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Abstract: Some important discoveries have been revealed in some studies, including that the set-
tlement of concrete face rockfill dams (CFRDs) may cause cracks in the concrete face slabs, which
may lead to dam collapse. Therefore, deformation behavior prediction of CFRDs is a longstanding
and emerging aspect of dam safety monitoring. This paper aims to propose a settlement prediction
model for CFRDs combining the variational mode decomposition (VMD) algorithm, long short-term
memory (LSTM) network, and support vector regression algorithm (SVR). Firstly, VMD is applied in
the decomposition of dam settlement monitoring data to reduce its complexity. Furthermore, feature
information on settlement time series is extracted. Secondly, the LSTM and SVR are optimized by
the Harris hawks optimization (HHO) algorithm and modified least square (PLS) method to mine
the major influencing factors and establish the prediction model with higher precision. Finally, the
proposed model and other models are applied to predict the deformation behavior of the Yixing
CFRD. Prediction results indicate that the proposed method possesses particular advantages over
other models. The proposed VMD-LSTM-SVR model might help to evaluate the settlement trends
and safety states of CFRDs.

Keywords: settlement prediction model; concrete face rockfill dam; variational mode decomposition;
Harris hawks optimization; support vector regression; long short-term memory; factor mining

1. Introduction

For decades, concrete face rockfill dams (CFRDs) have been widely adopted in the field
of dam construction. Recent engineering applications have revealed that CFRDs become
the most competitive reservoir dam type due to their safety, economy, and construction
convenience [1–3]. As shown in Figure 1, CFRDs adopt a rockfill body as the support
structure. The concrete slab is an important part of a concrete face rockfill dam, its major role
is to prevent seepage. The findings seem to demonstrate the concrete panel is much stiffer
than the rockfill body, which leads to myriad problems in compatibility and deformation
of the two. The foremost problems are the facts that a large or uneven settlement under
load appears in the dam [4,5]. A challenging problem that arises in this domain is that
large settlements can cause cracks in the concrete panel and damage the water stop, which
then affects the dam safety [6,7]. On 27 August 1993, a catastrophic dam failure occurred
at the Gouhou CFRD in Qinghai Province, China [8]. This incident is the first failure of a
high CFRD worldwide, resulting in widespread destruction of farmland and homes and
claiming over 300 lives. Numerous dams have experienced structural cracks and extrusion
damage in their face slabs. Notable examples include the Aguamilpa dam in Mexico [9], the

Water 2024, 16, 1643. https://doi.org/10.3390/w16121643 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16121643
https://doi.org/10.3390/w16121643
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-1527-8235
https://doi.org/10.3390/w16121643
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16121643?type=check_update&version=1


Water 2024, 16, 1643 2 of 23

Tianshengqiao-I dam in China [10], and the Xingo dam in Brazil [11], all of which exhibited
various degrees of structural cracking. Similar extrusion damages have been observed in
several international CFRD projects. For instance, during the initial impoundment stage of
the Mohale dam, the face slab along the riverbed developed extrusion damage extending
to the bottom of the wave wall. Similarly, the Barra Grande and Campos Novos dams
exhibited significant extrusion damage at the central vertical joints of the face slabs under
initial water pressure [12]. These structural cracks and extrusion damage are primarily
caused by excessive and uneven deformation of the dam body. Dams in the early stage,
such as the early Salt Spring dam, the Barra Grande dam, and the Campos Novos dam
during their development stages, all experienced leakage rates exceeding 1000 L/s. The
leakage rates of Alto Anchacaya and Shiroro dams in the modern stage both exceeded
1800 L/s [13,14]. The occurrence of these issues is closely linked to excessive deformation
of the dam body. The findings indicate that excessive deformation does not significantly
impact the dam body itself, it directly damages the face slabs and joint waterstop structures,
leading to substantial leakage and potentially catastrophic seepage failure. Despite better
control of deformations in modern CFRDs compared to earlier counterparts, the increasing
height of dams and the interplay of various complex geological conditions continue to face
challenges, including excessive deformation and face slab damage.
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Figure 1. (a) Digital three-dimensional model of a CFRD; (b) the structure of the CFRD.

Consequently, a large number of alternative research have been developed over the
past few years to analyze the deformation behaviors of CFRDs [15–17]. Among them,
the dam prediction models enjoy great advantages in reflecting the internal relationship
between settlement and influencing factors compared to other means [18,19]. As a result,
various settlement prediction models for CFRDs have been developed.

Generally, one of the most popular prediction models in the dam safety monitoring
area is the monitoring data-driven model. This type of prediction model can be divided
into two primary categories: statistical models and artificial intelligence models [20,21]. As
a common statistical model, regression models such as linear regression and polynomial
regression models are utilized universally due to their quick running speed. However, it
should be noted that they have low interpretability for nonlinear series, which affects their
prediction accuracy. In order to rectify the problem, artificial intelligence technology is
introduced to combine with the statistical models. As a result, many artificial intelligence
prediction models demonstrate particular advantages in nonlinear time series prediction in
the CFRD safety monitoring field over other methods [22,23].

For instance, Su et al. [24] used the wavelet support vector machine to reveal the
dam settlement characteristics. The results indicated that the prediction model owed
high prediction accuracy. Owing to the definite ability to reflect nonlinear relationships
between variables, the artificial neural network (ANN) algorithms are utilized to establish
the prediction models. The prediction results point to the likelihood that the ANN model
possesses better learning ability in extracting deformation trends from dam monitoring
data [25–27]. Recently, characterized by the specialized architecture and gating mechanisms,
the long short-term memory (LSTM) algorithm offers distinct advantages over conventional
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neural network algorithms [28]. Consequently, many researchers introduced LSTM to
establish the prediction model for dam deformation. Hu et al. [29] adopted an optimized
LSTM model to construct the settlement prediction model for CFRD by integrating multiple
monitoring data. The findings would seem to imply that the model has a better prediction
performance. Xu et al. [30] considered the impact of random error on dam deformation and
utilized the LSTM model to propose a prediction model for CFRDs. The results showed
that the model showed perfect long-term prediction performance.

Furthermore, according to [14], the ANN model is easy to fall into the local minima,
and its convergence speed of the learning process is slow due to the CFRD monitoring
data with complex features. However, the support vector regression (SVR) model can
be introduced to resolve the regression problem for this kind of monitoring data under
the influence of various influencing factors. Therefore, some scholars have used the SVR
algorithm to predict the deformation performance of dams. Li et al. [31] presented a
settlement prediction model for CFRDs by introducing an improved hybrid SVR algorithm.
To improve the efficiency of the prediction model, Su et al. [32] presented an optimization
method for the SVM model. Despite its advantages, these models suffer from several major
drawbacks: slow convergence and weak generalizability. Due to the highly nonlinear and
complexity of the monitoring deformation for CFRDs, machine learning models exhibit
limitations in terms of prediction accuracy, generalization capability, and robustness [33–35].
Therefore, in our work, the deep learning models and SVR model are combined to predict
the deformation of CFRDs. In particular, few studies, to our knowledge, have focused on
this research topic.

Moreover, scholars have delved into mining the primary influencing factors of dam
deformation by analyzing the correlation between influencing factors and deformation
monitoring sequences [36]. This aims to avoid mitigating the adverse effects on prediction
performance caused by excessive redundant information. For instance, Ma et al. [37]
adopted the fuzzy neural network to mine the main factor affecting the dam performance.
Gu et al. [38] presented a factor mining model based on a random forest algorithm and
evidence theory. In recent years, some artificial algorithms such as clustering algorithms,
neural networks, and genetic algorithms have been utilized in factor mining. Among
these, one of the most popular ideas in factor mining is the partial least squares (PLS)
method, as a multivariate statistical analysis technique, it retains the correlations among
variables, reduces the dimensionality of influencing factors, and eliminates the effects of
multicollinearity among factors.

Furthermore, studies have focused on the application of signal decomposition algo-
rithms in the establishment of settlement prediction models. It has played an important role
in reducing the nonlinearity of time series and refining features of monitoring data, which
contributes to the interpretability of models [39,40]. Considering that analyzing the correla-
tion between influencing factors and decomposed sub-sequences of settlement monitoring
data can enable easier factor mining, in this study, the variational mode decomposition
(VMD) algorithm is applied in reducing the nonlinearity and complexity of settlement
monitoring time series at first. Subsequently, the improved PLS method is adopted to
assess the correlation between influencing factors and decomposed sub-sequences, which
could contribute a lot to enhancing the prediction accuracy of the model.

In this paper, a prediction model based on the HHO, VMD, LSTM, and SVR algorithms
is proposed. Primarily, the VMD method optimized by HHO is applied to decompose the
settlement sequence, thereby reducing data complexity. Secondly, PLS is employed to assess
the main influencing factors as input variables for the prediction model. Subsequently, an
integrated model combining the optimized LSTM and SVR models is established for dam
settlement prediction. The proposed model sufficiently takes the correlation between influ-
encing factors and dam settlement into account. In this way, by leveraging the advantages
of two artificial intelligence algorithms, the settlement safety of CFRDs can be analyzed
and evaluated accurately. Finally, the developed model is able to be applied to a practical
CFRD health monitoring system.
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The overall structure of the study takes the form of six sections, including this intro-
ductory section. In Section 2, the Hydrostatic-season-time (HST) model for the settlement
of CFRDs is introduced. In Section 3, the framework of the presented model in this paper is
illustrated. In Section 4, the monitoring data of a practical engineering project is utilized
to test and verify the prediction performance of the proposed model. And three common
machine learning models are applied in the case study to be taken as the comparisons. In
Section 5, comparison results and prediction results are discussed. Ultimately, conclusions
are discussed in Section 6.

2. The HST Model for the Settlement of CFRDs

The Hydrostatic-season-time (HST) model stands out as a frequently utilized statistical
framework for the interpretation of dam settlement based on structural analysis and
mechanical theory. The specific formula of the HST model is expressed as follows [41].

δ(h, t, s) = δH(h, t) + δS(s) + δT(t) + ε (1)

For rockfill materials, settlement primarily occurs due to soil compression, and dam
settlement typically depends on the load and time. The settlement of CFRDs during
operation is similarly influenced by water pressure (δH), aging effect (δS), and temperature
effect (δT). Therefore, the settlement at a certain point of the dam can be expressed using
Equation (1), with the expressions for each component as follows:

(1) Settlement caused by water pressure (δH)
Water pressure is the predominant factor contributing to dam settlement. As water is

impounded, the dam deformation due to water pressure can be categorized into three pri-
mary types: upward buoyancy deformation, water pressure deformation, and deformation
due to water saturation. The upstream water pressure can be decomposed into horizontal
and vertical forces, and the vertical force induces the dam settlement. Meanwhile, the
dam body below the phreatic line experiences the action of buoyancy, which reduces its
downward settlement. Additionally, the pore water within the rockfill decreases friction,
allowing the particles to rearrange and compress under their own weight, resulting in
further settlement. In summary, the settlement caused by water pressure can be represented
by a Taylor series expansion, considering the first three terms and incorporating the impact
of creep under water pressure over time. The influence factor is defined as the average
value of upstream water levels in the early stage, the expression δH can be demonstrated
as follows:

δH = f
(

H, H
)
=

3

∑
i=0

a1i Hi +
m1

∑
i=0

a2i H
i (2)

where H represents the upstream water level, H denotes the average value of upstream
water levels in the early stage, and m1 indicates the dates considered as the previous stage.

(2) Settlement caused by temperature (δT)
The settlement induced by the linear expansion of the dam is related to temperature

variations, especially in cold regions where soil tends to undergo frost heaving, leading
to significant settlement. Since temperature changes generally follow an annual cycle,
the relationship between settlement caused by frost heaving and temperature can be
represented by a periodic function of time. Therefore, sinusoidal and cosine functions are
employed to represent the temperature components. The expression for the temperature
component can be demonstrated as follows:

δT =
m2

∑
i=1

(
b1i sin

2πit
365

+ b2i cos
2πit
365

)
(3)

where m2 can be taken as 1 for CFRD, b1i, b2i are pending coefficients, t means the time.
(3) Settlement caused by time effect (δS)
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Analysis of monitoring data from constructed panel rockfill dams indicates that after
impoundment, the dam settlement appears due to the water load, the settlement usually
persists for 2–3 years. In the later stages of dam settlement, the rate of settlement increase
gradually decreases over time, eventually stabilizing. The functional form should conform
to the actual settlement characteristics of CFRDs, thereby the expression for the aging
component can be exhibited as follows:

δS = c1θ + c2 ln θ (4)

where c1 and c2 are pending coefficients; t is the time, θ = t/100.
Above all, the formula of the HST model for the settlement of CFRDs can be described

as follows:
δ = δH + δS + δT + cons (5)

where cons denotes the constant term.

3. VMD-LSTM-SVR Model for the Settlement Prediction of CFRDs

In this section, the HHO algorithm, the VMD algorithm, and the LSTM and SVR
models are introduced to establish the settlement prediction of CFRDs.

3.1. Improved VMD Algorithm Based on HHO Algorithm
3.1.1. HHO Algorithm

Research conducted by Seyedali Mirjalili in 2017 found that the hunting behavior
of Harris’ hawks exhibits a unique social hunting strategy involving cooperation and
competition. Inspired by the hunting behavior, the Harris’ hawk optimization (HHO)
algorithm, which is a kind of metaheuristic algorithm [42,43], has been utilized in different
fields. The HHO algorithm consists of three stages: exploration, transition, and exploitation.

(1) Exploration stage
During the exploration stage, Harris’ hawks, randomly perched in a certain location,

search for prey through two strategies. When iterating, they update their positions with a
probability q.

X(t + 1) =

{
Xrand(t)− r1|Xrand(t)− 2r2X(t)| q ≥ 0.5[
XR(t) − Xm(t)

]
− r3[lb + r4(ub − lb)] q < 0.5

(6)

where X(t + 1) and X(t) represent the positions of individuals at the next iteration and the
current iteration, respectively, t denotes the iteration count, Xrand(t) represents the position
of a randomly selected individual of Harris’ hawks, XR(t) represents the position of the
prey, r1, r2, r3, r4, and q are random numbers, ranging between 0 and 1, Xm(t) denotes the
average position of individuals, which can be expressed as follows:

Xm(t) =
M

∑
k=1

Xk(t)
M

(7)

where Xk(t) represents the position of the k-th individual in the population, and M denotes
the population size.

(2) Transition stage
Since the energy expended by the prey during escape can be converted between

exploration and different exploitation behaviors, the HHO algorithm defines its escape
energy E as follows:

E = 2E0

(
1 − t

T

)
(8)

where E0 represents the initial escape energy of the prey, the value of E0 can be selected
randomly within the range [−1, 1]. When −1 < |E0| < 0, the prey is in a state of weak
energy; when 0 ≤ |E0| < 1, the prey is in a state of energy recovery. The escape energy E
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exhibits a decreasing trend during the iteration process. When |E| < 1, Harris’ hawks search
for the position of prey in different areas, the HHO algorithm executes the exploration
stage. When |E| < 1, the HHO algorithm performs local search on adjacent solutions, and
executes the exploitation stage. At this point, the update of individual positions varies
according to the value of E.

(3) Exploitation stage
Define a random number z within the range of [0, 1]. Different exploitation strategies

can be selected based on the random number z. When 0.5 < |E| < 1 and z ≥ 0.5, the
algorithm adopts soft besieging technique for location updating:

X(t + 1) = ∆X(t)− E|JXR(t)− X(t)| (9)

where ∆X(t) = XR(t)− X(t) represents the difference between the prey’s position and the
current position of the individual, J is a random number between 0 and 2, indicating the
jump distance of the prey during its escape process.

When |E| < 0.5 and z ≥ 0.5, the algorithm adopts the hard besieging method for
location updating:

X(t + 1) = XR(t)− E|∆X(t)| (10)

When 0.5 ≤ |E| < 1 and z < 0.5, the algorithm adopts the soft besieging strategy with
asymptotic rapid descent for updates. The first update strategy is as follows:

Y = XR(t)− E|JXR(t)− X(t)| (11)

If the first strategy is ineffective, the second strategy is executed:

Z = Y + S × LF(D) (12)

Therefore, the final update strategy for this stage is as follows:

X(t + 1) =

{
Y f (Y) < f [X(t)]

Z f (Z) < f [X(t)]
(13)

where f ( ) represents the fitness function, Y and Z denote the current fitness positions of
individuals, D denotes the dimensionality of the problem, S represents a 1 × D random
vector, and LF( ) is the mathematical expression for Levy flight.

When |E| < 0.5 and z < 0.5, the algorithm adopts the hard besieging strategy with
asymptotic rapid descent for location updating:

X(t + 1) =

{
Y f (Y) < f [X(t)]

Z f (Z) < f [X(t)]
(14)

Y = XR(t)− E|JXR(t)− Xm(t)| (15)

Z = Y + S × LF(D) (16)

3.1.2. Improved VMD Algorithm

The VMD algorithm involves numerous parameters, and the selection of the number of
modal components K and the penalty factor α play an important role in the decomposition
effectiveness. If the number of modal components K is too small, it may fail to capture
all the details and features of the sequence, leading to information loss. Conversely, if K
is too large, it may result in excessive information redundancy, increasing computational
and analytical complexity. For the penalty factor α, an excessively large value can overly
smooth the decomposed modal components, leading to the loss of crucial information. On
the contrary, if α is configured to be too small, it may introduce significant instability and
roughness to the sub-sequences, exacerbating the impact of data noise on the decomposition



Water 2024, 16, 1643 7 of 23

results. Hence, determining appropriate values for K and α is essential before performing
data decomposition. Typically, these parameters are determined empirically, which is
subjective and can affect the generality of the model. In this paper, the HHO algorithm is
applied to the parameter selection of the VMD algorithm by selecting minimum average
envelope entropy.

In the signal decomposition, the smaller the envelope entropy of each sub-sequence,
the lower the complexity of the decomposed sequence. Consequently, the average envelope
entropy is utilized as the fitness function. Specifically, for a signal X(t), the average envelope
entropy of its decomposed sequences can be calculated through the following steps:

(1) Calculate the envelope E(t) of a signal using the Hilbert transform.
(2) Segment the signal into M data blocks according to a fixed length.
(3) For each data block, compute its probability density function pi(n), where n

represents the envelope falling within the n-th interval.
(4) Calculate the envelope entropy using the following formula:

HE = −
M

∑
i=1

X

∑
n=1

pi(n) ln2(pi(n)) (17)

where X denotes the number of internals.
In this study, the variance percentage (VP) indicator is applied to calculate the propor-

tion of each sub-sequence in the original sequence. Firstly, the variance of each component
and the total variance of the original sequence are computed to obtain the proportion of each
sub-sequence in the original sequence. Secondly, the proportion of each sub-sequence is
multiplied by the envelope entropy of the sub-sequence and summed to obtain the average
envelope entropy of the decomposed sub-sequences. The main steps of the optimization
process of the VMD method based on HHO are as follows:

(1) Initialize the parameters of the HHO algorithm, including the number of population
quantities, maximum iteration times, and the population location.

(2) Set the fitness function as the average envelope entropy and calculate the fitness
value of each hawk to determine the optimal location of an individual.

(3) Estimate |E| and z. Update the location according to Equations (9)–(16).
(4) Calculate the updated fitness values of the Harris hawks’ individual. If the fitness

of the new individual surpasses that of its predecessor, the original location is replaced by
the new location. Otherwise, the original location is retained.

(5) Adjust the search range and direction of the particle swarm adaptively through the
algorithm’s fitness. Continuously search for the minimum fitness value according to the
fitness function.

(6) Evaluate if the maximum iteration times has been reached. If affirmative, output
the current optimal individual’s location. If negative, repeat operations from step (2) to
step (5).

(7) Obtain the parameters corresponding to the minimum fitness as the optimal
parameters for the VMD algorithm.

Subsequently, the optimized VMD algorithm can be applied to decompose the settle-
ment monitoring data series of CFRD.

3.2. HHO-LSTM-SVR Prediction Model for the Settlement of CFRD
3.2.1. LSTM Network

To resolve the problem of vanishing or exploding gradients during model training,
scholars have introduced “gate” control structures on the hidden layer nodes of Recurrent
Neural Networks (RNNs). This innovation aims to regulate the flow of information, propos-
ing the LSTM network. The LSTM network exhibits strong temporal dependencies that are
capable of storing relevant information over arbitrary time intervals, thereby effectively
extracting patterns from historical data. Moreover, it has demonstrated promising results
in practical applications [44,45].
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As depicted in Figure 2, the architecture of the LSTM network operates with a unidi-
rectional hidden layer. In Figure 2, xt represents the input value at time step t, yt denotes
the output value at time step t, St signifies the cell state at time step t, ht signifies the output
value of the hidden layer at time step t.
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3.2.2. SVR Algorithm

The support vector regression (SVR) algorithm employs a nonlinear mapping tech-
nique to project training samples into a high-dimensional space, facilitating linear regres-
sion in this space without introducing additional computational complexity [46]. The
SVR algorithm does well in addressing nonlinear regression prediction tasks, particularly
demonstrating strong performance with moderate- to small-scale datasets. The SVR al-
gorithm exhibits robustness and is effective in mitigating the issue of local extremum.
Moreover, the SVR algorithm shows promising results in practical applications [47].

The computational expression of the SVR model can be represented as follows:

y(x) =
N

∑
j=1

[(
α∗j − αj

)
× K

(
xj, x

)]
+ d (18)

where x is the input vector, y is the corresponding output value, αj and α∗j are Lagrange
multipliers, K

(
xj, x

)
is the kernel function, d is the bias term, N is the total number of

samples in the dataset.

3.2.3. HHO-LSTM-SVR Model

With the aim of determining the parameters of the LSTM and SVR models effectively,
the HHO algorithm is utilized. In this work, the HHO-LSTM and HHO-SVR models are
presented, respectively. By integrating multiple homogeneous or heterogeneous learners,
the prediction performance of individual learners can be enhanced effectively [48]. Con-
sequently, the merits of HHO-LSTM and HHO-SVR models can be further integrated by
using partial least squares (PLS) regression. The HHO-LSTM-SVR model is proposed to
predict the dam settlement with high accuracy.

The computational workflow of the HHO-LSTM-SVR model begins with the parallel
computation of the HHO-LSTM and HHO-SVR models. Subsequently, the sum of squared
prediction errors of the two single models and a penalty term of a weighting coefficient
is selected as the objective function. Then, the optimal weights for each single model
are computed to minimize the objective function, as shown in Equation (19). Finally, on
the basis of the weights, the HHO-LSTM-SVR model is tested. The PLS regression can
effectively address the issue of excessive bias weighting due to differences in the predictive
accuracy of single models in ensemble combination models. The computational process of
the HHO-LSTM-SVR model is illustrated in Figure 3.

minQ =
m

∑
k=1

[ξy∗1k + (1 − ξ)y∗2k − yk]
2 + λ∥ξ∥2 (19)
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where yk is the actual value, y∗1k and y∗2k are the prediction values of the HHO-LSTM
model and the HHO-SVR model, respectively; ξ presents the weight of the model, λ is the
coefficients of the penalty term, and m is the number of the sample.
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3.3. HHO-VMD-LSTM-SVR Model Considering Factor Mining for Settlement
Prediction of CFRD

Based on the methods and theories discussed above, the proposed workflow frame-
work for the settlement prediction model of CFRDs is illustrated in Figure 4. The specific
steps of the process are outlined as follows:

(1) Select the target monitoring points and preprocess the monitoring data of water
level, temperature, dam settlement, and time series data. The settlement sequences are
decomposed using the VMD method optimized by the HHO algorithm, yielding several
IMF sub-sequences (refer to Modules 1 and 2 in Figure 4).

(2) Determine the optimal number of input influencing factors for each IMF sub-
sequence through cross-validation. Subsequently, the PLS algorithm is utilized to extract
the optimal input influencing factor set for each IMF sub-sequence, achieving the mining
of influencing factors (refer to Module 3 in Figure 4).

(3) Analyze the local characteristics of each IMF sub-sequence and establish the HHO-
LSTM-SVR prediction model. The iterations of these steps are executed to construct and
optimize the HHO-LSTM-SVR prediction model for each IMF component (refer to Module
4 in Figure 4).

(4) Predict each IMF sub-sequence component using the HHO-LSTM-SVR model
sequentially to obtain output sequences. These sequences are then superimposed to form
the final prediction results (refer to Module 4 in Figure 4).
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Figure 4. The flowchart of the HHO-VMD-LSTM-SVR model construction of settlement prediction
for CFRDs (in Module 1, yellow line represents the fitting data sets, and green line represents the
prediction data sets).

4. Project Overview

The Yixing pumped-storage power station (PSPS) is situated on the southwest side
of Tongguan Mountain in Yixing city, Jiangsu Province. The station comprises upper and
lower reservoirs, water transmission systems, underground powerhouses, and switch-
yards. With a total installed capacity of 1000 MW and an annual electricity generation
of 1.49 billion kWh, the station primarily serves peak shaving, valley filling, frequency
regulation, phase adjustment, and emergency backup functions. The upper reservoir is
located in the valley on the north side of Tongguan Mountain, surrounded by the main
dam, auxiliary dam, and surrounding mountains. The main dam of the upper reservoir is a
concrete face rockfill dam, with a crest elevation of 474.20 m and a crest length of 494.90 m.
The schematic of the dam structure and distribution of monitoring points of deformation
for Yixing PSPS are exhibited in Figure 5b,c, separately.
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Figure 5. (a) Photo of the upstream reservoir and CFRD, (b) schematic of structure of CFRD,
(c) schematic of monitoring points of deformation of CFRD for Yixing PSPS (the locations of the
selected monitoring points (TR4-1 to TR4-8) are marked with red star-shaped labels).

The settlement data of TR4-1 to TR4-8 from 4 December 2006 to 6 September 2023 are
selected for analysis in this case study. The locations of the monitoring points (TR4-1 to
TR4-8) are marked in Figure 5c with red star-shaped labels. After data preprocessing, the
valid settlement data of the selected monitoring points are shown in Figure 6. The upstream
water level and the environmental temperature in Yixing PSPS are illustrated in Figure 7. It
can be seen that all the settlement monitoring data increase slowly, and tend to converge
with time.
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Figure 7. Monitoring data series: (a) upstream water level, (b) environmental temperature.

5. Results and Discussion
5.1. Decomposition of Settlement Sequences Based on VMD Method

The parameters of the VMD method are determined by using the HHO algorithm.
The optimization process aims to synthesize the most suitable parameters based on the
complexity of the data sequences, employing the average envelope entropy as the fitness
function. Ultimately, the optimal number of modal components k is set at 9, and the penalty
factor α is set at 664. The optimization process of the HHO algorithm is exhibited in
Figure 8.
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Figure 8. The optimization process of the HHO algorithm. (a) The variation process of average
envelope entropy, (b) the optimization process of penalty factor and number of modal components.

For example, Figure 9 depicts the decomposition results by the VMD method of the
settlement monitoring sequence at monitoring point TR4-7. Based on the characteristic
features of the decomposition sub-sequences, IMF1 is defined as the trend component of the
original sequence, portraying the sustained deformation of the rockfill body of the Yixing
CFRD underwater load, particularly under prolonged duration and high water levels. The
deformation characteristic exhibits a rheological characteristic with a trending tendency.
IMF2 and IMF4 represent periodic sequences gradually, influenced significantly by cyclic
factors such as upstream water level and temperature changes. IMF5 to IMF9 demonstrate
characteristics of short-period and low-amplitude oscillations, possibly attributed to rapid
and transient deformation components induced by factors like seismic events, self-weight,
or monitoring errors in dam structures. Due to the differing primary influencing factors of
each component, it is essential to construct and optimize the factor sets for the decomposed
sub-sequences, subsequently establishing a corresponding prediction model.

5.2. Major Factor Mining Based on PLS Method

To simultaneously consider the correlation between multiple independent variables
and dependent variables, partial least squares (PLS) regression is introduced for morpho-
logical sequence influence factor mining. To prevent overfitting, the first 80% of the data
is selected for training to obtain the input primary influence factors for each decomposed
sub-sequence. Furthermore, to accurately determine the number of input impact factors for
different decomposed sub-sequences and to improve the fitting effects of sub-sequences,
cross-validation is employed to obtain the mean absolute error, serving as the criterion for
determining the optimal number of input factors for each sub-sequence.

Finally, the optimal number of input impact factors and the corresponding regression
coefficients are determined. By computing the mean absolute error under different numbers
of input impact factors, the primary influencing factors are identified according to the
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minimum mean absolute error. When the mean absolute errors are close, fewer input impact
factors should be selected to enhance the modeling efficiency. Taking the determination
process of the primary influence factor mining for IMF1 and IMF2 as examples, Figure 10
illustrates the mean absolute error of IMF1 and IMF2 under different numbers of impact
factors. It is evident that IMF1 achieves the minimum mean absolute error of 0.748 when
the number of input factors is 3. As for IMF2, the minimum mean absolute error is attained
when the number of input influence factors is 13 or 15. However, it is noted that the mean
absolute error is close to the minimum value when the number of influence factors is 3.
Considering training and prediction efficiency, the number of influence factors should be
taken as 3. Similarly, the optimal number of input influence factors and mean absolute
errors for each sequence are obtained, as shown in Table 1.
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Figure 9. The results of VMD decomposition. (a) Monitoring data sequence (blue line represents
fitting data sets, and red line represents the prediction data sets), (b) decomposition subsequence
IMF1, (c) decomposition subsequence IMF2, (d) decomposition subsequence IMF3, (e) decomposition
subsequence IMF4, (f) decomposition subsequence IMF5, (g) decomposition subsequence IMF6,
(h) decomposition subsequence IMF7, (i) decomposition subsequence IMF8, (j) decomposition
subsequence IMF9.
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Figure 10. Mean absolute errors of IMF1 and IMF2 corresponding to various numbers of input factors.



Water 2024, 16, 1643 15 of 23

Table 1. Number of the optimal input influence factors of the decomposition sequence and the
corresponding average absolute errors.

Decomposition
Sequence

Mean Absolute
Error

Number of the
Optimal Input

Influence Factors

Decomposition
Sequence

Average Absolute
Error

Number of the
Optimal Input

Influence Factors

IMF1 0.748 3 IMF6 0.051 1
IMF2 0.520 4 IMF7 0.059 4
IMF3 0.419 3 IMF8 0.063 5
IMF4 0.157 5 IMF9 0.061 6
IMF5 0.062 1 - - -

5.3. Fitting and Prediction Results

On the basis of parameter optimization by the HHO algorithm, the selected hyper-
parameters of the LSTM model are set as follows: hidden layers can be taken as 2 (each
hidden layer has 8 neurons), iteration period is 1000, initial learning rate is 0.05, and
descending factor is 0.15. In the same way, the hyperparameters of the SVR model are set
as follows: penalty parameter C can be selected as 0.2, kernel function parameter γ can be
taken as 0.8. 80% of the monitoring data are applied to train the prediction model.

Take the monitoring settlement data of monitoring point TR4-7 again, all the prediction
results of the HHO-LSTM-SVR model for each sub-sequence are illustrated in Figure 11.
Comparisons between the true monitoring values and prediction values of settlement
reveal that the model exhibits great fitting and prediction accuracy.
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Figure 11. Comparisons between true monitoring values and prediction values of (a) decom-
posed subsequence IMF1, (b) decomposed subsequence IMF2, (c) decomposed subsequence IMF3,
(d) decomposed subsequence IMF4, (e) decomposed subsequence IMF5, (f) decomposed subsequence
IMF6, (g) decomposed subsequence IMF7, (h) decomposed subsequence IMF8, (i) decomposed sub-
sequence IMF9.
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In order to evaluate the fitting and prediction ability of the VMD-LSTM-SVR model,
two evaluation indicators, the coefficient of determination R2 and the root mean square
error RMSE, are utilized. The calculation formula for the above indicators is as follows:

R2 =
∑N

i=1
(
δ̂i − δ

)
∑N

i=1
(
δi − δ

) (20)

RMSE =

√√√√ 1
M

M

∑
j=1

(
δj − δ̂j

)2
(21)

where δi represents the training sets of the settlement monitoring data, δ is the average value
of the training datasets, δ̂i denotes the fitting results of the training datasets, δj indicates the
test sets of the settlement monitoring data, δ̂j is the prediction results of the test datasets, M
and N represent the numbers of data of training and test datasets, respectively.

At the same time, we introduced three other models: the stepwise regression (SR)
model, LSTM optimized by the HHO (HHO-LSTM) model, and SVR optimized by the
HHO (HHO-SVR) model to establish a prediction model for dam monitoring settlement.
The comparison results of R2 and RMSE of all the selected monitoring points of different
prediction models are exhibited in Table 2 and Figure 12, respectively. It should be noted
that the results of R2 of the SR model, the HHO-LSTM model, the HHO-SVR model, and
the proposed model vary from 0.801 to 0.862, 0.886 to 944, 0.873 to 0.943, and 0.980 to 0.995,
respectively. Therefore, the proposed model possesses high fitting accuracy. As exhibited
in Figure 12, the values of RMSE of the SR model, the HHO-LSTM model, the HHO-SVR
model, and the proposed model vary from 3.5355 to 5.3826, 2.1386 to 3.6316, 2.4835 to 3.8471
and 1.5543 to 2.1537, respectively. It is obvious that the values of RMSE of the proposed
model for all the selected monitoring points are the smallest.

Table 2. R2 of different prediction models for all the selected monitoring points.

Monitoring Point SR Model HHO-LSTM
Model

HHO-SVR
Model

The Proposed
Model

TR4-1 0.854 0.931 0.936 0.995
TR4-2 0.862 0.927 0.899 0.982
TR4-3 0.801 0.894 0.887 0.981
TR4-4 0.847 0.886 0.873 0.980
TR4-5 0.835 0.921 0.915 0.981
TR4-6 0.829 0.907 0.924 0.982
TR4-7 0.813 0.939 0.943 0.985
TR4-8 0.817 0.944 0.938 0.986
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The settlement monitoring data from 4 December 2006 to 30 April 2020 was uti-
lized to establish the prediction model. Then, the settlement data from 1 May 2020 to
6 September 2023 is applied in model testing. As shown in Figure 13, for all the settlement
monitoring points, the fitting and prediction performance of the SR model is the poorest,
while the proposed model demonstrates significantly better fitting and prediction perfor-
mance, with results closer to the actual monitoring values. Despite significant fluctuations
in the settlement monitoring data of all monitoring points, the fitting and prediction results
of the proposed model closely match the actual monitoring data, demonstrating a high
level of accuracy in both fitting and prediction outcomes for all the monitoring points.

Furthermore, the prediction residual was introduced as an evaluation index to assess
the effectiveness of the models. Figure 14 implies the boxplots of prediction residuals for
all the monitoring points of different prediction models. For all the monitoring points,
the residuals of the SR model, the HHO-LSTM model, the HHO-SVR model, and the
proposed model vary from −22.43 to 22.05, −7.10 to 6.07, −18.46 to 20.55, and −3.4 to
4.10, respectively.

5.4. Discussion

In statistics and data analysis, the coefficient of determination R2 is a measure that
indicates the strength and direction of the linear relationship between a set of predictor
variables and a response variable. The value of R2 ranges from 0 to 1, and a larger value
suggests the higher prediction accuracy of the models. Therefore, as given in Table 2, the
prediction model possesses the largest values of R2 for all the monitoring points, which
indicates a stronger ability in prediction performance. Moreover, the root mean square error
RMSE as another statistical indicator was introduced, and the smaller value of RMSE means
higher prediction precision of the models. As depicted in Figure 12, RMSE is adopted to
quantitatively assess the fitting and prediction ability of the models. The smallest value
range of RMSE implies the proposed model is reliable.
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Figure 13. Fitting and prediction results of different prediction models for all the selected monitoring
points: (a) TR4-1, (b) TR4-2, (c) TR4-3, (d) TR4-4, (e) TR4-5, (f) TR4-6, (g) TR4-7, (h) TR4-8.

The same conclusion is further confirmed in Figure 13, the prediction model exhibits
excellent fitting and prediction ability for all the monitoring points. Figure 14 shows
that the absolute values of the prediction residuals for the SR model are relatively large,
the SR model has the poorest prediction performance. In Figure 14, it is evident that the
prediction residual distributions of the proposed models for all the selected monitoring
points are tighter, with overall smaller residuals, and notably fewer extreme outliers
compared to other models. Consequently, for different monitoring sequences at various
points, the proposed model exhibits excellent prediction performance, indicating its
strong generalizability.

With the combination of utilizing the HHO algorithm, the LSTM model, and the SVR
model, for the total selected 8 monitoring points, the proposed shows the strong nonlinear
data mining ability. In this case study, the fitting and prediction results indicate the higher
prediction accuracy and generalization ability of the proposed model, which is expected to
be applied to the health diagnosis of CFRDs.
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6. Conclusions

In summary, this paper has presented a useful study of a settlement prediction model
for CFRDs. In this study, the VMD signal processing combined with LSTM and SVR models
was introduced to establish the settlement prediction model of CFRDs. Through optimizing
parameters of the above machine learning algorithms, the dam settlement monitoring data
were processed via multiscale decomposition, enabling the accurate major influencing
factors mining and subsequent time series prediction. In constructing the SR model, the
HHO-LSTM model, and the HHO-SVR model, the fitting and prediction performance of
the proposed model was evaluated. Some conclusions can be drawn as follows.

(1) On the basis of introducing the HHO algorithm, the training efficiency of the
LSTM model and SVR model has been significantly enhanced. The integration of the
VMD algorithm effectively decomposes the dam deformation time series, transforming the
complex nonlinear sequence into multiple relatively stable sub-sequences with different
frequency scales, thereby substantially improving the prediction ability of the model.
Utilizing the PLS method to analyze the decomposed deformation components allows for
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the major influencing factors mining, the correlation between the influencing factors and the
deformation can be improved. It not only improves prediction accuracy but also reduces
the input dimensionality of the prediction model. The better prediction performance
is a consequence of accurate major influencing factor mining. In addition, the model
achieves improved prediction accuracy by significantly reducing the input dimensions of
the prediction model.

(2) The combined application of the LSTM and SVR models results in the proposed
model demonstrating advantages over comparative models in terms of prediction accuracy,
residual distribution, and operational efficiency. The proposed model can play an important
role in decomposing the deformation monitoring data, extracting data features, mining
major influencing factors, and high prediction efficiency. Consequently, the proposed
model exhibits certain advantages in contrast to other comparative models in practical
engineering applications for the safety monitoring of CFRDs.

(3) It should be noted that the proposed model only focuses on data from individual
monitoring points, without considering the interrelationships between different monitoring
points. Therefore, it seems that considering the spatiotemporal relationships among various
monitoring points when establishing a prediction model may be capable of improving the
prediction accuracy in future work.
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