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Abstract: With escalating human activities and the substantial emissions of greenhouse gases, global
warming intensifies. This phenomenon has led to increased occurrences of various extreme hydro-
logical events, precipitating significant changes in lakes and rivers across the Qinghai Tibet Plateau.
Therefore, accurate information extraction about and delineation of water bodies are crucial for
lake monitoring. This paper proposes a methodology based on the Normalized Difference Water
Index (NDWI) and Gumbel distribution to determine optimal segmentation thresholds. Focusing on
Qinghai Lake, this study utilizes multispectral characteristics from the US Landsat satellite for analy-
sis. Comparative assessments with seven alternative methods are conducted to evaluate accuracy.
Employing the proposed approach, information about water bodies in Qinghai Lake is extracted
over 38 years, from 1986 to 2023, revealing trends in area variation. Analysis indicates a rising trend
in Qinghai Lake’s area following a turning point in 2004. To investigate this phenomenon, Pearson
correlation analysis of temperature and precipitation over the past 38 years is used and unveils
the fact that slight precipitation impacts on area and that there is a positive correlation between
temperature and area. In conclusion, this study employs remote sensing data and statistical analysis
to comprehensively investigate mechanisms driving changes in Qinghai Lake’s water surface area,
providing insights into ecological shifts in lake systems against the backdrop of global warming,
thereby offering valuable references for understanding and addressing these changes.

Keywords: remote sensing; NDWI; water body

1. Introduction

With the intensification of human activities and the massive emission of greenhouse
gases, climate warming is occurring. The warming rate of the Qinghai Tibet Plateau, known as
the “Asian Water Tower”, is 0.36 ◦C/10a [1], which is about twice the global warming rate [2].

The lakes and rivers on the Qinghai Tibet Plateau have undergone significant changes.
Remote sensing technology has been applied in recent years to accurately isolate and extract
information about water bodies due to its wide monitoring range, fast acquisition, relatively
short imaging period, and ability to collect large amounts of information. Furthermore,
the process of collecting remote sensing data is not subject to the subjective influences
of human factors, thereby ensuring higher objectivity and consistency in the data, and
consequently providing more reliable water body information.

As a commonly employed method for remote sensing water information extraction,
the water index approach possesses distinctive advantages but also entails limitations.
Leveraging the reflective properties of ground objects across various spectral bands, it

Water 2024, 16, 1755. https://doi.org/10.3390/w16121755 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16121755
https://doi.org/10.3390/w16121755
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-7007-5284
https://doi.org/10.3390/w16121755
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16121755?type=check_update&version=1


Water 2024, 16, 1755 2 of 21

accentuates and enhances target entities. By integrating operations across multiple spectral
bands, it constructs a water index, facilitating the rapid and precise extraction of water-
related information. Moreover, the extraction of information about water boundary ranges
is comparatively precise. Nevertheless, the coexistence of phenomena such as “same-
spectrum, different objects” and “different-spectrum, same objects” leads to challenges
like misclassification and leakage. Consequently, determining the optimal threshold for
the water index method typically necessitates adjustments and optimizations through
experimentation and practical application [3].

Liu et al. used 10 water index methods to extract information about water bodies from
Landsat and Sentinel-2 images in Jilin Province, China. The Otsu algorithm was used to
adaptively determine the segmentation threshold for each indicator, and the indicators
were compared in terms of inter-class separability, threshold sensitivity, optimal threshold
robustness, and water information extraction accuracy [4].

Currently, researchers have extensively investigated water body detection across various
contexts, leveraging water indices, multispectral data sources, and spatial resolution, in an
endeavor to devise methodologies addressing this issue. Presently, emphasis lies on two pivotal
stages within the application framework of this approach. Firstly, the development and selection
of water indices under diverse circumstances are undertaken, succeeded by the determination
of an optimal segmentation threshold [3]. This study is confined solely to the determination of
the optimal segmentation threshold for the NDWI (Normalized Difference Water Index) [5].

Global thresholding methods [6] encompass Otsu’s method, which maximizes inter-
class variance [7], the minimum error method [8], and the maximum entropy method [9].
The minimum error method operates on the assumption of a proportional relationship
between misclassification probabilities of background and target objects. The optimal
segmentation threshold, corresponding to minimizing misclassification, achieves image
segmentation. The fundamental principle of the maximum entropy method is to identify
the threshold that maximizes the sum of Shannon entropy for two regions, thereby deter-
mining the optimal segmentation threshold. The advantage of global thresholding methods
lies in their straightforward principles and ease of implementation. However, they may
encounter challenges in determinacy and susceptibility to local optima. In images with
significant noise, segmentation outcomes may prove unsatisfactory.

Machine learning algorithms are extensively utilized in image segmentation due to
their ability to effectively leverage complex image features; handle nonlinear relationships;
exhibit flexibility and generalization capabilities; facilitate automated image segmenta-
tion processes such as maximum likelihood; and Support Vector Machines [10], decision
trees [11], random forests, K-means [12], etc. With the decision tree method, optimal
features of the data are identified through several judgment conditions, gradually refin-
ing them into two parts. In remote sensing image extraction, it is often combined with
single-band and exponential methods, offering rapid computation. However, decision trees
are highly sensitive to minor variations in input data, which may result in different trees
being generated on different training datasets, thereby lacking stability. Random forests
necessitate the construction of multiple decision trees, each considering randomly selected
features at each node, akin to a “voting system,” undoubtedly increasing computational
costs, particularly on large-scale datasets.

The emergence and development of deep learning are due to the advancement of big
data, computing resources, and algorithm theory. A large amount of data can provide rich
training samples for training deep neural networks; high performance computing resources
can support large-scale parameter training and complex network structures; and the con-
tinuous advancement of algorithm theory provides more effective optimization algorithms
and training techniques, enabling deep neural networks to learn and generalize better [13].

The Fully Convolutional Network (FCN) proposed by Long et al. [14]. in 2015 is a
pioneering work in the field of deep learning for semantic segmentation [15]. It can support
images of any size as input. FCN replaces the fully connected layer behind the traditional
Convolutional Neural Networks (CNN) with a convolutional layer, so that the network’s
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output will be a heatmap rather than a category. At the same time, to address the issue
of image size reduction caused by convolution and pooling operations, the upsampling
Up Sample method is used to restore image size. To a certain extent, it has promoted
the development of semantic segmentation, but the drawbacks are also obvious. The
upsampling operation is rough, and the loss of details is also very serious, ignoring the
connection between pixels [16].

In 2015, Olaf Ronneberger et al. proposed U-Net [17], which is based on a symmetric
encoder decoder structure. In order to reduce the loss of detail information caused by
convolutional pooling operations, this network uses skip connections to compensate for lost
information for upsampling [18]. However, continuous upsampling cannot fully recover
the loss of image detail information caused by max pooling, and the accuracy is limited.

In 2016, the International Conference on Learning Representation (ICLR) proposed
atrous convolution, which is a convolutional approach proposed to address the loss of
detail information by increasing the spacing between convolutional kernel elements to
expand the receptive field [19].

The Deeplab [20–23] series is a semantic segmentation network developed by the
Google team. The network combines dilated convolution to expand the receptive field, dou-
bling the receptive field without increasing the number of parameters [21], and obtaining
multi-scale feature information to improve segmentation accuracy.

Researchers found that increasing the number of layers in a network to a certain extent
does not improve network performance, and could also lead to overfitting, vanishing
gradients, or exploding gradients. Deep learning seemed to have entered a bottleneck.
Therefore, in 2016, Kaiming He et al. proposed ResNet [24], also known as the Shortcut
Connection by the author. In this network, residual blocks were first used. This design
of the residual network makes the model easier to optimize, and even in networks with
convolutional pooling depths exceeding 100 layers, performance can still be guaranteed,
making it easier to find convergence points during the training process. At the same time,
the drawbacks of ResNet are also obvious, requiring more computing resources for training
and inference. Due to its depth and complexity, training may take a long time and the
size of the model may also increase. Secondly, due to its large number of parameters,
ResNet may overfit certain datasets. In practice, it may be necessary to use regularization
techniques such as Dropout to alleviate overfitting problems [25].

In 2019, Ke Sun et al. proposed HRNet. It takes a high-resolution subnet as the first stage,
gradually increasing the number of high-resolution to low resolution subnets to form more
stages, and the subnets of multiple stages are connected in parallel through upsampling and
convolution [26]. The network maintains high resolution throughout the entire process by
continuously exchanging information and fusing multi-scale features. The resulting feature
representations are not only strong, but also precise in space, which to some extent improves
the problems of detail loss and insufficient accuracy in existing algorithms. However, a
large amount of repeated fusion between multiple stages can also generate several times the
computational complexity, and parameter quantity and dense feature fusion can also calculate
a large amount of redundancy and the same information [16].

Due to the threshold determination in the water body index method for extracting
information about water, it requires repetitive experimentation and visual judgment, which
is empirical and highly subjective.

This paper proposes a method that utilizes input samples on NDWI imagery to infer
the parameters µ and σ of the Gumbel distribution, thereby determining the optimal seg-
mentation threshold T. The Gumbel distribution is widely employed in various fields such
as oceanography, hydrology, meteorology, etc., for computing extreme high (or low) water
levels associated with different return periods. The annual maximum water level can be
regarded as being influenced by precipitation and numerous stochastic factors [27]. Based
on the Normalized Difference Water Index (NDWI) [5], this study compares the accuracy
of the proposed method with Support Vector Machine (SVM) [10], Otsu’s method [7],
K-means clustering [12], genetic algorithm (GA) [28], maximum likelihood estimation
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(MLE), and AdaBoost [29]. Pixel-level fusion is employed to stitch and merge images, and,
subsequently, information about the water surface area of Qinghai Lake from 1986 to 2023
is extracted and analyzed. The variation in Qinghai Lake’s water surface area over 38 years
is examined in correlation with trends in temperature, precipitation, and related factors.

2. Materials and Methods
2.1. Study Area

Qinghai Lake, located in the northeast of the Qinghai Tibet Plateau in China, is the
largest inland lake and also the largest saltwater lake in China. It is an important water
body that maintains ecological security in the northeast of the Qinghai Tibet Plateau [30].
Qinghai Lake is an important component of the Qinghai Tibet Plateau and plays a crucial
role in maintaining local ecological balance. It provides habitat for a large number of aquatic
organisms, including many rare and endangered species. Qinghai Lake also has a significant
impact on the climate of the surrounding areas through water vapor evaporation, which
helps to maintain and improve the regional ecological environment. Qinghai Lake is a natural
climate and environmental monitoring station. By observing and studying Qinghai Lake, we
can understand the environmental and climate change trends of the Qinghai Tibet Plateau
and the world. This is of great significance for predicting and addressing climate change.

The Qinghai Lake Basin has abundant precipitation, and the high-altitude wetland
ecosystems such as glaciers, rivers, swamps, and lakes play an irreplaceable role in regulat-
ing the climate, maintaining water conservation, and maintaining ecological balance in the
northwest region. It is an important water source in the Yellow River Basin, an important
water body for maintaining ecological security in the northeast of the Qinghai Tibet Plateau,
and a natural ecological barrier for protecting the economic and social development of
Qinghai Province in China.

Therefore, protecting Qinghai Lake is not only of great significance for maintaining
local ecological, economic, and social sustainable development, but also of great value for
global environmental protection and the future development of human society.

Qinghai Lake is located to the northwest of Xining City, Qinghai Province, China, between
99◦36′ E and 100◦16′ E, and between 36◦32′ N and 37◦15′ N. The lake is situated at an altitude
of 3193.8 m above sea level, with a surface area of 4476 square kilometers, stretching 104 km
from west to east and 62 km from north to south, as shown in Figure 1. It has an average
water depth of 21 m, with a maximum depth of 27 m, and a water volume of 71.6 × 109 cubic
meters. The drainage basin covers an area of 29,661 square kilometers (as of 2017) [30].

Figure 1. Qinghai Lake location information.
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2.2. Data Processing

This study utilized data obtained from Landsat satellites, renowned for their rich
spectral bands and moderate spatial resolution capabilities. Specifically, imagery from
Landsat 9 captured on 21 March 2023, Landsat 8 captured on 15 October 2015, and Landsat 5
captured on 21 July 1998, were individually employed for analysis. Preliminary assessments
confirmed the high quality of the selected imagery, free from atmospheric interferences
such as cloud cover or fog. To ensure the accuracy and reliability of subsequent analyses,
we conducted image cropping on the study area, resulting in a final cropped size of
3584×2304 pixels.

2.3. Methods
2.3.1. Calculating Multispectral Water Indices

The Normalized Difference Water Index (NDWI) is a widely utilized remote sensing
technique employed to delineate water bodies and monitor water-related changes across
various landscapes. NDWI quantifies the presence of water by exploiting the distinct
absorption and reflection properties of water and non-water features in near-infrared
(NIR) and green spectral bands. It is calculated as the normalized difference between
the NIR and green bands, resulting in a numerical index that accentuates water bodies
while suppressing background influences such as soil and vegetation. NDWI’s robustness
in discriminating water features amidst diverse environmental settings has rendered it
invaluable in applications ranging from hydrological studies and ecosystem monitoring to
agricultural management and urban planning. Its simplicity, efficiency, and effectiveness
make NDWI a cornerstone in remote sensing-based water resource management and
environmental assessment endeavors [31].

The Normalized Difference Water Index (NDWI) was proposed by McFeeters S K et al.;
it maximizes the suppression of vegetation information and enhances water characteristics
based on the different reflectance of water in the near-infrared and green light bands [5].
The following is the formula for water body index:

DWI =
Green − NIR
Green + NIR

(1)

Green is the green band and NIR, Near Infrared, is the near-infrared band.
The histogram of the water index method roughly presents a bimodal shape, with an

interval between [–1, 1]. The first peak is the frequency histogram of non-water bodies,
while the second peak is water bodies. In theory, the optimal segmentation threshold
is located at the lowest point between the two peaks, as shown in Figure 2. However,
different seasons, months, and light conditions result in differences in the shape of his-
tograms, and if there is cloud pollution, it may not exhibit bimodal characteristics. Here,
we use the minimum frequency interval median between the two peaks as the optimal
segmentation threshold.



Water 2024, 16, 1755 6 of 21

Figure 2. Frequency histogram of NDWI. The blue color in the figure represents the frequency
histogram.

2.3.2. Machine Learning
NDWI-SVM (Support Vector Machine)

Support Vector Machine (SVM) was first proposed by Cortes and Vapnik [10], and is a
supervised classification model commonly used in classification and regression analysis.
The basic principle is to construct a hyperplane as the decision boundary by training the
features of the samples, so that samples of different categories are distributed as widely
as possible on both sides of the hyperplane. In remote sensing images, there are usually
significant differences in the characteristics of water and non-water bodies, so SVM method
can be used for water information extraction. The formula is as follows:

f(x) =
n

∑
i=1

(αi − α∗
i )K(xi, x) + b (2)

The kernel function used is the radial basis function.

K(xi, x) = exp
(
−g∥xi − x∥2

)
(3)

0 ≤ αi ≤ C (4)

where αi and α∗
i are the Lagrange multipliers and K(xi, x) is the kernel function, which is

the inner product of vectors xi and x in the feature space.
Using the water pixel values and non-water pixel values of the training samples as

input variables, the radial basis function is selected as the kernel function, and the model
parameters, such as the penalty coefficient C and kernel function coefficient g, are adjusted
to find the best model [32].

NDWI-K-Means

The K-means algorithm belongs to clustering algorithms and unsupervised classifica-
tion. Its primary parameter is the number of clusters, denoted as K. Given the presence
of two categories, water and non-water, the number of clusters is set to two. The cluster
centers, representing the closest distances between the sample data and the centroids, are
classified as the centroids. In this context, random points from the sample are used as
initial cluster centers. The selection of centroids is determined using the Euclidean distance
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method, with iterations continuing until the specified tolerance for error is met. This
process is described by Equation (5).

d(xi, xj) =
∥∥xi − xj

∥∥ = (xi − xj)
T(xi − xj) =

√
n

∑
k=1

(
xik − xjk)2 (5)

NDWI-MLE (Maximum Likelihood Estimation)

The maximum likelihood method is a statistical method used to estimate the probabil-
ity distribution of data. In image segmentation, it can be used to determine the probability
that a pixel point belongs to a particular category. It belongs to supervised classification,
which takes water body and non-water body samples as input.

L(θ) =
n

∏
i=1

f (xi; θ) (6)

θ = {µ, σ} (7)

lnL(θ) =
n

∑
i=1

ln f (xi; θ) (8)

θ̂ = argmax{lnL(θ)} (9)

NDWI-AdaBoost

NDWI images are processed using the AdaBoost algorithm. Specifically, the weights
are initialized, and then multiple rounds of iterations are performed with a weak classifier,
updating the weights after each iteration until a preset number of iterations is reached or
a preset error rate is reached [13]. The final water body extraction results are generated.
The classification result of each pixel point is determined by the voting of the classification
result of each weak classifier. The number of iterations is 100.

F(x) = sign(
T

∑
t=1

αtht(x)) (10)

2.3.3. NDWI-Otsu

Otsu is an algorithm for determining the binarized segmentation threshold of an
image; it was proposed by the Japanese scholar Otsu in 1979, and is regarded as the best
method for global threshold selection in image segmentation.

σ2 = ω0

(
µT − µ0)

2 + ω1

(
µT − µ1)

2 (11)

T = argmax
{

σ2
}

(12)

µT = ω0µ0 + ω1µ1 (13)

Pi =
ni

M × N
(i = 0, 1, . . . L − 1) (14)

ω0 =
T

∑
i=0

Pi (15)

ω1 =
L−1

∑
i=T+1

Pi = 1 − ω0 (16)

µ0 =
T

∑
i=0

iPi
ω0

(17)



Water 2024, 16, 1755 8 of 21

µ1 =
L−1

∑
i=T+1

iPi
ω1

(18)

2.3.4. NDWI-GA (Genetic Algorithm)

Genetic algorithm is an optimization search algorithm that draws on some phenomena
in evolutionary biology, such as heredity, mutation, natural selection, and hybridization.
By simulating the evolutionary process in nature, genetic algorithms are able to find the
optimal solution in the search space, which is especially suitable for those problems that are
difficult to solve directly by mathematical models. In image threshold segmentation, genetic
algorithms can help to automatically find the optimal threshold value, thus, realizing image
segmentation [28].

The parameters of the genetic algorithm are configured as follows: the chromosome
length is set to 10, indicating the length of genetic encoding for each individual solution; a
population size of 10 individuals is employed in each generation to constitute the evolving
population; a crossover probability of 0.7 is applied, defining the likelihood of generat-
ing new individuals through crossover operation as 0.7; a mutation probability of 0.3 is
utilized, denoting the probability of an individual undergoing mutation as 0.3 during the
evolutionary process; and a maximum number of generations of 100 is specified, indicating
the limit of iterations for the genetic algorithm, beyond which the algorithm terminates
its execution.

2.3.5. NDWI-Gumbel

The manual method is intuitive but susceptible to subjective factors and is time-
consuming. Maximum likelihood methods and automated determination methods based
on expert systems, although relatively objective and accurate, are computationally intensive
and require high levels of data and expert experience.

The Gumbel distribution has emerged as the preferred choice in extreme value analy-
sis. This distribution possesses theoretical properties that render it particularly suitable for
characterizing the distribution of extreme events. Moreover, its empirical fit to observed
data in specific contexts often proves superior, further reinforcing the rationale for its appli-
cation in extreme value analysis. Consequently, the selection of the Gumbel distribution as
the foundational model for extreme value analysis is grounded in its theoretical advantages.
Nonetheless, extensive testing of probability distributions has been conducted, yielding
results that have not been entirely satisfactory.

In conclusion, determining the optimal threshold for NDWI is a complex process that
requires the consideration of multiple factors and the use of scientific methods and tools
for evaluation and optimization. In view of this, this paper proposes a water information
extraction method based on Gumbel distribution classification.

It is assumed that both the water body and the background data frequency histogram
must satisfy the Gumbel distribution.

First, the normalized water body index method is applied to the remote sensing image
data. The pixel values of the NDWI images are taken as input. The Gumbel distribution
parameters and mixture weights are estimated by great likelihood.

Where the formula of Gumbel distribution is as follows:

f(x|µ,σ) =
1
σ

e
x−µ
σ −e

x−µ
σ

(19)

where µ is the position parameter and σ is the scale parameter.
Substitute the a priori samples into the probability density function by maximum

likelihood estimation (MLE) to estimate the parameters µ and σ, respectively, as follows:
Then let the parameter set θ

f(x) = mf1(x; θ1) + (1 − m)f2(x; θ2) (20)
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where θ1 = {µ1,σ1} and θ2 = {µ2,σ2}.
The parameters of the Gumbel distribution were estimated separately through the

NDWI prior samples with the following equations:

L(θ) =
n

∏
i=1

f(x = xi; θ) (21)

Both sides of the equation take logarithms:

ln L(θ) =
n

∑
i=1

ln f(x = xi; θ) (22)

θ̂ = arg max ln L(θ) (23)

Derivation θ finally solves the parameter θ

d ln L(θ)
dθ

= 0 (24)

Substitute the parameters θ and m into Equation (4) to obtain the mixed probability
density function f(x).

Then, the constructed probability density is derived to obtain the minimum value
as follows:

x∗ = arg min{f(x)} (25)

df(x)
dx

= 0 (26)

The obtained solution serves as the optimal segmentation threshold used to distinguish
water bodies from non-water bodies in the NDWI imagery.

The above figure shows the red curve as the mixed Gumbel distribution curve of water
bodies and non-water bodies, as shown in Figure 3.

Figure 3. Mixed probability density distribution plot.

Next, the image elements of NDWI are individually discriminated one by one, and
those larger than the threshold T are water bodies, and, conversely, those smaller than T
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are non-water bodies. The segmented image image_seg binarized image is obtained; 0 is
non-water body and 1 is water body.

image_seg(i, j) =
{

1, NDWI(i, j) ≥ T
0, NDWI(i, j) < T

(27)

3. Results

The following table shows the binary segmentation maps, number of pixels, and
extraction area (km2) for the NDWI-Gumbel, NDWI, NDWI-SVM, NDWI-Otsu, NDWI-K-
means, NDWI-GA, NDWI-MLE, and NDWI-AdaBoost methods, respectively (Table 1).

Table 1. Result.

Methods 2023/3/21-Landsat 9 2015/10/15-Landsat 8 1998/7/21-Landsat 5

NDWI-Gumbel

NDWI

NDWI-SVM

NDWI-Otsu

NDWI-Kmean

NDWI-GA
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Table 1. Cont.

Methods 2023/3/21-Landsat 9 2015/10/15-Landsat 8 1998/7/21-Landsat 5

NDWI-MLE

NDWI-AdaBoost

Note: The red rectangular boxes in the segmentation image above represent water bodies that were mistakenly
classified as non-water bodies, while the green rectangular boxes represent non-water bodies that were mistakenly
classified as water bodies.

An accuracy evaluation of the binary categorization problem for water bodies and
non-water bodies was made using a 2 × 2 confusion matrix with the horizontal coordinate
as the true category, the vertical coordinate as the predicted category, and the number of
pixels within the matrix.

Random sampling of 10,000 points: in a semantic segmentation task, firstly, the image
needs to be randomly sampled and about 10,000 points are selected as samples. These
points should cover all kinds of semantic regions in the image, including different objects,
backgrounds and edges, etc. [33].

Visual discrimination: 20,000 randomly sampled points are annotated on each original
image to visually discriminate the semantic category of each point. This step requires
manual completion with the assistance of a semi-automatic annotation tool. Each sampled
point needs to be accurately labeled with its corresponding semantic category.

Establishment of confusion matrix: the confusion matrix is a tool used to evaluate the
performance of classification models. It provides insights into the accuracy and errors of the
model across different classes. Specifically, for each semantic category i, the proportions of
correct or incorrect classifications as i-class in the training samples are counted to construct
a table. If the actual category is i and it is correctly classified as i, it is counted as true
positive (TP); if the actual category is i but incorrectly classified as another category j (j
̸= i), it is counted as false positive (FP); if the actual category is i but not covered by any
predicted category i, it is counted as false negative (FN); if the actual category is i and
correctly predicted as i, it is counted as true negative (TN). See Table 2.

Table 2. Confusion matrix.

Real

Water Other

Prediction
Water True Positive False Positive
Other False Negative True Negative

Through the confusion matrix, the classification accuracy and error of the model
when applied to each category can be visualized, so that the model can be optimized and
adjusted. Meanwhile, the confusion matrix can also be used to guide data labeling and
sample selection to improve the generalization ability of the model.
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The evaluation indexes are total precision OA, precision rate precision, recall rate
recall, Mean Intersection over Union (MIoU), as in Equations (26)–(29), respectively:

Overall Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (28)

Precision =
TP

TP + FP
(29)

Recall =
TP

TP + FN
(30)

MIoU =
1

k + 1

k

∑
i=1

TP
TP + FN + FP

(31)

1. Overall accuracy (OA) is the most commonly used evaluation metric in image segmen-
tation, and indicates the proportion of total pixels that are correctly classified by the
segmentation algorithm. Overall accuracy gives a measure of the overall performance
of the algorithm.

2. Precision is the probability that among all the pixels that are classified as positive
examples, they are actually positive examples. It focuses on the prediction accuracy
of the classifier for positive cases, i.e., whether the target region in the image is
correctly recognized.

3. Recall is the probability that among all the pixels that are actually positive examples,
they are correctly recognized as positive examples. It is concerned with the degree of
coverage of the classifier with respect to the target region, i.e., whether all the target
regions in the image are recognized.

4. Mean Intersection over Union (MIoU) is a more applicable evaluation metric for multi-
category image segmentation which measures the ratio of intersection and concate-
nation of predicted pixels to real pixels in each category. MIoU takes into account
the classification accuracy and coverage at the pixel level, and is able to evaluate the
performance of the segmentation algorithm in a more comprehensive way.

The total accuracy provides a quick and intuitive evaluation of the overall perfor-
mance of the algorithm, but it does not reflect well the differences in the segmentation
performance of the algorithm in complex images or between different categories. In terms
of accuracy, in some cases, we may be more interested in the classifier’s prediction ac-
curacy for positive examples, such as in target detection tasks. Precision rate measures
how accurately a classifier recognizes a target region. In terms of recall, in other cases,
we may be more interested in how well the classifier covers the target region, such as in
semantic segmentation tasks. Recall measures whether the classifier recognizes all target
regions. The equalization and concurrency ratio is a more appropriate evaluation metric
in multi-category image segmentation tasks. It can take into account the classification
accuracy and coverage at the pixel level to evaluate the performance of the segmentation
algorithm in a more comprehensive way. Each of these metrics has its own focus, so when
evaluating the performance of image segmentation algorithms, these metrics are usually
considered in a comprehensive way to obtain more comprehensive evaluation results.

Table 3 provides an overview of the accuracy evaluation for each method employed
in this study. Evaluated metrics include overall accuracy (OA), precision, recall, and
Mean Intersection over Union (MIoU). The NDWI-Gumbel method demonstrated the
highest overall accuracy at 91.75%, with precision, recall, and MIoU values of 92.21%,
91.87%, and 90.94%, respectively. These results underscore the robustness and effectiveness
of the NDWI-Gumbel approach in accurately delineating water bodies. Other methods
such as NDWI, NDWI-SVM, NDWI-K-means, and NDWI-GA also exhibited high overall
accuracies ranging from 89.19% to 91.36%. However, slight variations were observed
among these methods in terms of precision, recall, and MIoU. In contrast, the NDWI-MLE
method showed slightly lower overall accuracy (84.43%) compared to other methods,
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with correspondingly lower precision, recall, and MIoU values. This suggests that NDWI-
MLE may be less effective in accurately identifying water bodies compared to the other
evaluated methods. Overall, the results from Table 3 highlight that the NDWI-Gumbel
method outperforms other methods in terms of overall accuracy and other evaluation
metrics, making it the preferred choice for delineating water bodies in this study.

Table 3. Accuracy Evaluation Table for Each Method.

Method OA Precision Recall MIoU

NDWI-Gumbel 91.75% 92.21% 91.87% 90.94%
NDWI 91.36% 92.08% 92.23% 90.66%

NDWI-SVM 90.89% 91.32% 91.04% 90.04%
NDWI-Otsu 86.67% 87.11% 86.81% 85.49%

NDWI-K-means 89.61% 89.96% 89.37% 88.76%
NDWI-GA 89.19% 89.73% 89.45% 88.52%

NDWI-MLE 84.43% 85.04% 85.10% 83.71%
NDWI-Adaboost 87.26% 87.83% 87.14% 86.69%

4. Discussion

In this study, NDWI, a water body index, was used to extract information about the
Qinghai Lake water body in 2023. The water body index method of extracting information
about the water body is relatively simple and fast compared to machine learning and
deep learning methods, but there are certain problems due to the similarity of spectral
reflectance and absorption characteristics of some objects and the surface of the water
body; the phenomenon of heterogeneous objects with the same spectrum exists; the glaciers
around the study area and the snow also impinge into the water body; a small portion
of shadows have also been misclassified as a water body; and repeated experiments to
determine the optimal threshold by visual judgment are also more subjective. The method
of determining the optimal threshold was also subjective.

The maximum interclass variance method is the Otsu method. This high efficiency, maxi-
mum interclass variance method (OTSU) is a fast and effective threshold selection method; the
computational process is simple and fast, and it can effectively segment the image. The OTSU
thresholding method obtains the optimal threshold by automatic calculation, which avoids
errors due to a human-set threshold. There are also some shortcomings. Although the Otsu
method can automatically select the threshold value, in practice, the selection of the thresh-
old value may be affected by a variety of factors such as image quality, lighting conditions,
etc., resulting in the threshold value between different images not being comparable. The
extraction of information about large-scale water bodies may have the problem of omission or
false alarm. Since the NDWI index is calculated based on image elements, the extraction of
information about large-scale water bodies may not include recognition of the boundary of
water bodies completely, resulting in false alarms or the omission of water bodies [4].

NDWI-SVM (Normalized Difference Water Index–Support Vector Machine) leverages the
strengths of both NDWI and SVM, offering improved classification performance compared to
NDWI alone. It provides a robust framework for accurately delineating water bodies across
diverse landscapes. NDWI-SVM effectively addresses the limitations of NDWI by incorporat-
ing advanced classification techniques. It demonstrates high accuracy in differentiating water
from other land cover types, even in complex environments. The SVM differs from Otsu’s
method in that it does not require the traversing of all pixel values to compute and determine
the segmentation threshold. Instead, it involves manually selecting specified pixel values
corresponding to water and non-water regions, thereby informing the computer in advance
about the segmentation criteria. These selected values are then fed into the model for training
until it converges to an optimal or near-optimal solution. Subsequently, the entire image
is inputted into the trained model to differentiate water and non-water regions, ultimately
generating the segmented output. This approach is referred to as supervised classification.
However, there are also limitations: NDWI-SVM may require careful parameter tuning and
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extensive training data to optimize classification performance. It may also be computationally
intensive, particularly for large-scale or high-resolution imagery [34].

The segmentation based on the Normalized Difference Water Index (NDWI) using
the K-means method eliminates the need for pre-defined thresholds, distinguishing it
from the Otsu and SVM approaches. K-means is an unsupervised clustering algorithm
that autonomously clusters data according to its inherent structure, mitigating errors
stemming from subjective threshold setting. This technique partitions data into multiple
clusters, facilitating the discrimination between water bodies and other land cover types,
thereby accurately extracting information about water bodies from intricate backgrounds.
It boasts favorable visualization capabilities: K-means can visually represent data points
in a two-dimensional space, aiding in comprehending data distribution and clustering
outcomes [35]. Nonetheless, this method entails certain limitations. K-means is sensitive to
the initial selection of cluster centers, whereby distinct initial centroids may yield divergent
clustering results. In terms of vulnerability to noise and outliers, remote sensing imagery
may contain noise and outliers, factors that may influence the clustering outcomes of
K-means, resulting in errors in water body information extraction. Additionally, K-means
exhibits high computational complexity, necessitating prolonged computation times for
processing large-scale datasets.

Genetic algorithm (GA) is a global optimization search algorithm which transforms
the problem-solving process into processes similar to the crossover and mutation of chro-
mosome genes in biological evolution. Therefore, GA has many parameters, and among the
eight methods described in this paper, it has the most parameters. Unlike supervised meth-
ods such as SVM and MLE, which preselect pixel values, GA has the longest computational
segmentation time if pixel values are not manually selected. Adjusting the parameters will
affect the convergence of the algorithm and may lead to misclassification and misjudgment.
Some researchers have analyzed that when the mutation probability of GA is set to 0.3 and
the crossover probability is set to 0.7, the convergence and performance of image segmen-
tation problems can achieve relative optimization [36]. However, this finding should be
taken with caution as it may not be directly applicable to image data, which are typically
represented as uint8 values ranging from 0 to 255, while NDWI imagery is represented
as decimal values ranging from −1 to 1. Therefore, this method is not recommended for
practical applications and should be considered as a reference only.

Maximum likelihood estimation (MLE) classification is a statistical method that esti-
mates unknown parameters based on the probability distribution of known samples. For
water body information extraction from NDWI, this method can more accurately identify
the boundaries and features of water bodies. Compared to other methods, it does not
require the inputting of any parameters, nor does it require iterative parameter tuning or
consideration of multiple factors. The only concern is the issue of sample purity, and the
computational segmentation time is second only to GA and SVM.

AdaBoost is a water body information extraction method that combines multiple features
and classifiers. Unlike the methods described previously, it does not aim to identify the most
representative features of water bodies. Instead, it constructs simple classifiers using water
body indices and combines them in a weighted manner through a “voting-based” approach.
Each simple classifier conducts a “weighted vote” to achieve water body information ex-
traction [37]. Due to its voting-based nature, majority voting determines the classification
outcome, where the minority may be incorrectly classified, as illustrated in the segmentation
image in the last row of Table 1. Furthermore, the AdaBoost algorithm encounters significant
challenges in dealing with class imbalance issues. When the number of water body pixels
greatly differs from non-water body pixels, it may affect the training process, leading to bias.
Depending on parameter settings, it may tend to favor fewer or more instances.

The methodology proposed in this study extracts features based on the Normalized
Difference Water Index (NDWI) and estimates the Gumbel parameter to determine the op-
timal threshold. It necessitates utilizing the pixel values of the entire NDWI image as input,
with computational complexity rendering parallel processing unfeasible. Consequently,
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the computational efficiency is significantly lower compared to that of the NDWI method.
Moreover, due to calculations performed on NDWI, certain glaciers and snow can also be
erroneously classified as water bodies.

Therefore, based on testing and analysis of various methods, it is advisable to select
suitable approaches according to specific circumstances in practical applications. For
instance, when dealing with large volumes of remote sensing imagery data, the NDWI-
K-means method is recommended due to its simplicity and efficiency. Alternatively, for
considerably larger datasets, employing methods such as NDWI-Gumbel or NDWI-SVM
for water body extraction is suggested. However, segmentation results are suboptimal with
NDWI-Otsu and NDWI-AdaBoost algorithms. Moreover, the NDWI-GA algorithm is not
highly recommended due to its excessive parameterization.

In summary, each method offers unique strengths and limitations in water body detec-
tion, highlighting the importance of selecting an appropriate approach based on specific
application requirements, image characteristics, and environmental conditions. Further re-
search and comparative studies can provide valuable insights into the relative performance
of these methods and guide their practical implementation in remote sensing applications.

From Figure 4, it can be seen that Qinghai Lake showed a turning point in 2004, with an
overall decreasing trend before 2004, although there were drastic fluctuations. After 2004, it
shows an upward trend, with a 6.9% increase in area over the 20-year period 2004–2023.

Figure 4. From top to bottom are the precipitation, area, and temperature data spanning 38 years
for Qinghai Lake. Trend lines determined using the least squares method are depicted, with green
arrows indicating a decline and red arrows indicating an increase. The data are divided into two
stages, stage 1 and stage 2.
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This is because the results of the study show that 93.13% of the water level changes
can be attributed to climate change. In contrast, watershed changes accounted for only
6.87% [38]. This is a very important feature of global warming that has had far-reaching
effects and influenced the hydrological changes in Qinghai Lake [39]. It is hypothesized to
be due to climate warming.

To ascertain whether the expansion of Qinghai Lake’s water body area is attributable to
climate warming, we compiled and analyzed temperature and precipitation data spanning
38 years. As depicted in Figure 4, arranged from top to bottom are precipitation, area, and
temperature. We delineated the data into two phases:

The first phase, predating 2004, was characterized by a gradual decline in precipitation
and area alongside an ascending temperature trend. The second phase, from 2004 to
the present, witnessed an upward trend in precipitation, area, and temperature. The
trends illustrated in Figure 4 reveal that the area and temperature are increasing most
rapidly, corroborating findings by Hongmei Dong et al. [30], wherein temperature rises
annually by 0.13 degrees Celsius. According to the principle of water balance, water
volume cannot spontaneously increase; therefore, the increased rate of glacier melt and
the rapid degradation of permafrost, attributed to rising temperatures, account for the
observed phenomena.

According to Hong Chen [40] and others, evapotranspiration and precipitation have
low relevance and little effect on the water bodies of the Tibetan Plateau, while the most
significant effect is on the temperature, and it was concluded that for every 1 ◦C increase
in the temperature of the Tibetan Plateau, the area of the Tibetan Plateau’s permanent
water bodies increases by 0.291 million km2, and the seasonal water bodies decrease by
0.001 million km2.

The melting rate of alpine glaciers due to climate warming has greatly accelerated,
changing the hydrological characteristics of the study area. According to the research,
the alpine glacier reserve of 43,000 km2 in northwest China is melting at an average rate
of 243.7 km2 per year [41]. In addition, the phenomenon of permafrost degradation has
intensified, and during the past 40 years, from 1980 to 2019, the area of perennial permafrost
on the Tibetan Plateau has decreased by 13.9%, and the underground ice reserves have
decreased by about 401.1 Gt, which is about twice as much as the decrease in glacier
reserves during the same period [42].

There is an island named Haixinyu in the center of Qinghai Lake which is 30 km away
from the south shore, with an elevation of about 3300 m [43]. The land area of Haixinyu
from 2003 to 2023 was extracted by Landsat remote sensing images using the method
proposed in this paper; it is not large in size and the range of change is small. Due to the
continuous expansion of the Qinghai Lake area, the water level rises, and the area of the
Haixinyu decreases in the trend, as shown in Figure 5. With the continuous expansion of
the water body area and the rise of the water level, the area of the Haixinyu of Qinghai
Lake decreased by 14.07% in the last 20 years.

In this study, Pearson correlation coefficients were utilized to examine the relationship
between temperature and lake area, as well as precipitation and lake area. Specifically,
Figure 6 illustrates the outcomes of the correlation analysis, indicating a Pearson corre-
lation coefficient of 0.2267 for temperature and lake area, and 0.39656 for precipitation
and lake area. These Pearson correlation coefficients reflect the linear association between
temperature and lake area, as well as precipitation and lake area. Specifically, the coef-
ficient of 0.2267 falls within the range of 0 to 0.3, indicating a weak positive correlation
between temperature and lake area, while the coefficient of 0.3966 signifies a moderate
positive correlation between precipitation and lake area. This suggests that with increasing
temperature, the area of Qinghai Lake may correspondingly expand.
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Figure 5. Trends in the area of Qinghai Lake’s Haixinyu, 2003–2023. The red dashed line in the above
figure represents the trend line determined using least squares method.

Figure 6. Area–precipitation and area–temperature correlation analysis graphs. The red dashed line
in the above figure represents the trend line determined using least squares method.

Table 4 illustrates the Pearson correlation coefficients between two variables along with
the results of their significance tests. The third column presents the t-values, which serve as
statistical metrics for assessing the significance level of the correlation coefficients. In this
table, the t-value for “area–temperature” is 2.5919, while for “area–precipitation” it is 1.3966.
The fourth column displays the p-values, indicating the probability of observing the current
t-value or a more extreme value under the null hypothesis. If the p-value is less than the
designated significance level (typically 0.05), the null hypothesis can be rejected, suggesting
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a significant correlation. In this context, the p-value for “area–temperature” is 0.0137,
whereas for “area–precipitation” it is 0.1711. Overall, the correlation for “area–temperature”
is significant at the 0.05 level of significance, while that for “area–precipitation” is not
deemed significant.

Table 4. Pearson correlation coefficient significance test.

r t p

Area–Temperature 0.3966 2.5919 0.0137
Area–Precipitation 0.2267 1.3966 0.1711

Under the influence of climate warming, the majority of the Tibetan Plateau experi-
ences glacier melt and permafrost degradation. Glacial-fed lakes show an expanding trend.
The continuous expansion of Qinghai Lake has resulted in the submergence of surrounding
areas such as Tiebukabay, Quanwan, and Bird Island, including roads, docks, grasslands,
and residential areas [44]. The fluctuation in the water level of Qinghai Lake causes the
submergence of land animal feces and substances like nitrogen and phosphorus from the
soil into the water, leading to a certain degree of eutrophication of Qinghai Lake, with
the area of Cladophora algae blooms continuously increasing. According to the study
by Duan H et al. [45], the maximum area of Cladophora algae blooms was 8.67 square
kilometers in 2016; it then decreased in 2017, 2018, 2019, and 2020, with areas of 5.22 square
kilometers, 3.32 square kilometers, 4.55 square kilometers, and 2.49 square kilometers,
respectively. However, the maximum area reached 9.14 square kilometers in 2021. This
may be attributed to the artificial harvesting efforts primarily conducted from 2017 to 2020,
with another extensive outbreak of Cladophora algae blooms occurring in 2021 without
any measures taken. This suggests that although artificial harvesting is an effective method,
it cannot completely eradicate the issue.

5. Conclusions

In this study, based on Landsat 5/7/8/9 from 1986 to 2023, we analyzed the long-term
change characteristics of Qinghai Lake’s area and verified the accuracy of the method
proposed in this paper, based on the information extracted in the study area. Eight methods
using NDWI-Gumbel, NDWI, NDWI-SVM, NDWI-Otsu, NDWI-K-means, NDWI-GA,
NDWI-MLE, and NDWI-AdaBoost were used to compare the accuracy, and a total of 38
years of Qinghai Lake area data were extracted. It aims to comprehensively analyze the
long-term area change in Qinghai Lake and provide data support and theoretical reference
for the government and for other ecological and environmental studies of Qinghai Lake.
The main conclusions are as follows:

1. The water body index method NDWI has the ability to suppress the vegetation,
highlight the water body characteristics, and involves easy arithmetic. Based on the
normalization operation of Landsat image green light band and near-infrared band,
the great likelihood method is used to deduce the Gumbel parameter and establish
the probability density expression so as to integrate and deduce the segmentation
threshold T. Finally, based on the normalized water body index (NDWI), the genetic
algorithm (GA), AdaBoost, the maximum interclass variance method (Otsu), the
Support Vector Machine SVM, the maximum likelihood classification, clustering
algorithm K-means, and this algorithm are used for accuracy comparison.

2. Based on the extraction of information about the area of Qinghai Lake for 38 years
from 1986 to 2023 by the method proposed in this paper, the area of the water body
of Qinghai Lake showed a decreasing trend during 1986–2004, and Qinghai Lake
showed an expanding trend from 2004 to 2023, with an increase of 6.9% in the area
during these 20 years.

3. There is an island named Haixinyu in the center of Qinghai Lake, with an area of about
1 km2, and the method proposed in this paper extracts the island area of Haixinyu
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during the 20 years from 2004 to 2023. Due to the expansion of the water body area of
Qinghai Lake and the rise of the water level, the area of Haixinyu has been decreasing
(it decreased to 0.9612 km2 in 2023), and the area of Haixinyu in Qinghai Lake has
decreased by 14.07% in the past 20 years.

4. According to the study, 93.13% of the water level changes can be attributed to climate
change. The analysis of the causes of changes in Qinghai Lake includes climate warm-
ing (on the Tibetan Plateau, every 10 years the average temperature rose by 0.35°C),
which has resulted in glacier melting and permafrost degradation intensifying. Glacier
meltwater river area in the past ten years showed an increase in the trend. There are
many factors influencing the change in lake area, such as temperature, precipitation,
glacier, permafrost, etc., and different factors are interacting and transforming the
water cycle. This study analyzes the influencing factors for selecting Qinghai Lake
as the study area. The change is not comprehensive, and this study qualitatively
analyzes the influencing factors of the change in the lake area of the Sanjiangyuan
and cannot fully explain its reason.

5. We employed Pearson correlation analysis to reveal a moderate positive correlation
between Qinghai Lake’s area and temperature (r = 0.3966 and p = 0.0137, significant at
the 0.05 level). This suggests that with increasing temperatures, there is a correspond-
ing potential for expansion in Qinghai Lake’s area. In contrast, the correlation between
Qinghai Lake’s area and precipitation showed no significant relationship (r = 0.2267
and p = 0.1711, not significant at the 0.05 level). These findings underscore the greater
influence of temperature over precipitation in shaping the dynamics of Qinghai Lake’s
area. The observed potential for expansion with rising temperatures highlights the
sensitivity of this ecosystem to climate change, particularly temperature fluctuations.
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