Analyzing the Vertical Recharge Mechanism of Groundwater Using Ion Characteristics and Water Quality Indexes in Lake Hulun
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Region
2.2. Spring at Lake Bottom
2.3. Sample and Methods
2.4. Water Quality Evaluation Method
3. Results
3.1. Hydrochemical Composition
3.2. Characteristics of Water Quality Variables
4. Discussion
4.1. Mechanism of Ion Transformation in Groundwater
4.2. The Channel through Which the Spring Supplies Lake Hulun
5. Conclusions
- (1)
- There is an outcrop of spring water at the bottom of Lake Hulun which is related to the large NNE Fault on the west bank of Lake Hulun. There are obvious differences between spring water at the lake bottom and lake water regarding lake ice thickness, ion characteristics, and water quality characteristics.
- (2)
- The source replenishing the spring water at the lake bottom is not the infiltration recharge of the phreatic aquifer but the vertical recharge of the confined aquifer due to the influence of the Xishan Fault zone.
- (3)
- The Lake Hulun basin may receive a confined water supply through basalt channels during the frozen period. The spring water at the lake bottom is first supplied from the deep, confined aquifer to the loose-sediment phreatic aquifer under the lake through the fault zone, and it then interacts with the lake water through the phreatic aquifer.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yao, F.; Ben, L.; Balaji, R.; Wang, J. Satellites reveal widespread decline in global lake water storage. Science 2023, 380, 743–749. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Ma, F.; Jiansheng, C. Analysis of water balance of Lake Hulun based on digital remote sensing images. Water Resour. Prot. 2020, 36, 73–79. [Google Scholar]
- Li, S.; Chen, J.; Xiang, J.; Pan, Y.; Huang, Z.; Wu, Y. Water level changes of Lake Hulun in Inner Mongolia derived from Jason satellite data. J. Vis. Commun. Image Represent. 2019, 58, 565–575. [Google Scholar] [CrossRef]
- Wu, S.; Sun, Y. Analysis of surface and groundwater changes of the Lake Hulun based on multisource data. Remote Sens. Technol. Appl. 2021, 36, 155–164. [Google Scholar]
- Li, C.; Wang, J.; Hu, R.; Yin, S.; Bao, Y.; Li, Y. ICESat/GLAS-derived changes in the water level of Lake Hulun, Inner Mongolia, from 2003 to 2009. Front. Earth Sci. 2018, 12, 420–430. [Google Scholar] [CrossRef]
- Cai, Z.; Jin, T.; Li, C.; Ofterdinger, U.; Zhang, S.; Ding, A.; Li, J. Is China′s fifth-largest inland lake to dry-up? Incorporated hydrological and satellite-based methods for forecasting Lake Hulun water levels. Adv. Water Resour. 2016, 94, 185–199. [Google Scholar] [CrossRef]
- Li, Z. Annals of Lake Hulun, Continuation 2; Inner Mongolia Culture Publishing House: Hohhot, China, 2008; pp. 784–820. [Google Scholar]
- Zhao, G.; Li, Y.; Zhou, L.; Gao, H. Evaporative water loss of 1.42 million global lakes. Nat. Commun. 2022, 13, 3686. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, W.; Xue, M.; Gu, X. Spatial-temporal characteristics and influencing factors of lake water and groundwater chemistry in Lake Hulun, Northeast China. Water 2023, 15, 937. [Google Scholar] [CrossRef]
- Wang, H. Characteristics of surface water and groundwater hydrochemistry in the basin. Groundwater 2023, 45, 38–40+131. [Google Scholar]
- Liu, Z.; Fang, Y.; Hu, H.; Wang, W. Variation and reason analysis of groundwater hydrochemical characteristics in Beiluhe Basin, Qinghai–Tibet Plateau during a freezing–thawing period. J. Water. Clim. Chang. 2022, 13, 2799–2816. [Google Scholar] [CrossRef]
- Liu, W.; Li, Z.; Song, L. The evolution of hydrochemistry at a cold alpine basin in the Qilian Mountains. Arab. J. Geosci. 2016, 9, 301. [Google Scholar]
- Liang, Y.; Shen, H.; Gao, X. Review of research progress of karst groundwater in northern China. Bull. Geol. Sci. Technol. 2022, 41, 199–219. [Google Scholar]
- Zhang, R. Hydrochemical characteristics and influencing factors of cretaceous groundwater in the northern Ordos Basin. Coal Chem. Ind. 2019, 42, 57–60+64. [Google Scholar]
- Han, Z. Study on Hydrogen and Oxygen Isotope and Hydrochemistry Characteristics of Lake Hulun Basin. Ph.D. Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2018. [Google Scholar]
- Ding, W.; Wang, G.; Ren, H.; Li, H.; Lü, W.; Jiang, X. Recognizing the variation of DNA-P during and after the algal bloom in lake Hulun. Chemosphere 2023, 343, 140293. [Google Scholar] [CrossRef] [PubMed]
- Danilov-Danilyan, V.I.; Rosenthal, O.M. Methodology for quantitative assessment of water quality. Dokl. Earth Sci. 2022, 502, 68–72. [Google Scholar] [CrossRef]
- Sharma, P.; Sarkar, R.; Deka, J.P.; Koley, S.; Saha, B. Assessing water quality of Deepor Beel, Assam, NE India, using water quality index: A case of Ramsar wetland. Arab. J. Geosci. 2024, 17, 20. [Google Scholar] [CrossRef]
- Xu, Z. Single factor water quality identification index for environmental quality assessment of surface water. J. Tongji Univ. 2005, 33, 321–325. [Google Scholar]
- Xu, Z. Comprehensive water quality identification index for environmental quality assessment of surface water. J. Tongji Univ. 2005, 33, 482–488. [Google Scholar]
- Du, D.; Bai, Y.; Yuan, D. Chemical Spatiotemporal Characteristics and Environmental Driving Factors of Groundwater in Hetao Irrigation Area. Environ. Sci. 2024, 1–18. [Google Scholar]
- Wu, Y.; Wang, C.; Wang, H.; Li, X.; Xu, H. Analysis of water quality of Le’an River in Poyang Lake Basin based on CCME-WQI method. Environ. Sci. 2024, 1–13. [Google Scholar]
- Guo, J.; Zhang, Y.; Shi, X.; Sun, B.; Wu, L.; Wang, W. Driving Mechanisms of the Evolution and Ecological Water Demand of Lake Hulun in Inner Mongolia. Water 2022, 14, 3415. [Google Scholar] [CrossRef]
- Wang, P.; Guo, Y.; Zhou, K.; Zheng, S.; Jiang, X.; Wang, S. Variation of Lake Area of Lake Hulun during 1961-2018 and Its esponse to Climate Change. Res. Environ. Sci. 2021, 34, 792–800. [Google Scholar]
- Wu, Q.; Li, C.; Sun, B.; Shi, X.; Zhao, S.; Han, Z. Change of ice phenology in the Lake Hulun from 1986 to 2017. Prog. Geogr. 2019, 38, 1933–1943. [Google Scholar] [CrossRef]
- Cao, Y.; Fu, C.; Wang, X.; Dong, L.; Yao, S.; Xue, B.; Wu, H.; Wu, H. Decoding the dramatic hundred-year water level variations of a typical great lake in semi-arid region of northeastern Asia. Sci. Total Environ. 2021, 770, 145353. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, F. Annals of Lake Hulun, Continuation 1; Inner Mongolia Culture Publishing House: Hohhot, China, 1998; pp. 514–522. [Google Scholar]
- HJ 636-2012; Water Quality-Determination of Total Nitrogen-Alkaline Potassium Persulfate Digestion UV Spectrophotometric Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2012.
- GB/T 11893-1989; Water Quality-Determination of Total Phosphorus-Ammonium Molybdate Spectrophotometric Method. General Administration of Quality Supervision. Inspection and Quarantine of the People′s Republic of China: Beijing, China, 1989.
- HJ/T 399-2007; Water Quality-Determination of the Chemical Oxygen Demand-Fast Digestion-Spectrophotometric Method. State Environmental Protection Administration of China: Beijing, China, 2007.
- DZ/T 0064.57-2021; Methods for Analysis of Groundwater Quality—Part 57: Determination of Ammonia Nitrogen—Nessler′s Reagent Spectrophotometry. Ministry of Natural Resources of the People′s Republic of China: Beijing, China, 2021.
- GB/T 5750.3-2023; Standard Examination Methods for Drinking Water—Part 3: Water Analysis Quality Control. State Administration for Market Regulation. National Standardization Administration; National Health Commission:: Beijing, China, 2023.
- GB 3838-2002; Environmental Quality Standards for Surface Water. State Environmental Protection Administration. General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China: Beijing, China, 2002.
- Liu, Y.; Zhang, Y. Water quality assessment and spatial-temporal variation analysis in Yellow River Basin. Environ. Sci. 2022, 43, 1332–1345. [Google Scholar]
- Wu, Z.; Wang, X.; Chen, Y.; Cai, Y.; Deng, J. Assessing river water quality using water quality index in Lake Taihu Basin, China. Sci. Total Environ. 2018, 612, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Koçer, M.A.T.; Sevgili, H. Parameters selection for water quality index in the assessment of the environmental impacts of land-based trout farms. Ecol. Indic. 2014, 36, 672–681. [Google Scholar] [CrossRef]
- Pesce, S.F.; Wunderlin, D.A. Use of water quality indices to verify the impact of Cordoba city (Argentina) on suquia river. Water Res. 2000, 34, 2915–2926. [Google Scholar] [CrossRef]
- Mavaluru, D.; Malar, R.S.; Dharmarajlu, S.M.; Auguskani, J.P.L.; Chellathurai, A. Deep hierarchical cluster analysis for assessing the water quality indicators for sustainable groundwater. Groundw. Sustain. Dev. 2024, 25, 101119. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Fan, X.; Wang, Y.; Song, L.; Gui, J.; Xue, J.; Zhang, B.; Gao, W. Transformation mechanism of ions on different waters in alpine region. Chemosphere 2020, 248, 126082. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Cheng, Y. Deep-sea ‘smoke’: The secrets of seafloor hydrothermal vents. Science 2023, 75, 1–5+69. [Google Scholar]
- Zhao, F. Hydrological characteristics of Lake Hulun. J. China Hydrol. 1991, 44–47. [Google Scholar]
- Wu, R.; Zhang, S.; Liu, Y.; Shi, X.; Zhao, S.; Kang, X.; Quan, D.; Sun, B.; Arvola, L.; Li, G. Spatiotemporal variation in water quality and identification and quantification of areas sensitive to water quality in Lake Hulun, China. Ecol. Indic. 2023, 149, 110176. [Google Scholar] [CrossRef]
- Liu, F.; Zou, J.; Liu, J.; Zhang, J.; Zhen, P. Factors controlling groundwater chemical evolution with the impact of reduced exploitation. Catena 2022, 214, 106261. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, L.; Lv, L.; Li, W.; Wang, X.; Lu, X.; Zheng, Y.; Meng, S. Hydrochemical characteristics and control factors of groundwater in Shunping County, Hebei Province. Environ. Sci. Technol. 2023, 44, 2601–2612. [Google Scholar]
- Liu, J.; Wang, L.; Bu, L.; Jiang, L.; Guo, S.; Wang, J. Hydrogen and oxygen stable isotopes, hydrochemical characteristics and evolutionary mechanisms of shallow groundwater in the transition zone of a desert oasis. J. Arid Land Resour. Environ. 2023, 37, 92–102. [Google Scholar]
- Liu, C.; Yu, K.; Zhang, Y.; Jing, J.; Liu, J. Characteristics and driving mechanisms of shallow groundwater chemistry in Xining City. Environ. Sci. Technol. 2023, 44, 3228–3236. [Google Scholar]
- Zhang, Y.; Wang, S.; Xu, W.; Zhang, B.; Yi, L.; Lu, X. Geochemical characteristics and their environmental implications for the water regime of Lake Hulun, Inner Mongolia, China. Water 2022, 14, 3696. [Google Scholar] [CrossRef]
- Hu, D.; Li, Y.; Zhu, L.; Zhong, H.; Shang, B.; Yu, K.; Gao, S.; Wei, Y. Analysis of chemical characteristics and causes of groundwater in typical Northern regions. Water Wastewater Eng. 2022, 58, 8–17. [Google Scholar]
- He, J. Formation and change of Lake Hulun. Inner. Mong. For. 2022, 39–41. [Google Scholar]
- Hou, J.; Wang, N.; Shi, C.; Chen, Y.; Zhao, M.; Fang, Z. Study on phenological changes of lake ice in Mongolia Plateau from 2000 to 2021. J. Glaciol. Geocryol. 2024, 46, 1–14. [Google Scholar]
- Li, X.; Long, D.; Huang, Q.; Zhao, F. The state and fate of lake ice thickness in the Northern Hemisphere. Sci. Bull. 2022, 67, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Fang, H.; Jin, T.; Zhou, Y.; Liu, H. Control system of acoustic measurement techniques for determining temperature fields around hot springs on bottom of lake. J. Mech. Electr. Eng. 2014, 31, 154–158. [Google Scholar]
- Chen, J.; Liu, Z.; Liu, X. Deep-circulation groundwater maintains continuous deposition of dusty particles in Loess Plateau. Acta Geol. Sinica 2013, 87, 278–287. [Google Scholar]
- Cui, X.; Yang, J.; Hao, J.; Bu, T.; Liu, Z. Formation history and changes of Lake Hulun. Inner. Mong. Sci. Technol. Econ. 2015, 43–47. [Google Scholar]
- Gong, X.; Weng, B.; Yan, D.; Yang, Y.; Yan, D.; Niu, Y.; Wang, H. Potential recharge sources and origin of solutes in groundwater in the central Qinghai–Tibet Plateau using hydrochemistry and isotopic data. J. Hydrol. Reg. Stud. 2022, 40, 101001. [Google Scholar] [CrossRef]
- Gao, H.; Li, W.; Zhang, S.; Tao, Y.; Guo, X. Hydraulic relationship between Lake Hulun and cretaceous confined aquifer using hydrochemistry and isotopic data. Sustainability 2024, 16, 2128. [Google Scholar] [CrossRef]
- Chen, J.; Wang, W.; Ma, F. Recharge source and genesis analysis of Cenozoic basalt groundwater in Arshan. J. Hohal Univ. 2021, 49, 249–256. [Google Scholar]
- Wu, T.; Li, J.; Song, J. Geological features and tectonic evolution in Lake Hulun. Nat. Herit. 2020, 5, 13–26. [Google Scholar]
- Jia, F.; Qin, Z.; Han, Z. Preliminary understanding of Cenozoic basalt groundwater in our country. Geol. China 1988, 20–23. [Google Scholar]
- Song, W.; Wang, Y.; Xue, B. Landsat satellite image-derived area evolution and the driving factors affecting Lake Hulun from 1986 to 2020. Remote Sens. 2023, 15, 2682. [Google Scholar] [CrossRef]
- Huang, Y.; Yao, B.; Li, Y.; Zhang, H.; Wang, S. Deciphering Lake Hulun level dynamics and periodical response to climate change during 1961–2020. J. Hydrol. Reg. Stud. 2023, 46, 101352. [Google Scholar] [CrossRef]
- Xu, Z. Annals of Lake Hulun, 1st ed.; Jilin Literature and History Publishing House: Changchun, China, 1988; pp. 660–667. [Google Scholar]
Factor | Pi | WQI | Quality Classification |
---|---|---|---|
TP | 1 | 2.0 >= X1·X2 > 1.0 | I |
TN | 2 | 3.0 >= X1·X2 >2.0 | II |
DO | 4 | 4.0 >= X1·X2 >3.0 | III |
COD | 3 | 5.0 >= X1·X2 >4.0 | IV |
NH4+-N | 3 | 6.0 >= X1·X2 >5.0 | V |
7.0 >= X1·X2 >6.0 | V+ | ||
X1·X2 > 7.0 | V++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Zhang, S.; Li, W.; Tao, Y. Analyzing the Vertical Recharge Mechanism of Groundwater Using Ion Characteristics and Water Quality Indexes in Lake Hulun. Water 2024, 16, 1756. https://doi.org/10.3390/w16121756
Gao H, Zhang S, Li W, Tao Y. Analyzing the Vertical Recharge Mechanism of Groundwater Using Ion Characteristics and Water Quality Indexes in Lake Hulun. Water. 2024; 16(12):1756. https://doi.org/10.3390/w16121756
Chicago/Turabian StyleGao, Hengshuai, Sheng Zhang, Wenbao Li, and Yulong Tao. 2024. "Analyzing the Vertical Recharge Mechanism of Groundwater Using Ion Characteristics and Water Quality Indexes in Lake Hulun" Water 16, no. 12: 1756. https://doi.org/10.3390/w16121756
APA StyleGao, H., Zhang, S., Li, W., & Tao, Y. (2024). Analyzing the Vertical Recharge Mechanism of Groundwater Using Ion Characteristics and Water Quality Indexes in Lake Hulun. Water, 16(12), 1756. https://doi.org/10.3390/w16121756