring, and 79.58% and 73.91% in autumn. The
removal rates of tetracyclines, quinolones, and sulfonamides in urban WWTPs were higher
than those of macrolides in all four seasons, while the suburban WWTPs only followed the
same trend in spring, autumn, and winter.

Table 3. Occurrence of antibiotics (ng/L) in the effluent of wastewater treatment plants (WWTPs).

Urban Suburban
Antibiotics Spring Summer Autumn Winter Spring Summer Autumn Winter

Roxithromycin Mean 107.23 22.82 35.68 322.58 104.93 15.80 24.75 248.95
SD 3.17 9.78 6.62 15.06 13.54 2.64 1.91 38.02

Tetracycline Mean 9.53 ND 1.85 93.60 7.51 2.98 ND 64.32
SD 1.60 ND 2.62 39.69 4.22 0.87 ND 15.72

Aureomycin Mean 5.63 6.13 ND 89.74 6.11 5.27 ND 78.82
SD 0.95 0.71 ND 50.21 3.07 1.13 ND 60.22

Oxytetracycline Mean 5.48 5.77 2.36 234.56 6.50 4.90 9.12 91.94
SD 0.60 0.43 3.34 14.46 2.19 0.90 5.49 10.61

Ciprofloxacin Mean 26.28 16.16 14.65 418.72 20.27 31.22 21.11 297.48
SD 4.35 1.85 4.17 18.31 1.09 3.80 9.56 2.77

Norfloxacin
Mean 29.71 20.38 21.59 424.86 27.51 33.13 25.88 295.44
SD 3.51 1.07 3.16 18.58 4.25 8.25 10.14 8.82

Ofloxacin
Mean 29.10 9.03 20.78 442.08 34.32 26.27 28.48 394.54
SD 12.45 0.85 4.22 13.32 20.34 2.49 3.28 81.54

Sulfadiazine
Mean 34.22 12.23 139.90 135.16 42.88 133.59 28.73 101.28
SD 7.38 0.75 1.70 15.78 5.16 14.88 12.17 17.56

Sulfamethoxazole
Mean 37.18 19.60 21.13 256.67 52.20 145.73 39.51 201.87
SD 7.90 4.53 14.20 34.42 6.84 24.76 6.86 44.41

Note: ND: not detected.

In the effluent of WWTPs, (1) the nine antibiotics selected in this study (excluding
tetracycline, aureomycin, oxytetracycline, and ciprofloxacin) exhibited lower winter con-
centration ranges in comparison to Beijing (2018) [36]; (2) the roxithromycin concentration
in summer was lower than that in the Zijiang River Basin of central Hunan, while in spring
and autumn, they were an order of magnitude higher than those in Shenyang [36,39,46,47];
(3) Quinolone and tetracycline concentrations in spring and autumn were an order of mag-
nitude higher than those in Shenyang, while in summer, they were an order of magnitude
lower than concentrations in Yibin; (4) Sulfa antibiotic concentrations in summer and au-
tumn were higher than those reported by Beijing (2019) and Shenyang, and in summer, they
were an order of magnitude higher than those in Yibin [36,46,47] (Table S3). The variation
in the spatial and temporal distribution of antibiotic concentrations was significant. This
variation is primarily attributed to a complex interplay of factors, including the treatment
processes and surface temperatures employed by sewage treatment plants across different
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regions, the sources and composition of sewage within the service area, and the size of the
population served by these WWTPs.

3.3. Ecological Risk Assessment

In the effluent of WWTPs in winter, the RQ values of roxithromycin, tetracycline,
chlortetracycline, and oxytetracycline in urban areas were 0.22, 0.1 (0.09), 0.1 (0.08), and
0.23, while those corresponding to roxithromycin and oxytetracycline were 0.17 and 0.1
(0.09) in suburban areas. This indicates that these macrolides and tetracyclines are medium-
risk antibiotics. In the other three seasons, the four categories of nine antibiotics had RQ
values of ≤0.1 in the effluent of WWTPs and showed low-risk antibiotics. It is worth noting
that macrolides, including roxithromycin, are medium-risk antibiotics in the effluent of
urban and suburban WWTPs in winter, and there is a possibility of the overuse of these
drugs by residents in Tangshan. Chen et al. used RQs to assess the ecological risks of
antimicrobial drugs. The results showed that erythromycin, roxithromycin, tetracycline,
chlortetracycline, sulfamethoxazole, and norfloxacin were high-risk pollutants in water
bodies in China, accounting for 20.9% [48]. In winter, various respiratory diseases, including
mycoplasma pneumoniae, influenza, adenovirus, and respiratory syncytial virus infections,
are highly prevalent. The peak season for mycoplasma pneumoniae infection occurs from
August to February of the subsequent year, with the highest incidence of around December
to January of the following year [49]. Macrolide antibiotics, such as roxithromycin and
clarithromycin, are stable to acidic and have a long half-life (35–48 h), a broad antibacterial
spectrum, high bioavailability, are widely distributed in the body, and have significant
efficacy, with minimal gastrointestinal irritation [50]. They have become the first choice
for treating mycoplasma pneumoniae infection [51,52]. At present, the resistance rate of
Mycoplasma pneumoniae to macrolides has been on the rise worldwide [53]. East Asia is
the region with the most serious resistance to macrolide drugs for Mycoplasma pneumoniae
in the world. Studies have shown that the resistance rate in some areas of China has reached
over 90%.

3.4. Estimation of Usage and Sewage Discharge

The per capita pollution load, annual usage, and annual emissions of antibiotics in
Tangshan are presented in Tables 4 and 5. The per capita pollution load of antibiotics
was highest in spring, summer, and autumn for sulfamethoxazole, while the highest
load in winter was for ofloxacin. From spring to winter, the per capita pollution load of
antibiotics for urban residents was 9.63–13.74 times that of suburban residents, suggesting
that urban residents may be at risk of antibiotic abuse (Table 4). In urban areas, the
usage of roxithromycin (5.87 kg/a in spring), sulfamethoxazole (8.96 kg/a in summer),
sulfamethoxazole (5.77 kg/a in autumn), and ofloxacin (17.76 kg/a in winter) significantly
surpasses that of other antimicrobial agents. In contrast, the usage levels in suburban areas
are as follows: sulfamethoxazole (0.17 kg/ain spring), norfloxacin (0.10 kg/ain summer),
sulfamethoxazole (0.12 kg/ain autumn), and ofloxacin (0.32 kg/ain winter) (Table 4). It
should be noted that the usage of antibiotics in urban areas was one order of magnitude
higher than that in suburban areas (Table 5). After treatment by the A2O process in the
WWTPs, the four types of nine antibiotics selected in this study, including roxithromycin
(3.87 kg/a), norfloxacin (0.73 kg/a), roxithromycin (1.39 kg/a), and ofloxacin (15.96 kg/a),
were the highest in terms of emissions from urban WWTPs in spring, summer, autumn, and
winter, respectively. Roxithromycin, sulfamethoxazole, sulfamethoxazole, and ofloxacin
were the highest in terms of emissions from suburban WWTPs during the corresponding
periods, respectively. The total usage of the nine antibiotics in urban and suburban WWTPs
in 2023 was 32.55 and 0.75 kg/a, 30.11 and 0.58 kg/a, 24.29 and 0.57 kg/a, and 96.05
and 1.59 kg/a, respectively, while the total emissions were 9.86 and 0.25 kg/a, 3.83 and
0.33 kg/a, 4.84 and 0.15 kg/a, and 88.38 and 1.48 kg/a, respectively.
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Table 4. Estimates of per capita pollution load of antibiotics [µg/(d·person)] in Tangshan.

Urban Suburban
Antibiotics Spring Summer Autumn Winter Spring Summer Autumn Winter

Roxithromycin 63.11 17.12 28.96 130.86 5.49 1.26 2.31 10.01
Tetracycline 28.46 6.68 5.45 38.60 2.27 0.52 0.48 2.64
Aureomycin 18.64 19.62 6.87 35.87 1.04 1.84 0.60 3.15

Oxytetracycline 14.96 16.62 13.41 95.07 1.57 1.36 2.31 3.77
Ciprofloxacin 36.98 45.91 29.51 167.30 3.21 3.97 2.53 11.73
Norfloxacin 45.19 50.06 36.11 169.81 3.92 4.32 3.14 11.90
Ofloxacin 46.43 17.73 45.41 182.05 3.95 3.25 3.26 15.65

Sulfadiazine 35.73 49.39 32.47 53.96 4.36 3.82 5.28 4.08
Sulfamethoxazole 63.56 87.33 52.06 101.87 7.91 4.52 6.08 8.05

Total 353.06 310.46 250.25 975.40 33.71 24.86 25.99 70.99

Table 5. Estimates of antibiotics use and emissions (kg/a) in Tangshan.

Urban Suburban
Spring Summer Autumn Winter Spring Summer Autumn Winter

Use

Roxithromycin 5.87 1.49 2.90 12.54 0.13 0.03 0.06 0.23

Tetracycline 2.93 0.60 0.49 3.25 0.05 0.01 0.01 0.05

Aureomycin 2.01 1.66 0.64 4.20 0.03 0.04 0.01 0.09

Oxytetracycline 1.28 1.66 1.23 9.60 0.04 0.03 0.06 0.09

Ciprofloxacin 3.45 4.23 2.75 16.23 0.08 0.10 0.06 0.26

Norfloxacin 4.22 4.71 3.36 16.48 0.09 0.10 0.08 0.26

Ofloxacin 3.75 1.73 4.20 17.76 0.07 0.07 0.07 0.32

Sulfadiazine 3.24 5.07 2.95 5.54 0.09 0.09 0.10 0.10

Sulfamethoxazole 5.79 8.96 5.77 10.45 0.17 0.09 0.12 0.19

Emissions

Roxithromycin 3.87 0.71 1.39 11.58 0.09 0.01 0.02 0.22

Tetracycline 0.33 0.00 0.03 2.90 0.01 0.00 0.00 0.05

Aureomycin 0.22 0.21 0.00 3.92 0.01 0.00 0.00 0.08

Oxytetracycline 0.19 0.20 0.04 8.75 0.01 0.00 0.01 0.08

Ciprofloxacin 0.90 0.57 0.48 15.05 0.02 0.03 0.02 0.24

Norfloxacin 1.04 0.73 0.75 15.27 0.02 0.03 0.02 0.24

Ofloxacin 0.90 0.32 0.70 15.96 0.02 0.02 0.02 0.30

Sulfadiazine 1.15 0.44 0.49 5.14 0.03 0.11 0.02 0.09

Sulfamethoxazole 1.26 0.66 0.95 9.81 0.04 0.11 0.03 0.18

4. Conclusions

Due to the high incidence of respiratory diseases, the use of antibiotics has increased,
resulting in the highest concentration of antibiotics in the winter for both influent urban and
suburban WWTPs. However, due to the low-temperature environment, the removal rate of
antimicrobial drugs by the A2O process in WWTPs is the lowest in winter. Based on the RQ
method for evaluating the ecological risk of antibiotics, it was found that the RQ values of
roxithromycin, tetracycline, aureomycin, and oxytetracycline in the winter effluent samples
from urban WWTPs were 0.22, 0.1 (0.09), 0.1 (0.08), and 0.23, respectively, identifying
them as medium-risk antibiotics. The RQ values of roxithromycin and oxytetracycline in
the winter effluent samples from suburban WWTPs were 0.17 and 0.1 (0.09), respectively,
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identifying them as medium-risk antibiotics. In the other three seasons, the four categories
of nine antibiotics selected in this study had RQ values ≤ 0.1 in the effluent of WWTPs, all
of which were low-risk pollutants. In the study area of Tangshan, the per capita pollution
load of antibiotics was highest in spring, summer, and autumn for sulfamethoxazole while
the highest in winter for ofloxacin. The highest use and emissions of antibiotics in the
urban in spring, summer, autumn, and winter were roxithromycin (5.87 and 3.87 kg/a),
sulfamethoxazole (8.96 kg/a), and norfloxacin (0.73 kg/a), while the highest use and
emissions in suburban were sulfamethoxazole (0.17 kg/a) and roxithromycin (0.09 kg/a),
norfloxacin (0.10 kg/a) and sulfamethoxazole (0.11 kg/a), sulfamethoxazole (0.12 and
0.03 kg/a), and ofloxacin (0.32 and 0.30 kg/a) in the same seasons.

This study focuses solely on the temporal distribution of target antibiotics in influent
and effluent WWTPs. Certain antibiotics are susceptible to hydrolysis and removal in
aquatic environments. Research indicates that macrolide antibiotics are prone to hydrolysis.
Tetracycline antibiotics are not stable in water; for instance, the hydrolysis rate of oxyte-
tracycline increases with deviations from neutral pH (pH = 7) and rising temperatures,
whereas sulfonamides and fluoroquinolones are resistant to hydrolysis. pH and tempera-
ture are significant factors influencing hydrolysis. Consequently, it is imperative to further
investigate the impact of seasonal variations in pH and temperature at the end of the
drainage systems and within the treatment units of WWTPs on the temporal distribution
of antibiotics to elucidate the driving factors behind any temporal trends observed in these
agents’ distribution in the influent and effluent. Moreover, the adsorption of antibiotics by
sewage plant sludge is a significant factor in enhancing the removal rate of these antibiotics.
For antibiotics primarily removed through sludge adsorption (such as fluoroquinolones
and sulfonamides), an extension in sludge retention time concurrently enhances their
removal efficiency. However, the removal of certain antibiotics may not be impacted by
sludge retention time. Hence, there is an urgent need for a comprehensive assessment of
the physical adsorption and biodegradation of antibiotics in WWTPs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w16111627/s1, Table S1: Waste Water Treatment Plant (WWTP);
Table S2: Comparison of the concentrations of target antibiotics in effluents from WWTPs in other
cities; Table S3: Comparison of the concentrations of target antibiotics in influents from WWTPs in
other cities.
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