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Abstract: Irrigation is an essential component of our food production system and a large user of
freshwater. Pressure on irrigated agriculture is likely to increase with growing populations and
climate uncertainty. Efforts to ensure sustainable water use in this sector have had mixed results.
Some of these efforts have been used in the interest of political or financial gain. The situation is
complicated by the vulnerability of irrigating farmers, locally within irrigation schemes and in the
global agricultural supply chain. An opportunity exists in the form of increasing the accessibility of
open-source remote sensing products and wireless sensor networks. Irrigating farmers can define
and assess their irrigation performance at different spatial and temporal scales. A review of irrigation
performance assessment approaches and the available products and sensors is presented. Potential
implementations for sensing and monitoring, as well as irrigation performance, are presented. The
possibilities at different time scales and the influence on performance of different groups within the
irrigation scheme are discussed. The particular circumstances of specific irrigation schemes need to
be assessed with a cost–benefit analysis. The implementation of irrigation performance analysis tools
should be led by irrigating farmers, as it directly impacts this group.

Keywords: irrigation; remote sensing; Internet of things

1. Introduction

Irrigation and human development have historically been inextricably linked. Ancient
irrigation systems allowed settlements to grow in otherwise inhospitable and arid places,
such as deserts on the dry coast of Peru [1]. Today, irrigated agriculture provides 40 percent
of our food on 20 percent of the cultivated land, a major contribution to agriculture and
accounting for 70 percent of freshwater withdrawals [2]. We are now more than ever bound
to irrigated food production, as the global population is set to reach 9.7 billion in the next
30 years [3]. This is amid increasing climate uncertainty and potential water scarcity.

With such predictions, ensuring sustainable and optimal water use has a high im-
portance. This is stated in the United Nations’ Sustainable Development Goals (UNSDG).
UNSDG 6 target 6.4 aims to “. . . substantially increase water-use efficiency across all
sectors and ensure sustainable withdrawals and supply of freshwater to address water
scarcity . . . ” [4]. Several other UNSDG’s are also linked to irrigation, covering sustain-
able agriculture, climate change and the protection of terrestrial ecosystems. Irrigation
performance has often and in many contexts been attributed to measures of irrigation
efficiency, which in some cases have been misunderstood or misused [5,6]. Additionally,
irrigation performance terms have been used in political discourse and in the marketing of
irrigation equipment by companies. Claims by commercial interests that certain types of
high-tech installations can achieve high efficiency compared to the low efficiency of current
practices are difficult to evaluate in field conditions within the wider setting of irrigation
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schemes [7,8]. These terms should be used cautiously, as they hold significant power to
influence the livelihoods of potentially vulnerable groups [9].

The majority of farms are family run enterprises [10]. Typically, they do not have at
their disposal the capital and financial flexibility of large agro-industrial enterprises. A
farmer investing in advanced sprinkler or drip systems may be able to more effectively use
their allocated water and labor. This can lead to farmers increasing their cultivated area or
moving to higher value cash crops. However, the nested and embedded nature of irrigation
systems and water flows mean that what is true for the part is not necessarily true for the
whole. An example is the impact of the head-end/tail-end effect, where farmers further
away from the head-end of the irrigation supply are at a significant disadvantage compared
to farmers closer to the head-end. At a global scale, the potential for further exploitation of
existing inequities is apparent, as international investments are undertaken in the name
of development and food security but can be qualified as a form of neo-colonialism [11].
Seckler foresaw a shift towards the trading of crop water content, potentially increasing
scrutiny on irrigation performance [12]. The increasing accessibility of sensor technology
through open-source remote sensing (OSRS) and wireless sensor networks (WSN) presents
opportunities for farmers, and the organizational structures they make up within irrigation
schemes, to define and assess the performance of their irrigation.

In this paper, the common definitions of irrigation performance and approaches to
assessing irrigation performance in large irrigation schemes are reviewed. In Section 2,
irrigation performance will be discussed, first looking at the most important elements in
the history of its development. Combining this historical perspective with important recent
developments, a water performance mosaic capturing the multi-scale nature of irrigation
is used. In Section 3, key variables in quantifying irrigation performance are identified,
and the available methods in OSRS and WSN for sampling these variables are reviewed.
Options for sensing strategies are discussed in Section 3.3.

2. Irrigation Performance

The performance of irrigation has for a long time and in many different contexts been
reduced to an oversimplified measure of efficiency. Efficiency in its strict definition is the
amount of useful output of a process, such as water for crop growth, relative to the total
input to the process, such as water supplied. In its initial form over 100 years ago, the
useful output was first identified as the ‘duty of water’ and was directly linked to the
amount of water needed to grow a particular crop [13]. This gave rise to the concepts
of irrigation conveyance and field application efficiencies. Israelsen et al. first applied
water-application efficiencies as a response to rising land and water costs, with the aim
of optimizing use [14]. This has led to long-lasting debates on the suitable application of
specific terms, the development of new ones, and their reformulation. Often, definitions
have been linked to the differing perspectives of the various actors. Each actor usually
looking at the irrigation scheme at a different scale, such as the farm or irrigation system in
particular or the wider water resources system.

Significant developments in irrigation performance assessment included the differen-
tiation between classical irrigation efficiency, EC, and effective irrigation efficiency, EE and
the development of the fractions concept [13,15,16]. These concepts have not only shaped
research in irrigation and the assessment of its performance but the viewpoints of policy
makers and the public. EC focuses narrowly on the technical infrastructural path from
resource to useful water for the crop. EE takes a wider perspective, including the water
streams parallel to the irrigation infrastructure, for example the outflow from the tail end
of an over-irrigated field back into the canal, to be potentially reused by downstream fields.
Identifying water streams and classifying them resulted in fractions within the overall flow
from the water resource to the crop and beyond. The original intent of the introduction of
fractions into the discourse on irrigation performance was as a means to replace irrigation
efficiency, as indicated by the title of the article by [13]. However, this concept helps to fill
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in the picture of irrigation performance by classifying the different streams regarding their
value to the system.

A more recent outcome of these debates has been the irrigation efficiency matrix (IEM)
as developed by [17]. This scale-based framework is an extensive and in-depth tool for the
solid placement of irrigation efficiency in the realm of water management. The scales of the
IEM capture the different levels at which important water interactions take place, these are
as follows:

1. Sub-field;
2. Field, orchard, farm, tertiary irrigation unit;
3. Total irrigation system;
4. Catchment, basin, aquifer, multiple irrigation systems;
5. Supra/inter/national, trans-boundary basin, irrigated sector, markets and firms.

Although the fraction approach and IEM are logical developments, they are rather
complex and difficult to apply in practice, especially when compared to the earlier defini-
tions of irrigation performance. Some fractions are difficult to measure and quantify and
can only be described and the order of their magnitude estimated. From this introduction,
it should be understood that irrigation performance in this article encompasses the efficient
and sustainable use of water and soils for biomass production. With this premise, the
current section sets up a model for the conceptualization of irrigation performance and
reviews its components.

2.1. Performance Analysis Scheme

To capture the nested and embedded nature of irrigation systems and identify the
required components for effective performance analysis, a conceptualization of irrigation
is needed. A combination of two typical representations of irrigation has been chosen.
Illustrations of cropping systems have often resembled one or both of these models. These
two models are used here based on their illustration and definition by [6]. These authors
described the two models as paradigms in irrigation efficiency assessment. Basin allocated
irrigation efficiency (BAIE), also called the block model, has been used to illustrate irrigation
water flows in individual fields and farms. While it lends itself well to simple and clear
representations of field water balance, it is well suited to illustrating farms that control
their own water resource, such as a private well in or proximal to the field. With socialized
localized irrigation efficiency (SLIE), or bifurcating model, the farmers share a common
water resource as part of a larger-scale irrigation system. The network is described spatially
with the inclusion of offtake points, bifurcations of supply, and the relative positioning
of fields and farms. It may be constructed from canals, pipes, or a combination of both,
but most importantly, the spatial relationships within the system and the nature of water
flowing through and around it are described.

These models complement one another and were described both individually and
with their nested characteristics by [6]. In this article, we follow on from this and include
three of the previously listed scales outlined in the IEM, namely 1. field, 2. scheme,
and 3. catchment, to provide different perspectives for assessing the performance of
irrigation. These scales were selected as they represent tangible management levels in terms
of irrigation performance assessment for the purpose of this article. Figure 1 illustrates the
scales discussed relative to the combined models and the category of each water stream as
a fraction.

Assessing irrigation performance does not solely rest on technological or organiza-
tional requirements. Certain aspects of irrigation schemes, such as supply organization,
maintenance condition, policy and regulation, technical expertise, and equipment and in-
frastructure development level, affect the ability to implement management, organizational,
or technological changes [18]. While important, these elements are not explicitly discussed
in this section, as they are outside the scope of this article. Using Figure 1, we can position
the component water streams across scales and derive sensing requirements.
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Figure 1. Model for irrigation performance assessment across scales based on the BAIE model at field
level and on the SLIE model at scheme and catchment levels. Water supply (W), crop transpiration
(T), soil evaporation (E), return flow (R), and deep percolation (D) describe water flows across three
spatial scales: field, scheme, and catchment. The fraction category of each flow is indicated by the
subscript: beneficial consumption (BC), non-beneficial consumption (NBC), recoverable fraction (RF),
and non-recoverable fraction (NRF). The scale is indicated by the superscript.

2.2. Performance Indicators

Performance indicators for irrigation assessment require a combination of flexibility
and robustness. They should be applicable across a variety of different irrigation systems
and capture a system’s performance in a standardized and comparable manner. In this
subsection, indicators of particular importance and interest for the assessment of irrigation
performance are discussed.

Combining the scales of an irrigation scheme with the performance indicators leads to
the formulation of a mosaic of water values. However, the irrigation performance issues
faced by farmers span entire seasons when considering biomass productivity, but come
down to days and hours when concerns about irrigation timing and supply discharges arise,
and even minutes when the timing of a specific irrigation dose to a field is discussed. It is
therefore clear that temporal scales in the application of performance indicators must also be
carefully considered. This section details the widely used irrigation performance indicators.

2.2.1. Classical Irrigation Efficiency

The exact definition of EC has varied according to different perspectives. A gener-
ally accepted definition is the ratio of water consumed by a crop relative to the water
applied, delivered, or diverted [16]. Considering fractions, the consumption of water
can be classified as either beneficial or non-beneficial; as illustrated in Figure 1, with a
beneficial consumption being plant transpiration while a non-beneficial one being soil
evaporation. The long-standing use of crop evapotranspiration, ETC, based on the FAO
method detailed by Allen et al. for the estimation of irrigation demand, further discussed
in Section 3, makes the decoupling of the evaporation and transpiration terms complex,
not only in measurement but also analytically [19]. Considering the impacts of stress and
other factors on evapotranspiration affects the ETC, which is replaced by actual evapotran-
spiration, ETA. ETA is used in the numerator, as shown in Equation (1). Equation (1) can
be adjusted to different spatial scales such as field, farm, and scheme, as long as both the
numerator and the denominator, W, are adjusted to the proper scale. It is recommended to
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subtract effective precipitation, Pe, which contributes to the watering of the crop, from the
evapotranspiration term.

EC has often been broken down into the two component parts of conveyance efficiency,
ECONV , and application efficiency, EAPP, as shown in Equation (2). This decoupling can be
a way of separating the farmers’ responsibilities from those of the scheme managers. The
supply of water to the farm and associated ECONV are the domain of the scheme engineers
and managers. The application of water to the field and what is actually done with the
water on the farm, EAPP, is that of the farmer [5]. EAPP and ECONV can be applied from
the farm scale up to the wider scheme, as the conveyance of water to different individual
users is taken into account. EC and its components are performance indicators with an
infrastructure-centric perspective. They can be summarized as the ratio of a beneficial or
intended use of water of a process to the total amount of water dedicated to the process. It
is important to note that beneficial uses of water from irrigation include other elements, as
is explained in the next section on EE.

EC =
ETA − Pe

W
(1)

EC = ECONV ∗ EAPP (2)

ECONV =
W

Wdelivered
(3)

EAPP =
ETA − Pe

Wdelivered
(4)

2.2.2. Effective Irrigation Efficiency

EE was introduced by Keller and Keller to overcome the limitations of EC in the wider
context of the water resources [15]. Compared to the classical method, EE broadened the
field of view to more effectively capture the potential reuse of water within an irrigation
scheme. This perspective incorporates both the quantity and quality of the water by
considering the leaching requirement, LR. As water is removed to the atmosphere through
evaporation or transpiration it leaves behind salts, which accumulate in the remaining
water and soil and need to be leached out of the root zone. LR is an amount of water
dependent on the crop’s tolerance to salinity, the soil type, and the quality of the irrigation
water that is provided in addition to the crop requirement.

EE is a ratio of the irrigation water beneficially consumed in the scheme, similar to the
numerator in Equation (1), to the effective supply, as shown in Equation (5) [15,20]. The
effective supply is based on the difference between the effective inflow, WeI , and effective
outflow, WeO, of the scheme. WeI and WeO are dependent on LR and the in- and outflows
to the scheme, V, as indicated in Equation (6). This performance indicator is intended to
capture the possibility that a certain amount of water re-use can occur in irrigation schemes.
This may be when a farmer closer to the source of water over-irrigates their field and the
excess water is then available to the crop of another farmer downstream.

EE =
ETA

WeI − WeO
(5)

WeI = (1 − LRI)VI WeO = (1 − LRO)VO (6)

2.2.3. Relative Irrigation Supply

Relative irrigation supply, RIS, is a measure of the effectiveness of water delivery
and indicates how adequately the irrigation supply system is meeting demand [5]. RIS
can be defined alongside the relative water supply, RWS [21]. RWS is a similar indicator
to RIS, but they differ in the inclusion of non-irrigation water supply. RWS includes the
total water supply by including effective precipitation in W, whereas RIS focuses on the
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relation between supplied irrigation and the crop water requirement, CWR. RIS is defined
in Equation (7).

RIS can be applied from farm up to scheme scale and adjusted to assess the perfor-
mance of specific areas of the scheme. An appropriate time scale needs to be applied, as
the CWR and W must cover the same temporal window, and this may be daily, weekly, or
up to seasonal. An ideal value for this indicator is as close to 1 as possible, as greater than
1 means over-irrigation or ineffective application. Much smaller than 1 indicates a CWR
that cannot be satisfied with the current supply. Under water shortage conditions a lower
RIS can be targeted, for example around 0.7, to achieve optimal water productivity.

RIS =
W

CWR
(7)

2.2.4. Water Delivery Performance

The water delivery performance, WDP, compares the intended amount of water to
be delivered by a conveyance system, Wintended, with the actual amount delivered, Wactual ,
focusing on the operation of the scheme in terms of the quality of water delivery service [5].
This indicator may be based on volume or on average discharge over a specific period
of time [22]. Both variations of the basic indicator detailed in Equation (8) assess the
performance of the conveyance system. The two types are complementary. The focus
on discharge can provide more insight into the hydraulic control capacity of the scheme,
while the focus on volume will inform about whether the supply is sufficient and planning
has been appropriately carried out to meet demand. Similarly to RIS, values in excess of
1 indicate excess supply or improper planning of water allocation.

WDP =
Wactual

Wintended
(8)

2.2.5. Water Productivity

Water productivity, WP, makes a link between water management and the actual
outputs of the irrigation scheme. It is the ratio of physical or economic production to the
amount of water withdrawn, applied, or consumed. The time scale is constrained to at
least one or more growing seasons, as the completion of one growing cycle is required but
the spatial scale is more fluid. Along with this fluidity, different stakeholders also have
changing interpretations of WP.

Plant physiologists assessing energy conversion are interested in WP at the scale of
individual plants, while water managers and hydrologists look at the basin scale, with
other stakeholders at each level in between these extremes [16]. As in Equation (9), WP
can be assessed from field to scheme scale with the numerator, P, representing agricultural
production as either physical dry product or financial revenue, and the denominator, W,
representing water used as either withdrawn, applied, or consumed. It should be noted
that WP is influenced by a number of variables that change among farms, such as seed
selection, planting dates, soil, weeding, fertilization, and pest control [7]. WP is higher
when RIS is lower than 1 and is, depending on the crop, soil, and climate, often optimal for
a RIS in the order of magnitude of 0.7.

WP =
Pdry product/revenue

Wwithdrawn/applied/consumed
(9)

A number of other indicators have been developed and applied for the assessment
of irrigation performance. A comprehensive summary of indicators dealing both with the
technical and organizational aspects of irrigation was compiled by [22]. Fifteen irrigation
performance indicators were considered by Zafar et al., and these authors assessed the
maturity and acceptance of the indicators in the scientific community [23].
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2.3. Mosaic of Irrigation Performance

Van Halsema and Vincent argued the need for a WP value mosaic to capture the
multi-scale aspect of this indicator [5]. The approach should include the nested and
embedded scales of the operation of irrigation, from the field level up to trans-boundary
watersheds. The specific and appropriate scales at which performance indicators can be
applied and the form they take need to be specified. A general schematic describing this is
the mosaic of irrigation performance illustrated in Table 1. This figure provides an overview
of common performance indicators and the appropriate scales of implementation in an
irrigation scheme.

Table 1. Mosaic of irrigation performance. EC is classical irrigation efficiency as in Section 2.2.1, EE

is effective irrigation efficiency as in Section 2.2.2, EAPP is application efficiency as in Section 2.2.1,
ECONV is conveyance efficiency as in Section 2.2.1, WP is water productivity as in Section 2.2.5,
WDP is water delivery performance as in Section 2.2.4, and RIS is relative irrigation supply as
in Section 2.2.3.

1. Field 2. Farm 3. Scheme 4. Catchment
EC EE

crop consumption
water delivered to field

farm consumption
water delivered to farm

scheme consumption
water diverted from source

beneficial water consumption
effective supply

EAPP ECONV

water delivered to field
crop consumption

water delivered to farm
water delivered to field

water diverted from source
water delivered to farm

WP
field agricultural output

field water use
farm agricultural output

farm water use
scheme agricultural output

scheme water use

WDP
water delivered to farm

water intended to
be delivered

water delivered to farms
water intended to

be delivered
RIS

water delivered to farm
farm crop

water requirement

water delivered to farms
scheme crop

water requirement

The scales illustrated in Table 1 are not exhaustive. For example, sectors are common
organizational elements in irrigation schemes made up of a number of farms. This scale
level would fit between 2. farm and 3. scheme, and for clarity’s sake this and other possible
scale levels have been omitted. However, performance assessment with these indicators
can still be implemented at these scales, as long as definitions are made. An essential step
in the application of these indicators is the complete definition of all performance terms
spatially and temporally. Ambiguity and lack of clarity can lead to misunderstanding
where this is not carried out.

Based on the equations in Section 2.2 and the mosaic outlined in Table 1, a number of
key variables can be identified for the assessment of irrigation performance. The variables
relating to the sensing of the crop are water consumption based on ETA, biomass production,
P, and water requirement, CWR, as planned water delivery. Variables relating to water
include the supply; quality; and the delivered, stored, or plant-available amount of water.
Supply is based on water discharge at different levels in the irrigation scheme, W, water
quality or more specifically salinity is used to determine LR, and soil water content is used
to explain the delivered, stored, or plant-available water.
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3. Quantifying Performance

The increasing accessibility of sensing technologies such as open-source remote sens-
ing (OSRS) and Internet of things (IoT) integrated sensors arranged into wireless sensor
networks (WSN) have dramatically changed how irrigation performance assessment can
be carried out. Before these technologies were widely available, irrigation performance
indicators were derived from a limited number of localized measurements within an irri-
gation system. This made spatial and real-time information problematic. As previously
mentioned, Bos is a typical reference for this earlier approach [22].

The first step in the early approach was usually estimating the irrigation water de-
mand. Water supply can typically not be expanded without expensive and expansive work,
and the monitoring of water demand is key to irrigation management [12]. To estimate
CWR, the well-established FAO approach relies on the reference evapotranspiration, ETO,
concept [19]. The ETO, defined as the evapotranspiration of a short, well-watered, and
disease-free grass, is purely based on meteorological data. Crop and environmental char-
acteristics affecting ET are included, in the form of a crop coefficient, KC, in a following
step for the determination of crop evapotranspiration, ETC. The potential impact of stress
factors on the crops’ development and ETC are then considered in order to estimate actual
evapotranspiration, ETA. From ETA, CWR for a farm, sector, and wider scheme can be
estimated per season.

Automated weather stations have been widespread for quite some time, facilitating
the estimation of irrigation demand based on ETO over large areas. Often these automatic
logging stations still require regular downloading of the data. Monitoring the productivity
of crops has depended on recording yields at the end of the growing season after harvest.
Little real-time information has been available during the growing season apart from
mostly visual and often qualitative assessment based on intermittent observations, whereas
the availability of satellite-based observations has now made near real-time information
on crops a possibility. While this is true for crops, the same can be applied to the water
supply. In an ideal case in a large system, this was measured at a limited number of key
locations with hydraulic structures. Initially this was carried out by manually observing
water levels at staff gauges, and float water level meters were later introduced. These are
now less common, having been replaced with pressure transducers and ultrasonic devices.
Before wide internet coverage and data connections in rural areas, manual downloading
of data was still necessary. As a result, real-time information was not available, and
most performance indicators could only be estimated, often after the growing season was
finished. Real-time management and decision-making based on performance monitoring
were not feasible.

For the measurement of irrigation performance, recent technological advances and
the increased accessibility of OSRS and WSN are considered. In this work, the focus is on
space-borne remote sensing platforms. Ground-based platforms, while allowing flexibility
in acquisition frequency, are limited in their spatial coverage. Aircraft platforms can cover a
greater area, but their operational costs and, to a lesser extent, acquisition frequency make
them less attractive for the analysis of seasonal agricultural activities. Unmanned aerial
system (UAS) platforms are a subset of aircraft with more accessible operational costs, but
they are not considered in this paper. Where remote sensing produces grid data at the
macro scale over large areas aggregated in pixels of varying resolution, WSNs produce
point data which are localized at a comparatively micro scale. The temporal resolutions of
both sensing methods also differ, with more control of the sampling rates in WSNs, whereas
most OSRS data have a revisit time of at least a few days.

3.1. Remote Sensing for Irrigation Performance Assessment

Considering the areal extent of irrigation schemes along with the increasing amount
and broadening accessibility of data and computing power, the use of satellite remote
sensing in agricultural applications is continuously growing. In the context of this article,
of the variables identified for the measurement of irrigation performance in Section 2.3,



Water 2024, 16, 1762 9 of 26

satellite-based remote sensing is well-suited to providing information on ETA and P, as
it can monitor the spatially variable extent of cropped areas. Monitoring crops through
remote sensing is based on interactions between electromagnetic radiation (EMR) and the
matter of plants, soil, and water. Different parts of the EMR spectrum interact with matter
in varying ways, depending on conditions. These interactions can include the absorption
of light at certain wavelengths or the emission of others that are detected by orbiting
sensing instruments. Remote sensing indices, and more specifically vegetation indices
(VI), can be derived from the sensed information in order to focus on certain phenomena
and characteristics.

A review by Massari et al. of irrigation information retrievals from space, categorized
quantification methods to assess irrigation applications based on visible and near-infrared
(VNIR, wavelength within approximately 400 nm to 1100 nm) and microwave (MW, wave-
length from 1 cm to 1 m) data [24]. Where the review mentioned considered quantifying
applied irrigation and mapping irrigated areas, the focus of this article is on ETA and P. For
the estimation of ETA, Vanino et al. considered two main groups of remote sensing-based
methods: VNIR and thermal (TH) [25]. VNIR methods can be used with the FAO-56 PM
model, where VIs are derived from VNIR observations and used to determine KC [19].
VNIR data can also be used to derive other biophysical crop parameters, such as LAI and
fAPAR [26]. The spatial resolution of VNIR data (∼tens of meters) allows for field level anal-
ysis to be carried out. This includes high-quality, openly available data from the Enhanced
Thematic Mapper and Operational Land Imager instruments aboard different Landsat
satellites and the MultiSpectral Instrument aboard the Sentinel-2 (S-2) satellites [27,28]. The
other group of methods uses observations in the thermal range (TH, wavelength from
0.75 µm to 15 µm) to estimate land surface temperature (LST) and derive ETA as a residual
of the surface energy balance. TH observations are available with resolutions from tens
of meters up to kilometers, and for the estimation of ETA, these methods have a spatial
resolution advantage when compared to techniques relying on MW observations [24].
Typically, methods using MW observations for estimating irrigation water consumption
are based on soil water content estimations and their change over time. These estimations
relate the emitted or reflected MW radiation to the water content of soil. These data are
relatively coarse, with resolutions in the order of magnitude of kilometers, making analysis
at field level difficult if based on MW. VNIR, MW, and TH data are also used as inputs
to models simulating ETA. In a review, Zhang et al. grouped the main approaches for
estimating ETA from remote sensing into surface energy balance (SEB), Penman–Monteith
(PM), Priestley–Taylor (PT), and surface temperature-vegetation index (TS-VI) [29]. Further
details are discussed in Section 3.1.1.

While ETA can be considered a by-product of irrigation, P is the objective output of
an irrigation scheme. Traditionally, measurements of P were obtained from field observa-
tions, which were used to calculate yields based on crop-specific harvest indices (HI). As
previously mentioned, OSRS holds many advantages over field observations and most
importantly provides a spatial perspective in irrigation scheme contexts, where several
different crop types are grown in a limited area. As outlined by Chao et al., methods
for deriving P from remote sensing data include statistical analysis with VI, MW-based
approaches, net primary production (NPP) estimation, crop-height-based estimation, and
crop growth models with remote sensing data [30]. Each of these methods have specific
benefits and constraints associated with their application. NPP estimation is well suited
to the estimation of P in irrigation schemes, due to its ability to be integrated over the
growing season. NPP can be derived from gross primary production (GPP), which is the
total amount of carbon fixed through photosynthesis, as NPP subtracts the autotrophic
respiration element from GPP [31–33]. When considering the biomass production of a crop
for agricultural output, the focus is on production of the crop that increases the amount
of crop biomass and not that which is consumed by the crop. Sun et al. categorized four
groups of models for estimating GPP: VI-based, light use efficiency (LUE)-based, process-
based, and machine learning (ML)-based [34]. In Section 3.1.2, the focus is on LUE-based
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methods, as these models have potential for estimating spatio-temporal dynamics [30]. This
is important in performance assessment, as not only the temporal and spatial but also the
infrastructural and economic scales of an irrigation scheme need to be carefully considered.

3.1.1. Consumed Fraction of Water

The spatial extent at which ETA models and methods are applied varies. SEB and
TS-VI are normally used locally and regionally, while PM and PT are applied globally [35].
Below, the main developments and capabilities of these types of models are discussed.
Other methods for the estimation of ETA include maximum entropy production (MEP),
water–carbon linkage, water balance, and empirical models. These are not covered in this
article due to their relatively low use and lack of availability as open-source options.

At local and regional scales, SEB models estimate the latent heat of evapotranspiration
as a residual of the surface energy balance and can be separated into two groups, one-source
models, which do not differentiate between soil and vegetation, and two-source models,
which recognize the separate contributions of soil and vegetation to the energy balance [29].
The surface energy balance algorithm for land (SEBAL) is a one-source model that has
been used extensively on a number of platforms [36]. Recently, Laipelt et al. developed an
implementation called geeSEBAL for use on the Google Earth Engine (GEE) platform using
Landsat thermal data at 30 m resolution [37]. A large number of other one-source SEB mod-
els exist; notably METRIC, which is based on SEBAL with a key difference that METRIC
requires ground reference ET data [38,39]. In their study, Jaafar and Ahmad (2020) com-
pared the performance of a Python implementation of SEBAL and METRIC, with the latter
proving somewhat more stable seasonally for the study area [40]. A GEE implementation
of METRIC is available as eeMETRIC, which also employs thermal data from Landsat [41].
Two-source SEB models allow for the decoupling of evapotranspiration into its component
parts of transpiration and evaporation from plants and evaporation from the soil surface.
Requiring a more complex implementation than the previously mentioned models, the
two-source energy balance model (TSEB) has gone through a number of revisions since its
introduction [29,42]. In a comparison with METRIC, TSEB was found to be most suitable
where surface conditions are well known and constrained [43]. One of the later iterations
of TSEB, the atmosphere–land exchange inverse (ALEXI) model, can provide hourly and
daily ETA information at resolutions of 5–10 km with the use of geostationary satellite
platforms [44]. ALEXI was also modified into the disaggregated atmosphere–land exchange
inverse (DisALEXI) model, which uses high-resolution VI images to detect energy fluxes at
10 to 100 m resolution, without the need for local observations [45]. A recent application of
the ALEXI/DisALEXI model was in the production of ET from the ECOsystem Spaceborne
Thermal Radiometer Experiment on Space Station (ECOSTRESS) [46]. ALEXI/DisALEXI
ET are currently only produced for the continental USA (CONUS) at a resolution of 30 m.
A recent study compared the performance of the ECOSTRESS ET product with daily ET
derived from Landsat thermal data [47]. The products were also combined to investigate
the value of increased temporal coverage, and the inclusion of ECOSTRESS to Landsat
yielded some improvement.

For potentially global extents, PM methods build on the work by Allen et al., as
discussed in the introduction of Section 3.1, and are based on calculating ET or its latent
heat, as well as in some cases estimating sensible heat from a range of meteorological
variables [19,29,35]. An adaptation of the PM method was used with data from NASA’s
Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the TERRA and
AQUA satellites to produce a global ET product, MOD16, at 500 m spatial resolution with
8-day and yearly temporal resolutions [48]. The most important input for the MOD16
algorithm is LST, but there is a large data requirement for this product. The coarseness
of MOD16 means it is not well suited to detecting field-scale phenomena. MODIS data
are also used in the PM-based model ETLook, and this model decouples the evaporation
and transpiration terms in calculating ETA using an adapted PM method [49,50]. ETLook
is implemented in the Food and Agriculture Organisation of the United Nations’ (FAO)
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portal to monitor water productivity through open access of remotely sensed derived data
(WaPOR) and produces ETA estimates at three different resolutions; 250 m, 100 m, and
30 m [51]. In this implementation, interception is also calculated alongside evaporation
(E) and transpiration (T). In effect, two parallel PM equations are solved, one for T, which
is coupled with the soil through the root zone water content, and another for E, which is
coupled through the water content of the topsoil [32]. Soil water content in this model is one
of the limits for E, T, and I, and is calculated using land surface temperature data [32,33].

PT methods employ a simplified version of the PM model [29,52]. The Priestley–Taylor
Jet Propulsion Laboratory (PT-JPL) method is used to derive the global ET product of the
ECOSTRESS mission, it is based on reducing the potential ET obtained using PT to ETA
with ecophysiological constraint functions [46,53]. A notable characteristic of ECOSTRESS
is its ability to capture the diurnal cycle globally between approximately 52◦ N and 52◦ S
as the International Space Station follows an irregular orbit and the revisit time on the
ground varies. During validation, the ECOSTRESS PT-JPL ET product was found to have
a high accuracy [46]. However, the outputs had a coarser resolution than those using
ALEXI/DisALEXI for CONUS (70 m). Sen-ET is a model based on combining TSEB and
PT methods and the fusion of S-2 and Sentinel-3 (S-3) LST data, and the model relies
on sharpening the coarse 1 km resolution S-3 data using the data mining sharpener to
match the 20 m resolution of S-2 data and allow for field-scale analysis [54]. The PT
approximation allows for the unknown latent heat flux from the canopy to be initially
estimated, while latent heat flux from the soil is estimated using the balance of other soil
fluxes [33,55]. Sen-ET produces ETA outputs at a resolution of 20 m. The global land
evaporation Amsterdam model (GLEAM) was designed to only rely on remotely sensed
data, mainly from MW sensors [56]. GLEAM is based on the PT method for estimating
potential evapotranspiration, which is then adjusted to ETA using a stress factor derived
from root zone and vegetation water content derived from MW data, which is an advantage
on cloudy days. However, the resolution of this model’s outputs are mostly coarse at 0.25◦,
but for limited areas such as the Netherlands, outputs at a resolution of 100 m have been
produced, and more information is available at the GLEAM website [57].

TS-VI methods use TH and VNIR data covering a large number of pixels to identify
the wet edge where ET is potentially high and TS is low versus the dry edge where TS is
high and ET is relatively lower [29]. The latent heat flux can then be derived based on
an extension of the PT equation [58]. Further TS-VI methods have been developed with
variations in the methodology used for extracting ET [59].

The principal characteristics of the ETA estimates using OSRS discussed above are
compared in Table 2. ALEXI/DisALEXI, eeMETRIC, geeSEBAL, PT-JPL, satellite irrigation
management support (SIMS), and operational simplified surface energy balance (SSEBop)
are all used in the OpenET ensemble, which provides ETA data for the western United
States; more information is available on the OpenET website [60]. The reliance on thermal
data for the majority of ETA methods makes the development of future missions equipped
with TH sensors particularly interesting. For example, the Thermal Infrared Imaging
Satellite for High-resolution Natural Resource Assessment (TRISHNA) mission, due to
launch in 2024 or 2025, is a collaboration between the Indian and French space research
organizations. TRISHNA is planned to provide global LST information at a resolution of
50 m at nadir, with a revisit time of three observations per 8-day period [61]. The Land
Surface Thermal Monitoring (LSTM) mission developed by the ESA is planned to launch
in 2028 with a second identical instrument in 2030, and it will also have a resolution of
50 m [62,63].
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Table 2. Models and products for actual evapotranspiration estimation.

Type Model/
Product Main OSRS Data Output Resolution Comments

SEB

geeSEBAL Landsat LST
spatial: 30 m

temporal: daily
Cloud-based

implementation

eeMETRIC Landsat LST
spatial: 30 m

temporal: monthly
Cloud-based

implementation

ALEXI/
DisALEXI ECOSTRESS LST

spatial: 30 m
temporal: 1–5 days

Limited to CONUS
Separation of E and T
Capture Diurnal cycle

PM ETLook

MODIS VNIR
and LST

Proba-V VNIR
Landsat LST

spatial: 250, 100
and 30 m

temporal: decadal

Separation of E, T,
and infiltration

PT
PT-JPL ECOSTRESS LST

spatial: 70 m
temporal: 1–5 days

Separation of E and T
Capture of the Diurnal

cycle

Sen-ET
S-2 VNIR
S-3 LST

spatial: 20 m
temporal: decadal

Separation of E, T,
and infiltration

3.1.2. Biomass Production

In this section, the focus is on LUE-based models, in part due to biomass production
data products relying on this particular method being readily available and also due to
the strong physical basis of these models. As these models mainly rely on estimating the
fraction of absorbed photosynthetically active radiation (fAPAR), they also capture plant
water stress, which is an important consideration in irrigation performance monitoring [31].

The Copernicus Global Land Service (CGLS) provides a dry matter productivity (DMP)
product at a resolution of 300 m with a 10-day revisit time [31,64]. In this model, NPP
is calculated based on fAPAR derived from the PROBA-V platform and meteorological
data, along with a biome-specific LUE and other conversion efficiency terms. DMP is then
derived from NPP based on a conversion ratio. The coarse resolution of this product makes
field scale analysis difficult in most scenarios. However, improving the resolution of fAPAR
data could lead to finer outputs, as the PROBA-V fAPAR data are produced at 300 m. The
WaPOR platform mentioned in Section 3.1.1 also provides NPP, as a means to provide
crop water productivity information at varying spatial and temporal scales, but most
importantly at 30 m resolution. This water productivity is the relationship between biomass
produced and total ET [32]. WaPOR uses the same LUE model as CGLS, with the addition
of a soil water content stress factor and using LUEs dependent on specific crop types. This
approach requires reference crop data to produce outputs at a 30 m resolution [32]. The
principal characteristics of these products are summarized in Table 3. Depending on the
region and types of farming, these products can be applied at field or regional scale. The
ECOSTRESS mission discussed in Section 3.1.1 also produces biomass data as an output in
the form of gross primary production (GPP) with a resolution of 70 m, using a data-driven
approach based on machine learning [65].

Table 3. Light use efficiency models and products for biomass productivity estimation.

Product Main OSRS Data Output Resolution Comments

CGLS DMP PROBA-V fAPAR spatial: 300 m
fAPAR sharpening may

yield finer outputs

FAO WAPOR
PROBA-V, S-2 and

Landsat fAPAR
spatial: 250, 100

and 30 m
Soil water content stress

factor
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3.1.3. Data Assimilation and Deep Learning

Advanced techniques leveraging the growing wealth of OSRS data and increasing
computing power have become widespread in recent years. Data assimilation (DA) meth-
ods can improve modeling outputs and deep learning (DL) methods can simulate the
complex processes of the soil–plant–atmosphere continuum based on OSRS observations,
although certain limitations need to be considered.

Data assimilation, DA, is a set of methods that allow for the correction of model
estimates using observed data. DA was initially developed and extensively used to im-
prove the forecasting accuracy of weather models. Its application in agriculture, with the
assimilation of OSRS data into crop models, can improve the accuracy of predictions and
initially was mainly used to predict yield and drought [66]. Based on a review by Luo
et al., the ensemble Kalman filter is the most commonly used algorithm, with the leaf
area index derived from VNIR observations for DA in yield forecasting [67]. DA with
MW observations has also been proven to reduce uncertainties and improve yield estima-
tions [30]. Improvements in the spatial and temporal resolutions of OSRS combined with
crop models can yield particular benefits at field scale to improve crop model outputs [68].
DA methods also have the potential to improve ETA estimations. As a proof of concept,
Deb et al. assimilated the ETA product from SSEBop into a modified PT model to improve
estimates of ETA at a resolution of 900 m, considered farm scale in the US [66].

The wealth of OSRS data also makes deep learning (DL) techniques viable for the
estimation of irrigation performance parameters. DL techniques rely on large and deep
artificial neural networks (NN), which are trained using large volumes of observations.
DL can simulate complex relationships with which it is possible to estimate different
environmental variables, including crop yield and ETA. The use of DL for yield estimation
employing VI in conjunction with various NN configurations has existed for some time. In
more recent studies, it has been found that the inclusion of remotely sensed meteorological
information can improve results [69]. Estimating ET using DL for large areas is limited by
scale issues, as ETO calculations often use point meteorological observations, and achieving
greater than local coverage is a future target [69]. The dependence on DL techniques
for estimating ET on large datasets presents opportunities for employing data fusion
techniques [70]. Bahrami et al. found a better performance in the estimation of LAI and
biomass by combining MW and VI data using DL [71]. DL techniques being black-box
and the lack of transparency in modeling outputs, especially when compared to physical
models, can be a concern in regarding their application.

The cost of these more complex and computationally intensive methods needs to be
weighed against their potential benefits in the context of an irrigation scheme. It is likely
that over time these methods will become more accessible, following trends in increasing
computational capacities and the availability of data. Future work should develop hybrid
approaches marrying DL with physical models and explore the potential complimentary of
DA and DL methods. The possibility to assimilate data from WSN into models based on
OSRS is also apparent and this may be of particular interest in the monitoring and control
of irrigation schemes [72]. The cost and opportunity trade-offs need to be clarified.

3.2. Networks with Connected Wireless Sensors

WSNs are capable of simultaneously sensing and transmitting a large volume of
point observations of different variables. The use of solar panels and wireless connections
allows for a distributed, relatively self-sufficient, and flexible network. An interesting
implementation of WSNs in agriculture is for the automated management of irrigation
systems, which has been an increasing area of study in recent years. A concise review
by García et al. highlighted the cost limitations of these systems for precision agriculture
installations [73]. Based on the mosaic of irrigation performance in Section 2.3, three
irrigation monitoring variables to be sensed by WSNs are considered: water supply, soil
moisture, and water quality. Two categories of WSNs for agricultural applications can be
outlined: terrestrial wireless sensor networks (TWSN) and wireless underground sensor
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networks (WUSN) [74]. Each type has its advantages and disadvantages, TWSNs are
more vulnerable to tampering or damage above the ground surface, while WUSNs require
more effort and cost for installation and maintenance but are somewhat better protected
below the surface, depending on the depth of installation and as long as other agricultural
activities do not interfere with them. In the sections that follow, WSN refers mainly to
TWSNs and reference to WUSNs is made explicitly.

Following the review carried out by Ojha et al., the WSN architecture in a use case
for irrigation performance assessment would be a stationary, heterogeneous, and multi- or
single-tier network [74]. The number of tiers depends on the size, layout, and organization
of the irrigation scheme being monitored. This network architecture connects different
types of sensors deployed in fixed locations. Water discharge sensors would be located
at strategic points along the supply network, clusters of soil moisture sensors would
be installed in farmers’ fields, and water quality sensors would be located at sampling
locations in the supply and drainage points of fields and the wider irrigation network.
This multi-tier system would in effect be a scaled up version of the single-tier system at
farm level, to be used in installations monitoring several farms in tertiary and secondary
irrigation scheme units.

Talavera et al. recommend a standard architecture for WSNs in agro-industrial ap-
plications [75]. In such an implementation, as shown in Figure 2, the architecture relies
on a number of layers. In a precision agriculture installation, the physical layer includes
perception and control layers. Figure 2 omits the control layer, as this article focuses on
the monitoring of performance. The communication layer passes data to the services and
applications, which present information derived from the data and provide security. The
main focus of this section is on the physical and communication layers. The physical layer
deals with perception to sample target variables and the communication layer transfers
the data.

Figure 2. WSN irrigation performance monitoring architecture based on [75].

3.2.1. Supplied Water

The supplied water is a key variable at every scale of an irrigation scheme. Measuring
discharge allows for supply information to be integrated over different temporal scales,
with sampling points located at key locations in the scheme. The locations along the
irrigation supply network mostly depend on the organizational nature of the irrigation
scheme but typically will be at bifurcations or diversions. The type of infrastructure, either
pipes or canals, will dictate which methods and sensors can be implemented.
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For pipe flow, devices for measuring discharge need to be housed in the pipe itself.
Some older mechanical devices such as propeller and paddlewheel meters require regular
maintenance. More expensive electronic, magnetic, or ultrasonic devices require an energy
source and proper calibration [76]. Unlike mechanical devices, the latter do not disrupt the
flow in the pipe, reducing the risk of debris blockages. Venturi meters also benefit from a
lack of obstruction and low maintenance requirements, although with some constriction of
the pipe.

Measuring discharge in open canals typically requires water level sensors combined
with knowledge of the canal cross-section or preferably a hydraulic structure such as a
flume. The advantages of flumes include their accuracy, combined with low maintenance
requirements, which offset the initial construction investment. Additional benefits are
the relatively easy passage of debris and sediment, and that they allow visual inspection,
encouraging transparency between stakeholders. Discharge is directly related to the water
level at a specific point along the flume, meaning a stilling well can be used to ensure
stable readings. Sensors of water level come in two categories: contact and non-contact.
Contact sensors require installation in the water being measured and include pressure
transducers, bubblers, shaft encoders, and acoustic sensors [77,78]. Non-contact sensors
measure the level at a distance from the water surface and these may be radar, ultrasonic,
or laser sensors. An example of a large-scale implementation of supply monitoring was
given by Muhammad et al., where a stilling well equipped with a wireless ultrasonic range
finding sensor was installed along irrigation canals to monitor water levels and estimate
discharge with cross-section information [79].

3.2.2. Soil Water

In a review of IoT applications in agro-industry, it was found that 27.3% of monitoring
applications focused on soil water content [75]. This number is likely to continue growing as
more irrigation schemes adopt automated supply systems that monitor root zone depletion.
In fact, soil water content is the most investigated parameter in the sector of irrigation
monitoring through WSNs [73]. It is a critical component to be aware of for irrigation
management, as recharging the root zone is the primary objective. However, due to
its subterranean location, the low range of most sensors (especially if used in WUSN
configurations), and three-dimensional spatial heterogeneity, this is not easily measured.

Underground sensors can be installed at interval depths to provide information about
the vertical profile of soil water content. Specific operational requirements have to be
considered, as signals are attenuated by the ground and a greater number of nodes are
required to cover larger areas, as well as a higher energy consumption [74]. A variety
of soil water sensors exist, with certain types better suited to specific soil texture, bulk
density, salinity, and temperature levels [80]. Soil water sensors are generally separated
into two groups: volumetric water content (VWC) sensors and water potential sensors.

VWC sensors measure a variable as a proxy of the fraction of the soil mixture that is
water. These types of sensors include time domain reflectometry (TDR), frequency domain
reflectometry (FDR), and capacitance [72,81]. TDR, FDR, and capacitance sensors rely on
the fact that the dielectric constant of water is significantly greater than that of a typical soil.
TDR probes measure the rate at which an electromagnetic pulse travels through the soil,
which is related to the dielectric constant, with the pulse being slower in a wet soil than in a
dry soil. TDR probes do not usually require calibration for a specific soil [81]. FDR relies on
the frequency change of an electromagnetic pulse as it moves through the soil. FDR probes
are cheaper than TDR probes and normally use less energy but are more prone to errors [82].
Capacitance probes measure the dielectric constant of the soil by measuring the time it
takes for a capacitor that uses the soil as medium to charge [81]. FDR sensors are sometimes
referred to as capacitance, as certain FDR sensor designs employ characteristics from both
sensor types. Specific design aspects of TDR, FDR, and capacitance sensor types, such as
operating frequency or number of frequency bands, make them more or less susceptible to
soil salinity and other environmental conditions that affect accuracy. Aside from typical
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installation requirements to ensure good operation such as proper calibration, a crucial
necessity is for the sensor to be installed in the soil without any air gaps.

Where VWC sensors measure a quantity of water in the soil, water potential sensors
measure the energy content of that water. Water potential dictates the movement of water
as it works toward equilibrium. The roots of crops must overcome the water potential to
extract water from the soil, and if this energy requirement is too great, crops will begin
wilting. The actual water content of the soil at the wilting point is dependent on specific soil
characteristics and plant physiology. The most common sensor type for measuring water
potential is the granular matrix electrical resistance sensor, which relies on the electrical
resistance between two wire grids separated by a material that maintains the same water
content as the surrounding soil [81]. As with FDR, TDR, and capacitance probes, proper
contact with the soil with minimal air gaps is essential for accurate readings. Knowing
the water potential alongside the VWC is key to irrigation scheduling. For the purpose
of irrigation performance assessment, it informs about the usefulness of irrigation and
whether the amount of water that has been added to the root zone can be used by the crop.

Knowledge of soil water content is key to evaluating the performance of irrigation
schemes. Delivering water to the root zone of crops with proper timing and sufficient
quantity is the prime objective of irrigation. In research by Jalilvand et al., changes in soil
moisture from RS sources were used in the water balance as a means to estimate irrigation
amounts [83]. Temporal patterns of irrigation could be detected to a certain extent. Studies
in this direction are interesting, as we come close to closing the information gap between
the micro and macro scales. However, caution is needed, as we do not know by what other
processes the soil moisture may have been reduced, such as deep percolation or runoff [5].
There is also the potential to assimilate soil water data collected by WSN into forecasting
models such as those discussed in Section 3.1.3, and the benefits to irrigation performance
assessment need to be investigated.

3.2.3. Water Quality

The quality of supply and drainage water is a necessary monitoring input, not only
when quantifying EE, but also to ensure the basic requirements of the crop are being met.
Irrigation water quality is defined by criteria that affect crop production, these are the
total soluble salt content, relative proportion of sodium to calcium and magnesium ions,
carbonate and bicarbonate content, pH, and other specific ions (chloride, sulfate, boron,
and nitrate) [84,85]. Additionally, the presence of microbial pathogens must be monitored
intermittently. For the purpose of an irrigation performance assessment framework, the
main water quality criterion considered is total water salinity. This is to ensure that the basic
requirement of irrigation water is met and the leaching requirement is satisfied. However,
in the operation of an irrigation scheme, water sampling needs to take place at intervals, to
monitor all of the water quality components.

Salinity affects the electrical conductivity (EC) of water, as higher amounts of total
dissolved salts make the water more conductive. Soil water salinity is controlled by
considering the leaching requirement, which is a necessary beneficial use of water in the
field. EE, as described in Section 2.2.2, factors in the salinity of irrigation water in assessing
the performance of an irrigation scheme. Without the leaching requirement being met, the
accumulation of salts in the soil would eventually make the soil unproductive. Monitoring
the salinity of cultivated soils is important, to control land degradation. For this purpose, a
number of methods are available, including assessing visual indicators, laboratory analysis
of soil samples, in situ proximal sensors, and remote sensing methods. Proximal sensors
measure the EC of the soil, while remote sensors rely on spectral signatures of soil salinity.
Monitoring water quality relies on proximal sensors, whether in situ or in a laboratory.
Measuring the EC with a sensor as part of a WSN allows for the calculation of total salt
concentration [85]. A relatively low sampling rate is possible, with weekly to monthly
measurements or potentially longer, depending on specific cases, as the salinity of irrigation
water is unlikely to change over short periods if the source is unchanged.
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3.2.4. Network Configuration

Sensors are located at nodes in a WSN and need to communicate with the Internet, to
allow for ease of data collection and analysis. In applications of irrigation control alongside
monitoring, sensor nodes communicate with actuator nodes that control water supply
components such as pumps and valves. In this case, where solely monitoring is considered,
the sensor nodes communicate with a gateway node that communicates with the Internet
in a one-way direction. Due to the heterogeneous architecture of this WSN case, the nodes
vary not only in sensing capability but also in transceiver ability [74]. Nodes are arranged
in clusters that are related to the scale at which they monitor irrigation performance. An
example WSN is illustrated in Figure 3, showing the hypothetical sector of an irrigation
scheme containing two farms, each with three fields. Based on an architecture outlined
by Ojha et al., the network is based on a cluster at field scale, which contains a discharge
sensor, soil water sensor, and 3rd tier gateway nodes [74]. Each of the 3rd tier gateways
communicates with the 2nd tier gateways at farm scale, which combined with a discharge
sensor node at the point of farm supply constitute a farm scale cluster. The farm scale
clusters then communicate with a 1st tier gateway node at sector level, which relays data to
the remote sink communicating with the Internet.

Figure 3. Architecture of a WSN for monitoring irrigation performance from field scale up to irrigation
scheme sector scale. This layout or specific parts of it can be replicated at various scales throughout a
large irrigation scheme with many stakeholders.

Figure 3 describes the physical layer illustrated in Figure 2. Different protocols and
communication systems are available for the communication layer. Communication from
the sensor nodes to the gateways can be achieved using ZigBee, Bluetooth, NFC, WiFi,
LoRA, or Sigfox [74,75]. Energy conservation has high priority when selecting the commu-
nications protocol, and this has to be balanced with the sampling frequency, power supply,
communication distances, data packet size, and regularity of communication. The use of
photovoltaic cells is common to recharge the batteries of sensors [73]. Alternative options
for a WSN power supply are limited and the positioning of these cells must be critically
assessed, as a growing crop may end up obscuring the power supply of a soil water sensor
in a field. The final configuration of the WSN will depend on the specific requirement of the
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scheme, themselves hinging on its organizational structure and physical layout. Alongside
costs, power considerations will have a major bearing on the overall design of the WSN.

3.3. Irrigation Monitoring and Irrigators

The increased integration of various sensors in agriculture is a major step towards
"Smart Farming” or “Artificial Intelligence” in the agro-food sector [86]. In a review on big
data in smart farming, Wolfert et al. laid out two extreme scenarios for the future of farming
in a big data world, the first where farmers are one component of a highly integrated food
supply chain made up of closed, proprietary systems, and the second with collaborative
systems in which all stakeholders, including farmers, have flexibility in their business
decisions [87].

Connecting sensors to the Internet, as part of the IoT, allows real-time monitoring
of the soil water content in the root zone of irrigated crops. An important challenge
remains the spatial variability in larger areas, such as large-scale irrigation schemes and
wider catchments [88]. At farm level for high-value irrigated crops, this is often a practice
existing as part of an automated high-tech field level irrigation system. However, to
obtain representative values on a larger scheme, one needs to establish a large number of
observation stations. In addition, the water reserve in the entire root zone is important at
each location, and monitoring at least three depths is recommended. Recent developments
in wireless sensors are described in [89].

Irrigation is not a phenomenon occurring in a test tube, to be studied from a distance
and distilling recommendations to direct farmers. Rather, the data generated must be
used meaningfully to inform and empower farmers, allowing them to make judgments
on their own performance. Water users’ associations composed of farmers should be the
meeting point where questions revolving around performance are resolved and actions are
planned to correct low irrigation performance resulting from inequities. There is currently
no single ideal model for irrigation performance assessment that can be applied to irrigation
systems worldwide.

4. Discussion

As discussed in this article, irrigation performance has historically been defined in a
variety of forms. A large number of indicators exist, and selecting or defining the most
relevant must be carried out on a case-by-case basis. For this article, a limited, relevant
selection was made, to layout a framework of the possible performance assessments and
relevant technology currently available. While the stated objective of irrigation schemes is
the replacement of root zone depletion and the efficient production of agricultural yields,
this should not be achieved to the detriment of irrigation users. The wealth of data and
sensors that can be employed to monitor and eventually automate the operations of an
irrigation scheme should be deployed responsibly with respect to the complex hydro-
social system that is an irrigation scheme. The main purpose of performance evaluation
in irrigation is to maximize the perceived outputs from inputs to the system. However,
this goal should only be pursued while empowering the more vulnerable users of an
irrigation scheme.

This discussion section considers different time scales of assessment in the context
of different groups. The spatial scales outlined in Section 2.3 are used here in conjunction
with the three principal groups involved in the functioning of an irrigation scheme. The
scales considered are the field/farm, the scheme, and the water resource. The groups are
formed according to their main concern in the scheme. Group 1 is comprised of irrigators.
These are users in direct contact with crop production and the end users of irrigation water.
They operate at the field/farm and at the sub-sector scale in the scheme, as they often have
contact with the irrigation supply network in proximity to their farm. Group 2 is concerned
with the management of the irrigation scheme. This includes irrigation managers and
engineers, as well as water user’s associations. Their influence is over the entire scheme,
with the main focus being the irrigation supply network, its infrastructure, scheduling,
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and organization. Group 3 is involved with policy making and includes governmental
actors such as environmental agencies and other regulatory bodies at the water resource
scale, of which the irrigation scheme is one element. It is likely that an individual in an
irrigation scheme is a member of more than one of the three groups. Farmers are often
members of water management organizations, and they may also be politically active. The
views of these groups and how they perceive irrigation performance is key to establishing
a functional irrigation performance assessment approach. A summary of the discussion
is visible in Table 4, with consideration of spatial and temporal scales. The groups are
attributed to the performance indicators over which they have influence.

Table 4. Summary of irrigation performance indicators at temporal and spatial scales and the
influence of the three groups involved in an irrigation scheme.

Spatial Scale

Field/Farm (Sub-)Sector/Scheme Water Resource

Temporal Scale

Daily
RIS, WDP EAPP

-

Weekly to monthly
RIS, WDP EC, EAPP, ECONV EE

Seasonal
RIS, WDP, WP EC, EAPP, ECONV EE

Irrigator. Irrigation manager. Policy maker.

4.1. Daily Assessment

At a daily time-step, performance assessment is mostly carried out for field and farm
scale irrigation activities, with consideration of supply questions that impact these activities.
For these activities and at this time scale, the main users concerned are group 1 and group 2,
with the principal performance indicators RIS and WDP outlined in Equations (7) and (8),
respectively. Assessing systems that involve plant processes such as EAPP or EC is not
feasible at a daily time scale. Filling the root zone reservoir of a crop may be completed in a
single irrigation turn in less than a day, but this water is used through evapotranspiration
over a longer time period. Moreover, reliable measurements of ETA based on OSRS are less
available at a daily time-step, as outlined in Section 3.1.1.

For the daily calculation of RIS and WDP, the measurement of supplied water by
sensors, as described in Section 3.2.1, provides input data. The WSN must then be con-
figured with a suitable sampling frequency to capture (sub-)daily variations in supply
discharge, and the sampling points must be installed at relevant collection points along the
supply network, as illustrated in Figure 3. Farmer-led organizations, at different scheme
organizational levels, can identify strategic locations for this sampling to take place. With a
sufficient number of sampling points in suitable locations, ECONV may also be calculated
for particular sections of the supply network, as outlined in Equation (3). A requirement
for this measurement is that the inputs and outputs of the assessed sections of the network
are known.

Soil water sensors, as described in Section 3.2.2, allow WDP to be estimated for
individual fields. Relative changes in soil water content during an irrigation turn provides
information on the effectiveness of delivery and application of the water. WSNs are most
relevant to daily assessment, as typically there are no daily time-steps for OSRS-based
measurements. Overall, close collaboration between group 1 and group 2 is necessary for
daily irrigation performance assessment.
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4.2. Weekly to Monthly Assessment

Weekly to monthly time-steps allow for the consideration of plant processes and
the spatial and temporal up-scaling of the daily performance indicators mentioned in
Section 4.1. Typically, irrigation planning on large irrigation schemes is implemented on a
dekad or ten-day basis, fitting into this time scale. All three groups are involved at this time
scale, with groups 1 and 2 having a similar influence as at the daily time-step, along with
group 3 and their policy decisions potentially having a bearing on irrigation performance.
This increase in time scale makes a comparison between different farms and sectors of
an irrigation scheme possible. This is a strength of the irrigation performance indicators,
which may highlight inequities or other issues in the scheme’s operation.

EAPP, and by association EC, can be calculated as time periods of weeks to months,
allowing the comparison of irrigation supply as described above with ETA from OSRS
sources. WDP and RIS, which at the daily scale could only be derived for individual farms,
can now be calculated across the wider scheme as more irrigation turns are covered. The
impact on group 1 is best explained with comparisons between irrigation users within
the group. The relative performance of individual farms, sub-sectors, and sectors can be
assessed. These comparisons then reflect on group 2, the internal functioning of the scheme,
and its organizational structures.

The availability of ETA means EE from Equation (5) can also potentially be assessed,
as data from water quality sensors described in Section 3.2.3 provide information on the
LR. However, the requirement of measurement of the outflow from the irrigation scheme
is complicated. Drainage networks for irrigation schemes are often less organized and
structured than supply networks and therefore much more difficult to monitor. Where
some kind of irrigation supply monitoring is already carried out in most irrigation schemes,
outflow monitoring is less common. EE informs about the overall suitability of the irrigation
scheme’s supply and is a measure of particular interest to group 3, as policy decisions
should not only factor in the suitability of water for crop consumption but also the effect
on users downstream of the irrigation scheme.

4.3. Seasonal Assessment

Looking at the seasonal time period, all groups and performance indicators are con-
sidered. EC, along with EAPP and ECONV , RIS, WDP, and EE can all be integrated over
the length of the growing season, with the possibility to highlight temporal dynamics in
their variability. WP can be calculated at this time scale, as the generation of seasonal
biomass data from OSRS-based models is feasible. With sufficiently descriptive irrigation
supply sampling locations and seasonal biomass production from the higher resolution
OSRS options described in Section 3.1.2, it is possible to derive WP information from field
scale (depending on the field size) up to the wider scheme. This information can be further
enriched by factoring in the economic value of crops.

Group 1 benefits from this information by comparing with their fellow irrigators how
specific cropping choices have benefited them and the relative value of water in different
areas of the scheme. Group 2 may choose to investigate certain areas of the scheme that
are performing poorly when factoring in information from other performance indicators.
These indicators provide a baseline against which any adjustment to irrigation distribution
based on details gathered from investigations can be compared. Promises of increased
efficiency and productivity from implementing high-technology irrigation systems, such as
moving from surface irrigation to sprinkler or drip systems, can be verified. Group 3 gains
insights into the economic dynamics of the irrigation scheme and can develop policies with
greater knowledge, with the potential to verify the impacts of such policies.

5. Conclusions

Improving irrigation performance has been the aim of many projects in the past
decades. The definitions surrounding irrigation performance have been argued over and
complicate an already complex issue. The targets set out by these projects have often not
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been achieved, and the typical result has been more pressure on the water resource. This
may be due to specific vested interests, private companies, state actors, etc. using marketing
strategies to promote interest in irrigation projects. However, once the projects are complete,
the actual benefits and drawbacks for individual farmers are difficult to quantify. Increased
technification of irrigation does not necessarily lead to more efficient water use, but the
higher quantity of sensors which tend to accompany these projects can be combined with
the currently available OSRS data for the benefit of farmers.

The increasing accessibility and volume of remote sensing data and generally lowering
costs of sensors have made more detailed irrigation performance assessment a possibility
for many groups involved with irrigation. Ideally, an irrigation performance assessment
project would be instigated and led by the actual irrigators and not only irrigation engi-
neers and managers. The performance assessment should not be used to police the system
but rather for farmers to inform themselves on issues and possible improvements and
for scheme managers to address areas to allow better equity and quality of service. A
significant level of expertise and financial input is required for the development of such a
system. The installation and maintenance of a WSN involves both hardware and software
requirements that are not commonplace, the use of OSRS data requires data processing
capacity, and the combination of these tools needs dedicated online services. However,
the potential opportunities are obvious, and a stepwise approach towards irrigation per-
formance assessment is possible. The technology is available but is for the most part not
leveraged by the direct end users of irrigation schemes.

The performance of an irrigation scheme is a complex issue. It cannot be solely reduced
to simple ratios derived from a number of performance indicators. These indicators provide
insight into potential areas of improvement for further investigation and, perhaps most
importantly, can highlight possible issues of inequity in the hydro-social system that is
an irrigation scheme. For example, should an irrigation user experiencing drawbacks
related to their position in the scheme (e.g., less reliable access to water further from the
head-end) receive some form of aid or assistance. These are the types of questions that may
be approached as the complex interactions surrounding irrigation are elucidated.
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Abbreviations
The following abbreviations are used in this manuscript:

OSRS Open-source remote sensing
WSN Wireless sensor networks
EC Classical irrigation efficiency
EE Effective irrigation efficiency
IEM Irrigation efficiency matrix
BAIE Basin allocated irrigation efficiency
SLIE Socialised localised irrigation efficiency
W Water supply
T Transpiration
E Evaporation
I Interception
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R Return flow
D Deep percolation
BC Beneficial consumption
NBC Non-beneficial consumption
RF Recoverable fraction
NRF Non-recoverable fraction
ETC Crop evapotranspiration
ETA Actual evapotranspiration
Pe Effective precipitation
ECONV Conveyance efficiency
EAPP Application efficiency
LR Leaching requirement
RIS Relative irrigation supply
RWS Relative water supply
CWR Crop water requirement
WDP Water delivery performance
WP Water productivity
ETO Reference evapotranspiration
KC Crop coefficient
EMR Electromagnetic radiation
VI Vegetation indices
VNIR Visible and near-infrared
MW Microwave
TH Thermal
LST Land surface temperature
LAI Leaf area index
fAPAR Fraction absorbed photosynthetic radiation
S-2 Sentinel-2
S-3 Sentinel-3
SEB Surface energy balance
PM Penman-Monteith
PT Priestley-Taylor
TS Surface temperature
NPP Net primary production
GPP Gross primary production
LUE Light-use-efficiency
ML Machine-learning
TSEB Two-source energy balances
CGLS Copernicus Global Land Service
DA Data assimilation
DL Deep learning
VWC Volumetric water content
FDR Frequency domain reflectometry
TDR Time domain reflectometry
EC Electrical conductivity
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