Impact Assessment of Climate Change on Water Supply to Hsinchu Science Park in Taiwan
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Data, Calibration, and Validation of SWAT (Soil and Water Assessment Tool)
2.3. Future Weather Data
2.4. Rules of Reservoir Operation
2.5. Procedure for Climate Change Impact Assessment
3. Results
3.1. Establishment of Reservoir Operation Rules
3.2. SWAT Verification
3.3. Climate Change Impact on Rainfall and Discharge
3.4. Climate Change Impact on Water Storage Volume
3.5. Water Stress under Climate Change
4. Discussion
4.1. Effects of Water Shortage
4.2. Early Warning Indicator
4.3. Current Adaptation Measures
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- TNFD. Recommendations of the Taskforce on Nature-Related Financial Disclosures. 2023. Available online: https://tnfd.global/publication/recommendations-of-the-taskforce-on-nature-related-financial-disclosures (accessed on 4 May 2024).
- World Economic Forum. The Global Risks Report 2022, 17th ed.; 2022; Available online: https://www3.weforum.org/docs/WEF_The_Global_Risks_Report_2022.pdf (accessed on 2 May 2024).
- Dobler, M.; Lajili, K.; Zéghal, D. Environmental performance, environmental risk and risk management. Bus. Strategy Environ. 2014, 23, 1–17. [Google Scholar] [CrossRef]
- ISSB. IFRS S1 General Requirements for Disclosure of Sustainability-Related Financial Information. 2023. Available online: https://www.ifrs.org/issued-standards/ifrs-sustainability-standards-navigator/ifrs-s1-general-requirements/ (accessed on 4 May 2024).
- TNFD. The TNFD Nature-Related Risk and Opportunity Management and Disclosure Framework, Beta v0.4. 2023. Available online: https://tnfd.global/publication/tnfd-v0-4-integrated-framework (accessed on 3 May 2024).
- World Economic Forum. Nature Risk Rising: Why the Crisis Engulfing Nature Matters for Business and the Economy. New Nature Economy Series. 2020. Available online: https://www3.weforum.org/docs/WEF_New_Nature_Economy_Report_2020.pdf (accessed on 3 May 2024).
- Mathew, J.A. A Silicon Valley of the East: Creating Taiwan’s semiconductor industry. Calif. Manag. Rev. 1997, 4, 26–54. [Google Scholar] [CrossRef]
- Chang, M.F.; Lin, C.; Shen, C.H.; Wang, S.W.; Chang, K.C.; Chang, R.C.H.; Yeh, W.K. The role of government policy in the building of a global semiconductor industry. Nat. Electron. 2021, 4, 230–233. [Google Scholar] [CrossRef]
- Voas, J.; Kshetri, N.; DeFranco, J.F. Scarcity and global insecurity: The semiconductor shortage. IT Prof. 2021, 23, 78–82. [Google Scholar] [CrossRef]
- BBC. Why the World Should Pay Attention to Taiwan’s Drought. 2021. Available online: https://www.bbc.com/news/world-asia-56798308 (accessed on 21 April 2021).
- CNN. How Island’s Historic Drought Could Threaten the Global Economy. 2021. Available online: https://www.cnn.com/2021/06/09/business/taiwan-drought-semiconductors-intl-hnk/index.html (accessed on 9 June 2021).
- Chen, R.S.; Tsai, C.M. Development of an evaluation system for sustaining reservoir functions—A case study of Shiwen Reservoir in Taiwan. Sustainability 2017, 9, 1387. [Google Scholar] [CrossRef]
- Huang, W.C.; Chang, T.H.; Yang, F.T. Water supply evaluation of Taiwan’s Silicon Valley. J. Am. Water Resour. Assoc. 2001, 37, 1279–1289. [Google Scholar] [CrossRef]
- Aviso, K.; Chien, C.-F.; Lim, M.K.; Tan, R.; Tseng, M.-L. Taiwan Drought was a Microcosm of Climate Change Adaptation Challenges in Complex Island Economies. Process Integr. Optim. Sustain. 2021, 5, 317–318. [Google Scholar] [CrossRef]
- Narvaez, L.; Janzen, S.; Eberle, C.; Sebesvari, Z. Technical Report: Taiwan Drought; Interconnected Disaster Risks 2021/2022; United Nations University-Institute for Environment and Human Security (UNU-EHS): Bonn, Germany, 2022. [Google Scholar]
- Kamasa, J. Microchips: Small and Demanded. CSS Anal. Secur. Policy 2021, 295, 1–4. [Google Scholar]
- Frost, K.; Hua, I. A spatially explicit assessment of water use by the global semiconductor industry. In Proceedings of the 2017 IEEE Conference on Technologies for Sustainability (SusTech), Phoenix, AZ, USA, 12–14 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. [Google Scholar]
- Lin, L.Y.; Lin, C.T.; Chen, Y.M.; Cheng, C.T.; Li, H.C.; Chen, W.B. The Taiwan Climate Change Projection Information and Adaptation Knowledge Platform: A Decade of Climate Research. Water 2022, 14, 358. [Google Scholar] [CrossRef]
- Liu, S.C.; Wang, C.H.; Shiu, C.J.; Chang, H.W.; Hsiao, C.K.; Liaw, S.H. Reduction in Sunshine Duration over Taiwan: Causes and Implications. Terr. Atmos. Ocean. Sci. 2002, 13, 523–545. [Google Scholar] [CrossRef]
- Tung, Y.S.; Wang, C.Y.; Weng, S.P.; Yang, C.D. Extreme index trends of daily gridded rainfall dataset (1960–2017) in Taiwan. Terr. Atmos. Ocean. Sci. 2022, 33, 8. [Google Scholar] [CrossRef]
- Liu, S.C.; Fu, C.; Shiu, C.J.; Chen, J.P.; Wu, F. Temperature dependence of global precipitation extremes. Geophys. Res. Lett. 2009, 36, L17702. [Google Scholar] [CrossRef]
- Tung, Y.S.; Wang SY, S.; Chu, J.L.; Wu, C.H.; Chen, Y.M.; Cheng, C.T.; Lin, L.Y. Projected increase of the East Asian summer monsoon (Meiyu) in Taiwan by climate models with variable performance. Meteorol. Appl. 2020, 27, e1886. [Google Scholar] [CrossRef]
- Chou, C.; Chen, W.T.; Lo, M.H.; Lee, M.A.; Hsu, H.H.; Hong, C.C.; Cheng, C.T. Climate Change in Taiwan: Scientific Report 2017—Physical Phenomena and Mechanism; National Science and Technology Center for Disaster Reduction: New Taipei, Taiwan, 2017. Available online: https://tccip.ncdr.nat.gov.tw/upload/book/20180410112426.pdf (accessed on 6 November 2023).
- Chen, Y.J.; Chu, J.L.; Tung, C.P.; Yeh, K.C. Climate Change Impacts on Streamflow in Taiwan Catchments Based on Statistical Downscaling Data. Terr. Atmos. Ocean. Sci. 2016, 27, 741–755. [Google Scholar] [CrossRef]
- Kao, S.J.; Huang, J.C.; Lee, T.Y.; Liu, C.C.; Walling, D.E. The changing rainfall–runoff dynamics and sediment response of small mountainous rivers in Taiwan under a warming climate. In Proceedings of the Sediment Problems and Sediment Management in Asian River Basins, Hyderabad, India, 6–12 September 2011. [Google Scholar]
- Huang, J.C.; Lee, T.Y.; Lee, J.Y. Observed magnified runoff response to rainfall intensification under global warming. Environ. Res. Lett. 2014, 9, 034008. [Google Scholar] [CrossRef]
- Lee, T.Y.; Huang, J.C.; Lee, J.Y.; Jien, S.H.; Zehetner, F.; Kao, S.J. Magnified sediment export of small mountainous rivers in Taiwan: Chain reactions from increased rainfall intensity under global warming. PLoS ONE 2015, 10, e0138283. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.C.; Hsu, T.C.; Lee, T.Y.; Shih, Y.T.; Lin, C.Y.; Jien, S.H.; Hein, T.; Zehetner, F.; Shiah, F.K.; Huang, J.C. Unusual roles of discharge, slope and SOC in DOC transport in small mountainous rivers, Taiwan. Sci. Rep. 2019, 9, 1574. [Google Scholar] [CrossRef] [PubMed]
- Tsai, I.C.; Hsieh, P.R.; Cheng, C.T.; Tung, Y.S.; Lin, L.Y.; Hsu, H.H. Impacts of 2 and 4 °C global warmings on extreme temperatures in Taiwan. Int. J. Climatol. 2023, 43, 702–719. [Google Scholar] [CrossRef]
- Chen, Y.J.; Lin, H.J.; Liou, J.J.; Cheng, C.T.; Chen, Y.M. Assessment of flood risk map under climate change RCP8.5 scenarios in Taiwan. Water 2022, 14, 207. [Google Scholar] [CrossRef]
- Huang, W.R.; Chang, Y.H.; Hsu, H.H.; Cheng, C.T.; Tu, C.Y. Dynamical downscaling simulation and future projection of summer rainfall in Taiwan: Contributions from different types of rain events. J. Geophys. Res. Atmos. 2016, 121, 13–973. [Google Scholar] [CrossRef]
- Lee, T.Y.; Chiu, C.C.; Chen, C.J.; Lin, C.Y.; Shiah, F.K. Assessing future availability of water resources in Taiwan based on the Budyko framework. Ecol. Indic. 2023, 146, 109808. [Google Scholar] [CrossRef]
- Chen, Y.H.R.; Tseng, H.W.; Hsu, K.C.; Chen, S.Y.; Ke, C.C.; Chiang, L.C. Evaluation of hydrological responses to climate change for a data-scarce mountainous watershed in Taiwan. J. Water Clim. Chang. 2023, 14, 1447–1465. [Google Scholar] [CrossRef]
- Lee, C.H.; Lin, S.H.; Kao, C.L.; Hong, M.Y.; Mr, P.C.H.; Shih, C.L.; Chuang, C.C. Impact of climate change on disaster events in metropolitan cities-trend of disasters reported by Taiwan national medical response and preparedness system. Environ. Res. 2020, 183, 109186. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.C. A case study for identifying the potential challenges of water resources in the Yilan area of Taiwan: Using an adaptive water footprint approach. Environ. Sci. Pollut. Res. 2020, 27, 12725–12745. [Google Scholar] [CrossRef]
- Hsu, Y.J.; Fu, Y.; Bürgmann, R.; Hsu, S.Y.; Lin, C.C.; Tang, C.H.; Wu, Y.M. Assessing seasonal and interannual water storage variations in Taiwan using geodetic and hydrological data. Earth Planet. Sci. Lett. 2020, 550, 116532. [Google Scholar] [CrossRef]
- NSTC. National Climate Change Science Report 2024; National Science and Technology Center: New Taipei City, Taiwan, 2024. Available online: https://tccip.ncdr.nat.gov.tw/ScientificReport2024/ (accessed on 4 June 2024).
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT model special section: Overview and insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef]
- Lin, G.Z.; Hsu, S.Y.; Ho, C.C.; Chen, C.F.; Huang, J.C.; Lee, T.Y. Application of Soil and Water Assessment Tool (SWAT) to evaluate the fates of nitrogenous fertilizer in subtropical mountainous watershed tea farms. Environ. Monit. Assess. 2022, 194, 213. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool Input/Output Documentation Version 2012a; Texas Water Resources Institute: College Station, TX, USA, 2012; p. 7. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Abbaspour, K.C. SWAT-CUP2: SWAT Calibration and Uncertainty Programs—A User Manual; Department of Systems Analysis; Integrated Assessment and Modelling (SIAM), Eawag, Swiss Federal Institute of Aquatic Science and Technology: Duebendorf, Switzerland, 2008. [Google Scholar]
- Akhavan, S.; Abedi-Koupai, J.; Mousavi, S.F.; Afyuni, M.; Eslamian, S.S.; Abbaspour, K.C. Application of SWAT model to investigate nitrate leaching in Hamadan-Bahar Watershed. Iran. Agric. Ecosyst. Environ. 2010, 139, 675–688. [Google Scholar] [CrossRef]
- Abbaspour, K.C. User Manual for SWAT-CUP, SWAT Calibration and Uncertainty Analysis Programs; Swiss Federal Institute of Aquatic Science and Technology, Eawag: Duebendorf, Switzerland, 2007; p. 93. [Google Scholar]
- Abbaspour, K.C. SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs—A User Manual; Eawag: Dübendorf, Switzerland, 2013; p. 103. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Jha, M.K. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Yang, J.; Reichert, P.; Abbaspour, K.C.; Xia, J.; Yang, H. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J. Hydrol. 2008, 358, 1–23. [Google Scholar] [CrossRef]
- Lam, Q.D.; Schmalz, B.; Fohrer, N. Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model. Agric. Water Manag. 2010, 97, 317–325. [Google Scholar] [CrossRef]
- Yen, H.; Bailey, R.T.; Arabi, M.; Ahmadi, M.; White, M.J.; Arnold, J.G. The role of interior watershed processes in improving parameter estimation and performance of watershed models. J. Environ. Qual. 2014, 43, 1601–1613. [Google Scholar] [CrossRef]
- Guse, B.; Reusser, D.E.; Fohrer, N. How to improve the representation of hydrological processes in SWAT for a lowland catchment–temporal analysis of parameter sensitivity and model performance. Hydrol. Process. 2014, 28, 2651–2670. [Google Scholar] [CrossRef]
- Teng, T.Y.; Liu, T.M.; Tung, Y.S.; Cheng, K.S. Converting Climate Change Gridded Daily Rainfall to Station Daily Rainfall—A Case Study at Zengwen Reservoir. Water 2021, 13, 1516. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Santra, P.; Das, B.S. Modeling runoff from an agricultural watershed of western catchment of Chilika lake through ArcSWAT. J. Hydro-Environ. Res. 2013, 7, 261–269. [Google Scholar] [CrossRef]
- Sorando, R.; Comín, F.A.; Jiménez, J.J.; Sánchez-Pérez, J.M.; Sauvage, S. Water resources and nitrate discharges in relation to agricultural land uses in an intensively irrigated watershed. Sci. Total Environ. 2019, 659, 1293–1306. [Google Scholar] [CrossRef] [PubMed]
- Jasechko, S.; Kirchner, J.W.; Welker, J.M.; McDonnell, J.J. Substantial proportion of global streamflow less than three months old. Nat. Geosci. 2016, 9, 126–129. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Glendon, S.; Duffy, P.B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. USA 2020, 117, 19656–19657. [Google Scholar] [CrossRef]
- MEA. Forward-Looking Infrastructure Design—Water Environment Construction: Taoyuan-Hsinchu Backup Pipeline Project Plan; Ministry of Economic Affairs: New Taipei City, Taiwan, 2020. Available online: https://www-ws.wra.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvNDAzL3JlbGZpbGUvMC8xODM2OS8xYzA3ZDI5ZS1lNmU0LTQxYzktOTM4Zi1hMDdmN2UwMDRiY2MucGRm&n=5qGD56u5566h57ea56ysMeasoeS%2fruaguOWumuacrC5wZGY%3d (accessed on 28 April 2024).
- Li, C.E.; Lin, Z.E.; Dong, W.H.; Kuo, N.W.; Chiueh, P.T. Evaluating the Impact of Water Scarcity on Industrial Output Value in Hsinchu Area from the Perspective of Ecosystem Provisioning Services. J. Technol. Manag. 2023, 28, 101–132. (In Chinese) [Google Scholar]
- Svoboda, M.; Hayes, M.; Wood, D. Standardized Precipitation Index User Guide; WMO-No.1090; World Meteorological Organization: Geneva, Standardized, 2012. [Google Scholar]
- NRWRB. Hsinchu Desalination Plant Project; Northern Region Water Resources Branch, Water Resources Agency: Taichung City, Taiwan, 2020. Available online: https://www.wranb.gov.tw/cp.aspx?n=37866 (accessed on 4 May 2024).
- Huang, W.C.; Chang, C.W. Water shortage risk in Taiwan’s Silicon Valley. J. Chin. Inst. Eng. 2022, 45, 513–520. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, N.; Cai, H.; Chen, X.; Wu, Y. Water strategies and practices for sustainable development in the semiconductor industry. Water Cycle 2023, 4, 12–16. [Google Scholar] [CrossRef]
- TSMC. Sustainability Report. 2022. Available online: https://esg.tsmc.com/download/file/2022_sustainabilityReport/english/e-all.pdf (accessed on 4 May 2024).
Reservoir | Reservoir Operation | Established Operation Rules | |||
---|---|---|---|---|---|
BR | Qout,BR,t | 0.178·VBR,t−1 + 1.637 | (2) | 0.51 | |
Qin,BR,t | >ORC | If Qt < 1000, then Qin,BR,t = 3.84 + 0.015·Qt + 0.17·VBR,t−1; otherwise, Qin,BR,t = 125 | (3) | 0.48 * | |
≤ORC | 57.166·ln(Qt) − 260.71 | (4) | 0.78 | ||
BSR | Qout,BSR,t | If VBSR,t−1 > 9.535·Average daily HSP water usage + 0.04·(VBR,t−1 + VBSR,t−1)+54.31 − Qout,BR,t, then Qout,BSR,t = 9.535·Average daily HSP water usage+0.04·(VBR,t−1 + VBSR,t−1)+54.31 − Qout,BR,t; otherwise, Qout,BSR,t = VBSR,t−1 | (5) | 0.53 | |
Qin,BSR,t | >ORC | If Qt < 1000, then Qin,BSR,t = 242.1 + 0.36·Qt − 0.062·VBSR,t−1; otherwise, Qin,BSR,t = 250 | (6) | 0.36 * | |
≤ORC | 0.9067·Qt − 38.376 | (7) | 0.93 |
Parameter | Description | Best Fit | Min. Value | Max. Value |
---|---|---|---|---|
CN2 | Curve number for moisture condition II [%] | −0.36 | −0.38 | −0.19 |
ALPHA_BF | Base flow alpha factor [-] | 0.54 | 0.45 | 0.76 |
GW_DELAY | Delay time for aquifer recharge [day] | 1.16 | 0.00 | 22.8 |
GWQMN | Threshold depth of water in shallow aquifer for return flow to occur [mm] | 1777 | 546.8 | 1849 |
GW_REVAP | Groundwater revap coefficient [-] | 0.11 | 0.08 | 0.25 |
RCHRG_DP | Deep aquifer percolation coefficient [-] | 0.17 | −0.24 | 0.27 |
REVAPMN | Threshold depth of water in the shallow aquifer for revap to occur [mm] | 6.72 | 0.00 | 181.6 |
SOL_AWC | Available water capacity of the soil layer [mm] | −0.06 | −0.20 | −0.02 |
ESCO | Soil evaporation compensation factor [-] | 0.06 | 0.00 | 0.30 |
SURLAG | Surface runoff lag coefficient [-] | 15.7 | 14.4 | 24.3 |
S | M1 | M2 | L | |
---|---|---|---|---|
RCP2.6 | −122 | −511 | 104 | −30 |
RCP4.5 | −38 | −349 | −238 | −410 |
RCP6.0 | −481 | −1036 | −753 | −484 |
RCP8.5 | 171 | −385 | −289 | −686 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.-Y.; Lai, Y.-P.; Teng, T.-Y.; Chiu, C.-C. Impact Assessment of Climate Change on Water Supply to Hsinchu Science Park in Taiwan. Water 2024, 16, 1746. https://doi.org/10.3390/w16121746
Lee T-Y, Lai Y-P, Teng T-Y, Chiu C-C. Impact Assessment of Climate Change on Water Supply to Hsinchu Science Park in Taiwan. Water. 2024; 16(12):1746. https://doi.org/10.3390/w16121746
Chicago/Turabian StyleLee, Tsung-Yu, Yun-Pan Lai, Tse-Yang Teng, and Chi-Cheng Chiu. 2024. "Impact Assessment of Climate Change on Water Supply to Hsinchu Science Park in Taiwan" Water 16, no. 12: 1746. https://doi.org/10.3390/w16121746
APA StyleLee, T. -Y., Lai, Y. -P., Teng, T. -Y., & Chiu, C. -C. (2024). Impact Assessment of Climate Change on Water Supply to Hsinchu Science Park in Taiwan. Water, 16(12), 1746. https://doi.org/10.3390/w16121746