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Abstract: Advances in convolutional neural networks (CNNs) provide novel and alternative solu-
tions for water quality management. This paper evaluates state-of-the-art optimization strategies
available in PyTorch to date using AlexNet, a simple yet powerful CNN model. We assessed twelve
optimization algorithms: Adadelta, Adagrad, Adam, AdamW, Adamax, ASGD, LBFGS, NAdam,
RAdam, RMSprop, Rprop, and SGD under default conditions. The AlexNet model, pre-trained and
coupled with a Multiple Linear Regression (MLR) model, was used to estimate the quantity black
pixels (suspended solids) randomly distributed on a white background image, representing total
suspended solids in liquid samples. Simulated images were used instead of real samples to maintain
a controlled environment and eliminate variables that could introduce noise and optical aberrations,
ensuring a more precise evaluation of the optimization algorithms. The performance of the CNN
was evaluated using the accuracy, precision, recall, specificity, and F_Score metrics. Meanwhile, MLR
was evaluated with the coefficient of determination (R2), mean absolute and mean square errors.
The results indicate that the top five optimizers are Adagrad, Rprop, Adamax, SGD, and ASGD,
with accuracy rates of 100% for each optimizer, and R2 values of 0.996, 0.959, 0.971, 0.966, and 0.966,
respectively. Instead, the three worst performing optimizers were Adam, AdamW, and NAdam with
accuracy rates of 22.2%, 11.1% and 11.1%, and R2 values of 0.000, 0.148, and 0.000, respectively. These
findings demonstrate the significant impact of optimization algorithms on CNN performance and
provide valuable insights for selecting suitable optimizers to water quality assessment, filling existing
gaps in the literature. This motivates further research to test the best optimizer models using real
data to validate the findings and enhance their practical applicability, explaining how the optimizers
can be used with real data.

Keywords: optimizing algorithm; loss function; minimal local; turbidity

1. Introduction

Water quality is an essential aspect of public health and environmental sustainability.
The presence of contaminants, such as total suspended solids (TSS), significantly impacts
the potability and safety of the water supply, posing substantial challenges to effective
monitoring and maintenance [1]. Water quality also has important consequences for aquatic
ecosystems and biodiversity. Turbidity, a key indicator of water quality, is influenced by
the concentration of TSS. High turbidity levels can interfere with aquatic habitats, affect
species that depend on water for their survival, and contribute to the degradation of river
and marine ecosystems [2]. Ensuring water quality is therefore essential not only to protect
human health but also to preserve the integrity and functioning of aquatic ecosystems [3].
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TSS are related to the accumulation of organic and inorganic matter, feed residues, and
aquatic microorganisms. They are defined as the amount of mass present in a water column
(mg/L) [4]. Meanwhile, turbidity is the degree of loss of water transparency due to TSS [5].
Both tend to increase almost proportionally [6]. There are different methods to calculate
and monitor them. Method 180.1 by the U.S. EPA, known as nephelometry, is based on
comparing the intensity of light scattered by a reference sample and the sample being
measured. The measurement ranges between 0 and 40 NTU (nephelometric turbidity units)
and, to achieve higher values, the samples must be diluted in water and the measurement
rescaled [7]. This method is the most commonly used and is implemented in the majority of
commercial turbidimeters, utilizing a light source and a sensor detector, but it has several
limitations. Inexpensive turbidimeters often have limited detection ranges and can be
influenced by colored dissolved substances or air bubbles, leading to inaccurate readings.
Additionally, these turbidimeters typically require multiple data records for comparison,
which can be time-consuming and less efficient in dynamic environments [8–10]

Recent techniques for turbidity measurement have been developed, such as the method
implemented by Zhou and Zhang, which presents a new approach based on ultraviolet–
visible near-infrared (UV-VIS-NIR) absorption measurements, achieving a coefficient of
determination of 0.99 [11]. Additionally, Goblirsch et al. implemented fluorescence spec-
troscopy for turbidity estimation, achieving a sensitive detection of 0.2 NTU [12]. However,
both methods are expensive. Zhue et al. introduced a method using two NIR digital
cameras for turbidity measurement, but it requires two data records for estimation and
is also expensive [13]. Cheng et al. proposed a method based on the scattering of light,
which effectively eliminates difficult-to-remove air bubbles in the water channel with high
accuracy, but it requires a constant calibration process to work effectively [14].

Advancements in image processing have introduced new methods for assessing
turbidity. Digital image processing techniques analyze the gray levels in water images
to estimate turbidity levels. For instance, studies have demonstrated how image pixels
correlate with water turbidity [15–17]. These methods, however, also face challenges such
as sensitivity to lighting conditions and image quality.

Convolutional neural networks (CNNs) offer a promising alternative for turbidity
measurement. CNNs replicate the human visual cortex, making them highly effective for
image analysis tasks such as classification and detection [18,19]. CNNs are mathematical
algorithms that replicate how humans learn and mimic the mammalian visual cortex
using computational blocks and multiple layers of artificial neurons to approximate any
continuous function [20]. CNNs are particularly advantageous in this context because they
can handle the complex patterns and high-dimensional data typical in image analysis tasks.
They offer robust feature extraction capabilities that traditional methods might miss. This
makes CNNs suitable for analyzing images of water samples where suspended solids need
to be identified and quantified accurately.

Multiple linear regression (MLR) is another technique that has been used to model and
predict water quality parameters. MLR can be particularly useful when the relationship
between the predictors (input variables) and the response variable (output) is linear. It is
simpler and computationally less intensive compared to CNNs. However, MLR may not
capture complex patterns and interactions in the data as effectively as CNNs. Combining
CNNs with MLR can use the strengths of both methods, providing a robust framework for
turbidity and TSS estimation.

For measuring the performance of a CNN coupled with MLR, there exists a loss
function where the parameter weights are adjusted to reduce the discrepancy between the
model’s predictions and the known data. During the training process, these weights are
iteratively updated by optimization algorithms to minimize the loss function [21,22]. The
optimization algorithms produce a fast fit with low memory costs, avoid overfitting, and
prevent the model from settling in the local minima of the loss function. The selection of an
optimizer depends on the nature of the database used.
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Typically, two commonly used optimizers for TSS and turbidity measurement are
Adam and SGD. For the Adam algorithm, Feizi et al. achieved a turbidity estimation
accuracy of 97.5%, though only after a large number of epochs, specifically between 150 and
200 [17]. Nazemi et al. also implemented a CNN to classify turbid water samples, achieving
98.42% accuracy for color images and 94.34% for grayscale images [23]. On the other hand,
Haciefendioglu et al. only reached 87% accuracy [24], while Li et al. achieved a mean
square error of 0.92 [25]. Additionally, an SGD algorithm has also been implemented in
turbidity and TSS tasks. Wan et al. reached an R-squared of 0.931 [26], and Lopez-Betancur
et al. achieved 98.24% accuracy for turbidity, and a 97.20% for TSS estimation [27].

Despite obtaining acceptable results, Adam and SGD may not be generalized solutions
due to their sensitivity to data distribution and variability. This is related to the nature of
the applied database and the specific characteristics of these optimizers [28]. The selection
of an optimizer for the evaluation of TSS and turbidity should be based on the potential of
the CNNs to be trained and the characteristics of the database to be used. It should also
provide a foundation for the development of more efficient and accessible water quality
monitoring methods. This can have a significant impact on water resource management
and the protection of aquatic ecosystems.

For this purpose, a comparison of twelve different optimization algorithms available
in PyTorch was conducted to identify the most effective ones for estimating suspended
solids in liquid samples using a pre-trained AlexNet model. Computationally generated
binary images were used for this comparison [29]. This methodology was adopted to
maintain a controlled environment and eliminate variables that could introduce noise
and optical aberrations. In this way, we ensure that the optimization algorithms focus on
the nature of the database, which consists of black points (suspended solids) on a white
background, analogous to liquid samples with suspended solids as referred as referred in
articles [15–17,27]. The aim of this research is to identify the most suitable optimizer based
on the nature of the database and to provide additional information about the performance
of each optimizer.

2. Materials and Methods

This section describes the different algorithm optimizers evaluated for the classifica-
tion task using computationally generated binary images with black points (simulating
suspended solids) on a white background image.

2.1. CNN and Multiple Linear Regression (MLR) Used

Therefore, since the goal is to analyze optimization algorithms, a simple CNN like
AlexNet is used to isolate and evaluate the performance of each optimized algorithm in
the task of measuring suspended solids. AlexNet is based on convolutional and fully con-
nected layers, exhibits a suitable representation capacity to capture discriminative features
present in such visually simple images. Additionally, its computational efficiency and
ease of transfer of pre-trained weights make it an attractive option for this specific binary
classification problem. Furthermore, AlexNet has been widely studied and benchmarked
in various image classification tasks, making it a well-understood and reliable choice for
this research [30].

Any CNN involves two main steps: feature extraction and classification. The classifi-
cation step uses neurons to process inputs (features) and compute a response (output) or
logits, which are then usually normalized using a SoftMax function to determine the proba-
bilities of classes. The trained CNN’s output vector can be seen as a decoded version of the
input image because the model extracts hidden information from the sample. Although the
CNN can accurately classify certain liquid samples, it faces challenges when dealing with
images containing intermediate levels of samples. However, by utilizing the feature vectors
(CNN output vectors) to train a multiple linear regression (MLR) model, it is possible to
predict the values for any sample. The key is to train the CNN with classes that encompass
the desired dynamic range of the samples. In a multiple linear regression model, multiple
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independent variables are used to predict a single dependent variable. Specifically, in this
context, the feature vectors obtained from the CNN serve as the independent variables,
while the number of black pixels values represents the dependent variables. This MLR
approach allows us to approximate new black pixel values based on the logits vector
obtained from unknown images or images not used in the training process, providing a
valuable tool for sample analysis and prediction [27]. The general sequence described is
shown in Figure 1.
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2.2. Optimization Algorithms Evaluated

Optimization algorithms play a critical role in the training of convolutional neural
networks (CNNs) by minimizing the loss function and improving the model’s performance.
These algorithms adjust the weights of the neural network to reduce the error between
predicted and actual outcomes. In this study, we evaluate twelve different optimization
algorithms available in PyTorch to identify the most effective ones for estimating suspended
solids in liquid samples using a pre-trained AlexNet model. The evaluated algorithms
include Adadelta, Adagrad, Adam, AdamW, Adamax, ASGD, LBFGS, NAdam, RAdam,
RMSprop, Rprop, and SGD. Each algorithm has unique characteristics and advantages,
which are briefly described below.

2.2.1. Adadelta

The method adjusts dynamically over time, relying solely on first-order information,
and incurs minimal computational overhead compared to basic stochastic gradient de-
scent [31]. The main advantages of this method include: no manual adjustment of the
learning rate; insensitivity to hyperparameters; minimal computational requirements, and
robustness to large gradients, noise, and choice of architecture.

2.2.2. Adagrad

This optimizer incorporates data observed in earlier iterations, adapting subgradient
methods to the geometry of the data. This method is based on a diagonal approximation of
the matrix obtained from the products of subgradients. In essence, the adaptation enhances
the effectiveness of the method on certain types of data with sparse gradients compared to
previous methods [32].

2.2.3. Adam

This method focuses on efficient optimization using information from first- and second-
order gradients without requiring a large amount of memory. Learning rates are adaptively
adjusted for different parameters based on these moment estimates. This can be useful in
situations where memory resources are limited or when efficient optimization is sought us-
ing low-order gradient information [33]. The advantages of this optimizer include its ability
to adapt to changes in gradient scale, automatically control step sizes during optimization
to enhance convergence, and its effectiveness in situations with sparse gradients.

2.2.4. AdamW

This method improves the regularization of the Adam optimization algorithm by
separating weight decay from gradient-based updates. It shows that decoupling weight
decay simplifies hyperparameter optimization, as it makes the optimal configurations for
learning rate and weight decay factor much more independent of one another [34].
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2.2.5. Adamax

Adamax, a variant of Adam, utilizes second-order gradient information and applies
a different infinity norm to compute adaptive learning rates. Adamax is preferred in
situations where gradients demonstrate a wide range of magnitudes [33].

2.2.6. ASGD

Average Stochastic Gradient Descent is based on averaging gradients over time to
smooth the optimization process and improve convergence, particularly in situations where
gradients may be noisy or problem conditions are complex [35].

2.2.7. LBFGS

Limited Memory Broyden Fletcher Goldfarb Shanno is an optimization algorithm
based on Matlab’s minFunc. It relies on an efficient approximation of the inverse of the
Hessian matrix (which describes how gradients change with respect to model parameters).
Instead of storing and manipulating the entire matrix, it employs only a low-memory
approximation of previous gradients. This makes it particularly suitable for optimization
problems in high-dimensional spaces or with limited memory resources [36].

2.2.8. NAdam

Nesterov-accelerated Adam is based on replacing the momentum component of Adam
with the Nesterov’s accelerated gradient (NAG) algorithm. The NAdam algorithm employs
first- and second-order information to adjust the learning rate adaptively and determine
the direction of the step. This allows it to perform better in scenarios with steep valleys
or when there is high curvature in the loss function. Consequently, this leads to improved
convergence speed in non-convex problems and enhances the quality of learning for
models [37].

2.2.9. RAdam

The Rectified Adam algorithm recognizes that, due to the limited number of samples
in the early stages of model training, the adaptive learning rate in the Adam model exhibits
an undesirably large variance. This can lead the model to converge towards suboptimal
local minima. Therefore, RAdam not only rectifies this variance of the adaptive learning
rate but also compares favorably with the warmup heuristic [38].

2.2.10. RMSprop

The operation of RMSprop is based on maintaining a weighted average of the squares
of previous gradients. This allows it to be applied in situations where it is not advisable for
the learning rate to be constant, such as when dealing with loss functions that have different
scales, variable curvature, slow convergence, and oscillation cycles, among others [39].

2.2.11. Rprop

The resilient propagation algorithm performs a direct adaptation of the weight step
based on local gradient information, according to the behavior of the sequence of signs of
the partial derivatives. What is most interesting is that this algorithm is not affected by the
behavior of the gradient, which is very useful for situations where the gradient is highly
volatile or difficult to interpret [40].

2.2.12. SGD

Stochastic Gradient Descent uses training data samples in a stochastic manner, which
means it employs small, randomly selected data subsets in each iteration, making it compu-
tationally more efficient. Furthermore, the use of small random subsets is highly beneficial
when working with large datasets. However, its primary advantage can also lead to it
being a noisier and less stable algorithm [41].
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A summary of the main characteristics of these algorithms and their relationship with
the dataset is described in Table 1.

Table 1. Characteristics of optimization algorithms, coupled with the features of the dataset, to
optimize the performance of each optimizer in practical applications.

Algorithm Momentum Learning per
Parameter Adaptive Database Features Features

Adadelta Yes No Yes Suitable for large datasets Uses accumulated
history of gradients

Adagrad No Yes No Effective for sparse data Adjusts learning for
each parameter

Adam Yes Yes Yes
Well-suited for a variety of

datasets, works well with default
settings

Combines first and
second-order moments

AdamW Yes Yes Yes
Suitable for large datasets,

effective for models with weight
decay

Adam variant with L2
regularization

Adamax Yes Yes Yes Effective for non-stationary and
sparse data

Adam variant using the
maximum

ASGD No Yes No Suitable for large-scale
distributed training

Averaged Stochastic
Gradient Descent

LBFGS No No No
Suitable for small to

medium-sized datasets with
smooth, convex functions

Quasi-Newton
optimization method

NAdam Yes Yes Yes Well-suited for a variety of
datasets

Adam with Nesterov’s
accelerated gradient

RAdam Yes Yes Yes Effective for large datasets, robust
to noisy gradients

Adam with bias
correction and adaptive

bounds

RMSprop No Yes Yes Effective for non-stationary and
sparse data

Adjusts learning based
on quadratic history

Rprop No Yes No
Suitable for small to

medium-sized datasets with
smooth, convex functions

Resilient to
backpropagation

SGD No Yes No Generally applicable, suitable for
large-scale distributed training

Stochastic Gradient
Descent

2.3. Database

The dataset was created by randomly adding black pixels to white images, resulting
in binary images. Nine classes were created based on the number of black pixels in a
white image. These nine classes represent the number of black pixels and are labeled as 0,
6272, 12,544, 18,816, 25,088, 31,360, 37,632, 43,904, and 50,176 (See Figure 2). The images
were created with dimensions of 224 × 224 pixels, corresponding to the input layer of the
CNN used.

A total of 9000 images from nine different classes were generated. Out of these,
7200 images were randomly selected for the training process (800 images per class), while
the remaining 1800 images were allocated to the validation dataset (200 images per class).
Additionally, 8000 new images for eight additional classes with intermediate pixel concen-
trations were generated to test the different optimization algorithms. These intermediate
classes included images with black pixel amount between the main classes, specifically
designed to validate the generalization capability of the model, and these were not utilized
in training the CNN (See Figure 3).
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Each image was carefully inspected to ensure it adhered to the specified class defini-
tions. The generation process was automated to maintain consistency and prevent human
error. Furthermore, the distribution of black pixels in each image was random to simulate
various real-world conditions where suspended solids might not be evenly distributed.
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The training process was developed and implemented using a workstation with
the specifications described in the orange part of Table 2. Optimization algorithms and
AlexNet CNN were extracted from the PyTorch torchvision package. For the training
of the CNN, the algorithm executed a total of 50 epochs with 5-fold cross-validation for
each optimization algorithm listed in Table 1. The cross-validation technique was used
to ensure the robustness of our findings, and statistical tests were applied to compare the
performance of different optimization algorithms.

Table 2. Computer specifications and hyperparameters used in the training process.

Parameters Value Specifications Characteristics

Batch size 16 Processor 11th Gen Intel® Core™
i7-11700KF

Seed number 40 RAM 32 GB
Learning rate 0.001 Graphics card NVIDIA RTX 3060 12 GB

Cross validation 5-fold Language Python/Jupyter

H
yp

er
pa

ra
m

et
er

s

Number of epochs 50 C
om

pu
te

r
Sy

st
em

Operative system Windows 11 Pro

The epoch number was selected by analyzing the loss of training according to previous
executions of the training process. The network was trained with the default momentum set-
tings for the optimization algorithms that required this hyperparameter. The batch size was
set to 40 to balance computational efficiency and training stability. The hyperparameters
used in the experiment are listed in the blue part of Table 2.

Data augmentation techniques, such as random rotations and flips, were applied to
the training images to improve the model’s robustness and generalization capability. The
validation set was strictly used to evaluate the performance of the trained models, ensuring
an unbiased assessment of their predictive accuracy.

2.4. Evaluation Metrics

The performance of the proposed method was evaluated for a classification task based
on the confusion matrix, which has four important elements: TP for true positives, TN for
true negatives, FP for false positives, and FN for false negatives. These elements of the
confusion matrix are used to calculate the following performance metrics for evaluating
the classifier, as listed in the blue part of Table 3: accuracy, precision, recall, specificity, and
F-score [27].

Table 3. Performance metrics used for classification task and MLR evaluation.

Performance Metrics Equation
Accuracy (TP + FN)/N
Precision TP/(TP + FP)

Recall TP/(TP + FN)

Specificity TN/(TN + FP)C
la

ss
ifi

er

F_Score (2 ∗ Precision ∗ Recall)/(Precision + Recall)

Coefficient of determination (R2) 1 − ∑n
i=1(y_predictedi−y_mean)
∑n

i=1(y_truei−y_mean)

Mean absolute error (MAE) ∑N
i=1 abs(y_truei−y_predictedi)

N1

R
eg

re
ss

or

Mean square error (MSE) ∑N
i=1(y_truei−y_predictedi)

2

N1

Note: 1 where N is the total number of elements.

Additionally, for evaluate the performance of the MLR, whose task is to estimate the
correct measured value of black pixels, the following metrics used are listed in the orange
part of Table 3: coefficient of determination, mean absolute error, and mean square error,
where y_predicted is defined as the predicted value, y_true as the true value, and y_mean as
the average of the y data [20].
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3. Results

This research evaluated state-of-the-art optimization algorithms aimed at classifying
and estimating the number of black points on a white background image, which is related to
suspended solids in liquid samples. The goal for classification was to assess their accuracy,
precision, recall, specificity, and F-Score. The training time taken by each optimizer is listed
in Table 4.

Table 4. Training time for each optimizer.

Training Time (min)

Optimizer Algorithm Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Fold

Adagrad 14.96 16.06 15.63 15.11 16.21 15.59
Rprop 20.60 20.68 20.57 20.60 20.63 20.62

Adamax 18.10 18.03 18.01 17.95 17.55 17.93
SGD 13.33 12.28 12.33 12.75 12.26 12.59

ASGD 14.11 14.26 13.42 13.17 13.12 13.62
Adadelta 19.33 19.00 18.88 18.61 18.55 18.87

LBFGS 34.88 34.01 34.48 34.45 33.62 34.29
Radam 17.65 17.50 17.50 17.51 17.58 17.55

RMSprop 14.43 14.43 14.38 14.45 14.35 14.41
Adam 16.30 16.13 16.30 16.45 16.18 16.27

AdamW 16.80 16.68 16.83 16.87 17.01 16.84
Nadam 17.36 18.43 18.01 17.92 17.67 17.88

The performance metrics were evaluated using an additional validation dataset (See
Figure 3), which consisted of eight classes with 1000 images in each class. This dataset in-
cluded intermediate classes, which were not used in the training process. The performance
metrics are presented in Table 5. The confusion matrix of the best performing optimization
algorithms is presented in Figure 4.

Table 5. Performance metrics of the AlexNet CNN for each optimization algorithm.

Performance Metrics of the Classification Task

Optimizer Algorithm Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Fold

Adagrad

Accuracy 1.000 1.000 1.000 1.000 1.000 1.000
Precision 1.000 1.000 1.000 1.000 1.000 1.000

Recall 1.000 1.000 1.000 1.000 1.000 1.000
Specificity 1.000 1.000 1.000 1.000 1.000 1.000

F_Score 1.000 1.000 1.000 1.000 1.000 1.000

Rprop

Accuracy 1.000 1.000 1.000 1.000 1.000 1.000
Precision 1.000 1.000 1.000 1.000 1.000 1.000

Recall 1.000 1.000 1.000 1.000 1.000 1.000
Specificity 1.000 1.000 1.000 1.000 1.000 1.000

F_Score 1.000 1.000 1.000 1.000 1.000 1.000

Adamax

Accuracy 1.000 1.000 1.000 1.000 1.000 1.000
Precision 1.000 1.000 1.000 1.000 1.000 1.000

Recall 1.000 1.000 1.000 1.000 1.000 1.000
Specificity 1.000 1.000 1.000 1.000 1.000 1.000

F_Score 1.000 1.000 1.000 1.000 1.000 1.000

SGD

Accuracy 1.000 1.000 1.000 1.000 1.000 1.000
Precision 1.000 1.000 1.000 1.000 1.000 1.000

Recall 1.000 1.000 1.000 1.000 1.000 1.000
Specificity 1.000 1.000 1.000 1.000 1.000 1.000

F_Score 1.000 1.000 1.000 1.000 1.000 1.000
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Table 5. Cont.

Performance Metrics of the Classification Task

Optimizer Algorithm Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Fold

ASGD

Accuracy 1.000 1.000 1.000 1.000 1.000 1.000
Precision 1.000 1.000 1.000 1.000 1.000 1.000

Recall 1.000 1.000 1.000 1.000 1.000 1.000
Specificity 1.000 1.000 1.000 1.000 1.000 1.000

F_Score 1.000 1.000 1.000 1.000 1.000 1.000

Adadelta

Accuracy 1.000 1.000 1.000 1.000 1.000 1.000
Precision 1.000 1.000 1.000 1.000 1.000 1.000

Recall 1.000 1.000 1.000 1.000 1.000 1.000
Specificity 1.000 1.000 1.000 1.000 1.000 1.000

F_Score 1.000 1.000 1.000 1.000 1.000 1.000

RAdam

Accuracy 1.000 0.667 1.000 0.863 1.000 0.906
Precision 1.000 0.611 1.000 0.813 1.000 0.885

Recall 1.000 0.667 1.000 0.863 1.000 0.906
Specificity 1.000 0.958 1.000 0.983 1.000 0.988

F_Score 1.000 0.629 1.000 0.826 1.000 0.891

LBFGS

Accuracy 0.580 0.590 0.560 0.570 0.580 0.580
Precision 0.150 0.160 0.160 0.150 0.170 0.150

Recall 0.580 0.540 0.560 0.570 0.580 0.570
Specificity 0.882 0.882 0.882 0.882 0.882 0.882

F_Score 0.210 0.220 0.230 0.220 0.220 0.220

RMSprop

Accuracy 0.719 0.111 1.000 0.111 0.222 0.433
Precision 0.734 0.012 1.000 0.012 0.125 0.377

Recall 0.719 0.111 1.000 0.111 0.222 0.433
Specificity 0.965 0.889 1.000 0.889 0.903 0.929

F_Score 0.653 0.022 1.000 0.022 0.136 0.366

Adam

Accuracy 0.222 0.333 0.111 0.222 0.333 0.244
Precision 0.125 0.238 0.012 0.125 0.238 0.148

Recall 0.222 0.333 0.111 0.222 0.333 0.244
Specificity 0.903 0.917 0.889 0.903 0.917 0.906

F_Score 0.136 0.250 0.022 0.136 0.250 0.159

AdamW

Accuracy 0.111 0.222 0.222 0.111 0.222 0.177
Precision 0.012 0.125 0.125 0.016 0.125 0.080

Recall 0.111 0.222 0.222 0.111 0.222 0.177
Specificity 0.889 0.903 0.903 0.889 0.903 0.897

F_Score 0.022 0.136 0.136 0.028 0.136 0.091

NAdam

Accuracy 0.111 0.222 0.111 0.111 0.111 0.133
Precision 0.012 0.125 0.012 0.012 0.012 0.035

Recall 0.111 0.222 0.111 0.111 0.111 0.133
Specificity 0.889 0.903 0.889 0.889 0.889 0.892

F_Score 0.022 0.136 0.022 0.022 0.022 0.045

The classification task was evaluated according to the following accuracy categories:
Excellent (0.90–1.00), Good (0.80–0.89), Moderate (0.70–0.79), and Poor (below 0.70) [42,43].
The models Adagrad, Rprop, Adamax, SGD, ASGD, and Adadelta achieved 100% clas-
sification accuracy. RAdam also archived excellent accuracy. This achievement may be
attributed to the dataset used, which consists of a structured database storing information
about the presence or absence of objects, such as suspended solids. The structured nature
of the database allows for efficient gradient-based optimization for algorithms such as
SGD, ASGD, Rprop, and Adadelta [44,45]. Furthermore, it is plausible that many of these
objects may be absent for the majority of entries in the database, resulting in a sparse
representation of the data. This sparse representation is suitable for algorithms like Ada-
grad and Adamax [46]. However, these results are only for the classification task and are
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not definitive for the estimation of the number of black points on a white background
image, which is related to suspended solids. For the estimation task, the aim was to assess
their coefficient of determination, mean absolute error, and mean square error. The results
are listed in Table 6. The models that achieved 100% accuracy demonstrated excellent
performance in the estimation task. Additionally, two more models (LBFGS and RAdam)
are added that, despite not achieving 100% accuracy, show good and moderate coefficients
of determination, respectively.

Water 2024, 16, x FOR PEER REVIEW 10 of 18 
 

 

representation of the data. This sparse representation is suitable for algorithms like Adag-
rad and Adamax [46]. However, these results are only for the classification task and are 
not definitive for the estimation of the number of black points on a white background 
image, which is related to suspended solids. For the estimation task, the aim was to assess 
their coefficient of determination, mean absolute error, and mean square error. The results 
are listed in Table 6. The models that achieved 100% accuracy demonstrated excellent per-
formance in the estimation task. Additionally, two more models (LBFGS and RAdam) are 
added that, despite not achieving 100% accuracy, show good and moderate coefficients of 
determination, respectively. 

In addition, the predicted data for each optimization algorithm are shown in Table 7. 
The true data represent the number of black pixels in the images that were created. An 
error bar plot comparing the best models in terms of classification accuracy is shown in 
Figure 5, and for the regression coefficient of determination in Figure 6. 

 
Figure 4. Confusion matrix for the best optimization algorithms. 

 
Figure 5. Optimization algorithms for classification task using accuracy metric. 

Figure 4. Confusion matrix for the best optimization algorithms.

Table 6. MLR performance metrics of the AlexNet CNN for each optimization algorithm.

Performance Metrics of the Regressor

Optimizer Algorithm Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Fold

Adagrad
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Rprop
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MSE 0.002 0.001 0.000 0.001 0.000 0.001
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Adamax

R2 0.971 0.983 0.988 0.984 0.943 0.974
MAE 0.028 0.020 0.019 0.021 0.044 0.027
MSE 0.001 0.000 0.000 0.000 0.002 0.001

RMSE 0.038 0.029 0.024 0.028 0.054 0.035

SGD

R2 0.966 0.969 0.975 0.981 0.978 0.974
MAE 0.028 0.027 0.026 0.020 0.025 0.025
MSE 0.001 0.001 0.001 0.000 0.001 0.001
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Table 6. Cont.

Performance Metrics of the Regressor

Optimizer Algorithm Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Fold

Adadelta

R2 0.953 0.965 0.955 0.951 0.956 0.956
MAE 0.036 0.032 0.034 0.037 0.035 0.035
MSE 0.002 0.001 0.002 0.002 0.002 0.002

RMSE 0.049 0.042 0.048 0.050 0.048 0.047

LBFGS

R2 0.830 0.830 0.830 0.830 0.830 0.830
MAE 0.075 0.075 0.075 0.075 0.075 0.075
MSE 0.008 0.008 0.008 0.008 0.008 0.008

RMSE 0.094 0.094 0.094 0.094 0.094 0.094

RAdam

R2 0.990 0.000 0.997 0.965 0.990 0.789
MAE 0.017 0.503 0.009 0.024 0.018 0.114
MSE 0.000 1.000 0.000 0.002 0.001 0.201

RMSE 0.022 0.728 0.011 0.042 0.023 0.165

RMSprop

R2 0.991 0.000 0.674 0.000 0.000 0.333
MAE 0.016 0.781 0.483 0.870 0.961 0.622
MSE 0.000 1.000 0.517 0.952 0.987 0.691

RMSE 0.022 0.870 0.531 0.730 0.965 0.624

Adam

R2 0.000 0.0001 0.000 0.0000 0.001 0.000
MAE 1.000 0.400 0.400 1.000 0.599 0.679
MSE 1.000 0.525 0.520 1.000 0.524 0.714

RMSE 1.000 0.491 0.491 1.000 0.491 0.695

AdamW

R2 0.000 0.000 0.000 0.737 0.000 0.147
MAE 0.422 0.422 1.000 0.072 1.000 0.583
MSE 0.525 0.548 1.000 0.138 1.000 0.642

RMSE 0.499 0.422 1.000 0.118 1.000 0.608

NAdam

R2 0.000 0.000 0.000 0.000 0.000 0.000
MAE 0.700 1.000 0.700 0.700 1.000 0.820
MSE 0.513 1.000 0.525 0.525 1.000 0.713

RMSE 0.761 1.000 0.729 0.729 1.000 0.844

In addition, the predicted data for each optimization algorithm are shown in Table 7.
The true data represent the number of black pixels in the images that were created. An
error bar plot comparing the best models in terms of classification accuracy is shown in
Figure 5, and for the regression coefficient of determination in Figure 6.

Table 7. Mean values ± standard deviation of the black pixels estimated by CNN + MLR for each
optimizer.

True
Data 3136 9408 15,680 21,952 28,224 34,496 40,768 47,040

Pr
ed

ic
te

d
da

ta

Adagrad 3260 ± 471 9416 ± 802 15,491 ± 252 21,826 ± 168 28,286 ± 206 33,931 ± 287 40,893 ± 247 47,604 ± 686
Rprop 2884 ± 2254 9096 ± 472 15,617 ± 308 22,140 ± 415 27,973 ± 232 34,621 ± 214 40,391 ± 399 50,803 ± 2186

Adamax 2445 ± 1373 11,541 ± 1628 17,185 ± 2608 21,701 ± 620 27,847 ± 942 32,990 ± 1065 40,078 ± 3410 47,918 ± 3337
SGD 5520 ± 1710 9410 ± 732 16,181 ± 1282 22,328 ± 760 28,412 ± 951 34,684 ± 657 41,583 ± 728 41,896 ± 547

ASGD 6087 ± 1388 8845 ± 629 16,119 ± 1378 22,190 ± 1163 28,098 ± 683 34,935 ± 958 41,495 ± 863 41,457 ± 196
Adadelta 9096.6 ± 620 7780 ± 317 16,871 ± 138 21,638 ± 417 29,164 ± 147 33,179 ± 361 40,893 ± 296 42,148 ± 374

LBFGS 121 ± 34 10,162 ± 20 15,240 ± 11 25,276 ± 16 29,980 ± 13 31,548 ± 14 37,569 ± 12 46,538 ± 14
RAdam 4015 ± 105,760 9660 ± 7579 16,307 ± 4553 21,575 ± 2375 28,286 ± 402 34,370 ± 3508 39,889 ± 6032 46,036 ± 4185

RMSprop 16,997 ± 12,983 19,882 ± 8657 23,645 ± 44,559 24,774 ± 2255 26,969 ± 1816 29,164 ± 4421 31,610 ± 7654 33,743 ± 10,663
Adam 25,025 ± 21 26,279 ± 1709 26,279 ± 1709 26,279 ± 1709 26,279 ± 1709 26,279 ± 1709 26,279 ± 1709 26,279 ± 1709

AdamW 18,251 ± 9693 21,199 ± 7450 22,704 ± 4411 24,021 ± 2648 24,962 ± 2905 25,150 ± 3106 24,209 ± 2566 30,544 ± 11,249
NAdam 18,038 ± 12,111 18,038 ± 12,111 18,038 ± 12,111 18,038 ± 12,111 18,038 ± 12,111 18,038 ± 12,111 18,038 ± 12,111 18,038 ± 12,111
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4. Discussion

The results obtained in our research show significant variability in the performance
of the optimization algorithms used for the estimation of suspended solids. In particular,
the Adagrad, Rprop, Adamax, SGD, and ASGD algorithms proved to be the most effective,
achieving 100% accuracy in the classification task and high coefficients of determination
(R2) in the estimation task. The top five optimization algorithms do not require momentum
to function (See Table 1 listed in Section 2); they have their own default optimization strate-
gies. Remember that momentum is an optional feature that can improve the convergence
and stability of optimization algorithms. However, momentum can sometimes lead to
overshooting the minimum in the loss surface, leading to slower convergence, or becoming
stuck in local minima [47].

SGD has emerged as a standard method for optimizing various types of deep neural
networks, primarily because of its capacity to escape local minima like ASGD (verifiable
with the best training times in Table 4) [48,49], and its efficiency for large-scale datasets,
making it ideal for linear classification problems related to our database’s nature [50].
Additionally, in recent works, SGD has proven to be an excellent optimizing algorithm for
suspended solids and turbidity estimation using CNN, presenting R2 value of 0.931 [26],
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accuracy of 98.24% and 97.20% for TSS and turbidity, respectively [27], accuracy of 94% for
turbidity task [51].

Adamax and Rprop are known for their robustness against noisy gradients and abrupt
fluctuations. This allowed them to maintain consistent performance even in the presence
of variability in the images. Adamax, due to its adaptive ability, also works well with
low-resolution images [52]. Rprop, in particular, performs well when gradients are very
noisy or have abrupt fluctuations, as it focuses only on the sign of the gradient and not its
magnitude [53].

The structure of the dataset, consisting of binary images with uniformly distributed
black pixels, favors algorithms that handle sparse and high-dimensional data well. For
example, Adagrad adapts the learning rate for each parameter individually based on the
history of gradients for that parameter. When a feature is infrequent in the dataset, Adagrad
assigns a higher learning rate to that parameter, allowing the algorithm to make larger
updates for these infrequent features. Adagrad is particularly effective at handling sparse
and high-dimensional features, such as those found in black and white pixel images. This
can result in faster convergence and excellent performance, as shown in this study [54,55].

In the literature, ADAM optimizers have reached in turbidity task: 0.89 of AUC (good
discrimination between classes) [56], mean square error less than 0.05 [57], R2 value of
0.80 [58], accuracy of 88.45% [59] and 87% [24]. These values are lower than those that
SGD has been able to provide, as seen in the present study. In the case of Adam, it is
important to note that it could achieve better performance if the initial hyperparameters
are adjusted according to the observed training trends. However, this research aimed to
analyze each optimizer with its default hyperparameters to determine which ones adapt
best to datasets with suspended particles. The use of default hyperparameters may have
benefited certain algorithms that are well-suited to these initial settings, while others might
require fine-tuning to achieve optimal performance.

In this study, computationally generated images were used, where black pixels repre-
sent suspended solids in a liquid sample. This methodology was adopted to maintain a
controlled environment and eliminate variables that could introduce noise and optical aber-
rations. The relationship between the number of black pixels and turbidity or suspended
solids values is based on previous studies that have demonstrated the feasibility of using
computer vision techniques to estimate these parameters. A relevant work that establishes
a relationship between pixel values and turbidity is presented by Berrocal et al. [60], and
by Gang Dou et al. [61]. Additionally, this relationship is more detectable through digital
image processing techniques, such as those presented by Karnawat and Patil [62]. In image
processing, various features, including the gray levels in the images, are related to the
image pixels, and are used to detect the degree of water turbidity, as defined by Feizi
et al. [17].

However, all the simulated suspended solids in this study have the same dimensions,
which may not reflect real-world conditions where suspended solids vary in size and color.
The system’s performance on real samples, where suspended solids have different sizes
and colors, remains to be tested. Furthermore, overlapping effects in real applications
have not been considered in this study. In practice, suspended solids can overlap, which
could affect the accuracy of turbidity estimation. A possible solution might be to consider
turbidity not as a single image but as a combination of images gathered at different times,
allowing for a more comprehensive analysis.

This study provides a comprehensive comparison of multiple optimization algorithms
in the estimation of suspended solids, filling a gap in the existing literature. The results
indicate that algorithms such as Adagrad and Rprop are highly effective for this task, which
can guide future research and practical applications in water quality monitoring. Addition-
ally, by using default hyperparameter settings, we demonstrate that it is possible to obtain
accurate results without the need for complex adjustments, facilitating implementation in
practical environments.



Water 2024, 16, 1761 15 of 18

In conclusion, our findings not only highlight the importance of selecting the appropri-
ate optimization algorithm based on the nature of the dataset but also provide a foundation
for the development of more efficient and accessible water quality monitoring methods.
This can have a significant impact on water resource management and the protection of
aquatic ecosystems.

In future research, we hope to extend our approach to real data to further validate
our findings and improve their practical applicability. Additionally, addressing the limi-
tations identified in this study, such as varying sizes and colors of suspended solids and
overlapping effects, will be critical in enhancing the system’s robustness and reliability in
real-world applications.

5. Conclusions

In this paper, a performance comparison of twelve optimization algorithms was
conducted on an AlexNet CNN and an MLR to estimate the quantity of black points
(suspended solids) distributed randomly on a white background image, which simulates
the total suspended solids in liquid samples. The goal was to assess the effectiveness
of different optimizers on image classification and multiple linear regression related to
suspended solids in liquid samples. Therefore, AlexNet and the MLR were trained with
nine classes from 0 to 50,176 black pixels per image and validated with eight additional
extra classes (not used in the training process) ranging from 3136 to 47,040 black pixels
per image.

The results demonstrated that the performance of each optimizer is influenced by
the characteristics of our dataset. The three worst optimizers performances were shown
to be Adam, AdamW, and NAdam. And the top five best optimizer performances were
by Adagrad, Rprop, Adamax, SGD, and ASGD. The Adagrad optimizer was chosen as
the first option because it attained a coefficient of determination (R2 = 0.982), largely
owing to its adaptive learning rate for each parameter and its ability to manage sparse and
high-dimensional features.

As future work, the top five optimizers could be tested for performance in the top
CNN models to date and the different regression models to achieve better method perfor-
mance. Additionally, it is expected that this research study will be helpful in improving the
development of new turbidimeters based on CNN implementations.
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