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Abstract: Risk assessment provides a powerful tool for the early warning and risk mitigation of
geohazards. However, few efforts have been made regarding risk assessment and dynamic control at
multiple scales. With respect to this issue, the West Han River catchment in the Gansu Province of
China was taken as a study area, and geohazard risk assessments at three different scales were carried
out, namely regional, local and site scales. Hazard assessment was performed using the combination
of the information value and hierarchical analysis models, infinite slope stability model, and FLO-2D
model. Vulnerability was estimated from two viewpoints, including physical vulnerability and social
vulnerability, by applying remote sensing and semi-quantitative methods. Finally, risk mapping and
zonation was obtained from the products of hazard and vulnerability, and corresponding measures
of risk management and control at different scales were recommended. The results indicated that the
geohazard risk at the regional scale was the highest under the earthquake and rainfall conditions
with a 100-year (100a) return period, respectively, and the area of very high risk level reached 5%.
When the rainfall condition had a return period of 50 years, only 1% of the area was located in the
very high-risk region. Additionally, the overall risk was higher in the central and northeastern parts
of the region under heavy rainfall and earthquake conditions. The overall risk level in Longlin-Leiba
Town (at the local scale) responded more significantly to heavy rainfall conditions, with higher risk
in the southwestern, central, and northeastern parts of the region. For the site scale (Wujiagou debris
flow), only 2% of the total area was identified as very high-risk even under heavy rainfall with a 100a
return period, but the proportions for the low and moderate levels reached 30% and 56%, respectively.
The present study can provide scientific references for geohazard risk assessment and control.

Keywords: geohazard; risk assessment; multi-scale; hazard mapping; vulnerability; GIS

1. Introduction

Geological hazards are one of the most destructive natural hazard phenomena world-
wide [1,2], often causing great harm to the lives and survival of local inhabitants and
seriously damaging infrastructure development. Geohazard risk assessment has been an
effective tool for geohazard prevention and control among government departments [3,4],
and its results can show the probability of a geohazard’s occurrence and its scale [5], so
exploring geohazard risk assessment at different scales is always an important topic for the
scientific community.

Geohazard risk assessment mainly includes two steps: hazard assessment and vul-
nerability assessment. Among them, hazard assessment includes both qualitative and
quantitative methods [6], and the qualitative methods mainly use historical landslide in-
ventory data to obtain hazard zoning maps for specific scenarios or rely on the experience
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of experts with rich expertise in hazard mapping [7], so they are also called “knowledge-
driven models”. However, these models are generally more subjective, and their accuracy
needs to be improved. In contrast, quantitative models [8–10] are often based on a specific
theoretical or numerical method to obtain quantitative hazard assessment results, and
therefore, the results are more reliable. Deterministic models are an important branch of
this class of methods that can calculate slope stability based on the physical properties of
the controlling geomorphic processes, thus better reflecting the landslide instability damage
process. The main deterministic models that have been developed [11,12] include SHAL-
STAB [13], SCOOPS3D [14], TRIGRS [15], SLIP [16], FSLAM [17], etc. Additionally, some
studies have superimposed the temporal probability of geohazard triggering factors (gener-
ally rainfall or seismic conditions) on the basis of susceptibility assessment to obtain hazard
assessment results quantitatively. The methods used for susceptibility assessment mainly
include four categories, namely expert empirical models [18], physics-based models [19],
statistical models [20,21], and machine learning (ML) models [22–24]. Several comparative
studies [25,26] have shown that statistical and ML models typically have higher preci-
sion and accuracy and, thus, have been widely used for tasks in landslide susceptibility
assessment, such as artificial neural networks (ANNs) and random forest (RF).

Vulnerability is a key component of geohazard risk assessment. Due to its complex
nature, many different concepts and methods exist in the literature to assess vulnerabil-
ity [27,28]. In general, susceptibility is an inherent characteristic of the element at risk,
i.e., the nature of being affected or vulnerable to damage due to an impact hazard of a
specific intensity [29,30]. There are three main methods currently used for vulnerability
assessment, as follows: (i) a vulnerability analysis based on the opinions of experts [31]
whose analytical data are obtained by collecting the opinions of a large number of experts
on the assessment of regions in different damage states, but these assessment results rely
on the subjective judgment of experts and are less accurate; (ii) an empirical analysis based
on field surveys [32] whose data are usually derived from historical disaster survey data in
the same region; (iii) a theoretical analysis based on a numerical simulation [33,34], whose
analytical data are directly derived from the results of theoretical numerical simulations,
and the analytical data used are more controllable; therefore, theoretical analyses have be-
come one of the most widely used vulnerability analysis methods. The vulnerability curves
or functions required for this method can be obtained in various ways, the earliest being an
elastic response spectrum analysis [35] and the CSM method [36]. With the improvement
in computer computing efficiency, the most popular computational method is nonlinear
time course analysis (NLTHA).

Regarding risk assessment, previous studies have mostly focused on three aspects,
namely the regional scale [37,38], local scale [39] and site scale [40]. Generally, the local scale
and regional scale have usually been defined as 1:25,000–1:5000 and 1:250,000–1:25,000,
respectively [41], and the site scale is the largest (>1:5000). Hence, the specific methods for
the modeling and analysis of these scales often have some differences. However, fewer
comparative studies have been conducted from multiple scales in a region at the same
time, such as Dalia Bach Kriechbaum (2009), who conducted a risk assessment of landslide
hazards at two scales through bivariate modeling techniques and multivariate statistical
methods. Nonetheless, overall, the number of such studies is still low, and there is an
urgent need to increase the number of relevant case studies in multiple regions around the
world [42–44].

To address these issues, this study selected the West Han River watershed in the
Gansu region of China as the study area and carried out geohazard risk assessment at
three different scales. Finally, corresponding risk management recommendations based on
the risk results were proposed, aimed at providing assistance in exploring theoretical and
technical issues in multi-scale geohazard risk assessment.
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2. Study Area and Data Preparation
2.1. Risk Results and Assessment at Regional Scale

The investigation area of this study includes three different scales, i.e., the regional
scale, local scale, and site scale. Among them, the regional scale is the Longnan West Han
River watershed, the town scale is the key area of the Longlin-Leiba Town section, and the
site scale is the Wujiagou debris-flow landslide.

The West Han River watershed is located in the mountainous area of Longnan; it
belongs to the southwest of the Loess Plateau, and the northeast of the Qinghai-Tibet Plateau
is adjacent. It has a basin area of 10,178 km2, the overall topography of the northwest high
is, while the southeast is low. With a territory of overlapping mountains, steep slopes,
and deep valleys, gullies, and complex terrain, the region’s landscape is divided into loess
hills, low mountains, low and medium mountains, medium mountains, high and medium
mountains, a river valley plains area, and six other categories. The stratigraphy of the area
ranges from the Silurian of the Late Paleozoic to the Quaternary of the Cenozoic, and the
lithology is mainly slate, sandstone, and tuff. The study area has a temperate continental
monsoon climate with abundant rainfall and significant horizontal and vertical changes
in climate, with an average annual rainfall of 551.4 mm. Water resources are abundant,
and the river network is dense, plume-like, and dendritic. The watershed mainly involves
four administrative districts, namely Lixian, Xihe, Chengxian, and Kangxian, with a total
resident population of about 1.2 million. In recent years, the scope of human engineering
activities in the region has been expanding, mainly in infrastructure construction, especially
road construction, steep slope cultivation, and the development of mineral resources. At the
same time, due to the low surface vegetation coverage caused due to previous deforestation,
the geological disasters in the area are very serious and pose a great threat to people’s lives
and the safety of their property.

2.2. Wujiagou Debris Flow

The Wujiagou debris flow is located on the right bank of the West Han River in Longlin
Town, Lixian County, with the basin planform in the shape of a “slender funnel”. The
basin area is about 1.56 km2, the main ditch is 3715 m long, the average width is 600 m,
the highest point of the basin is 1801 m above sea level, and it joins the West Han River at
1285 m above sea level. The relative height difference of the basin is 516 m, and the average
longitudinal drop is 138.9‰. The upper part of the valley is a deep “V”-shaped valley, and
the middle and lower parts are “U”-shaped valleys. The slope of the valley is steep, with
an average slope of 35◦ on both sides, and the profile is convex and linear.

2.3. Overview of Geological Hazards in the Study Area

The main types of geological hazards in the study area include collapses, landslides,
and debris flows. A total of 2114 collapses, landslides, and debris flows were found through
the field geological survey, including 1173 landslides (55.49%), 509 debris flows (24.08%),
and 432 collapses (20.44%). The specific distribution of geological hazards in the study area
is shown in Figure 1.

2.4. Overview of Geological Hazards in the Study Area

The data used in this study are mainly from the basic information of the area, and
they were combined with the remote sensing image InSAR, aerial photography via UAV,
a ground survey, drilling, trenching, integrated physical exploration, and experimental
testing. The obtained data are mainly used for (i) extracting the slope, gully density, and
specific drop of a debris-flow gully bed, (ii) risk source identification, the disaster-bearing
body type, and other interpretations, and (iii) obtaining physical and mechanical indexes
such as geotechnical density/capacity, water content/permeability coefficients, and internal
friction angles and cohesion for model calculation and analysis. The detailed data sources
and formats are shown in Table 1.
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Figure 1. The location of the study area and a sketch map of the distribution of geological hazards in
the West Han River watershed.

Table 1. Data types and sources.

Base Data Data Source and Production Data Format

DEM Geospatial data used to extract slope, gully density, and
specific drop of debris-flow gully bed, etc.

National Geographic Information Center:
5 m × 5 m raster data

DOM/DLG Land use type data National Geographic Information Center:
5 m × 5 m raster and vector data

Geological data Lithological zoning and fracture structure 1:200,000 regional geological map,
vector data

Remote sensing data For risk source identification, disaster-bearing body
types, etc.

Interpretation of P-star and UAV data,
raster data

Geological disaster data
According to the “Longnan West Han River Basin

Disaster Geological Survey” (2019–2021)
project database

1:10,000 precision vector data

Rainfall data Lanzhou central meteorological station and Longnan
city geological disaster professional monitoring network Point cloud (vector) data

Survey and test data

Geotechnical density/capacity, water
content/permeability coefficient, and physical and

mechanical indicators such as angle of internal friction
and cohesion for model calculation and analysis

Text data format

3. Methods
3.1. Hazard Evaluation Model
3.1.1. Regional Scale

In this study, nine environmental factors, such as the topographic relief, slope, slope
direction, engineering geological rock group, distance from the fault, density of gully
distribution, normalized vegetation index, degree of human engineering activities, density
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of debris materials, such as debris-flow sources, etc., were selected, and a 25 m × 25 m reso-
lution raster cell was used as the basic evaluation unit of geological hazard susceptibility in
the study area. On this basis, a regional geological hazard susceptibility evaluation [45,46]
was carried out using the information volume method [47,48] with the combined hierarchi-
cal analysis model [49,50].

(1) Information value model.
The informativeness model is a kind of Bayesian probability model that can better

integrate the subjective experience of experts and the relevance of disaster-causing elements
to geological hazards, and the algorithm is more stable and has a clear connotation. This
model typically uses a probability form for quantitative descriptions, which can reflect
the contribution size of different disaster-forming elements’ intervals to the formation of
geological hazards, and the expression of a geological hazard’s information quantity IAj→B
is as follows:

IAj→B = ln
P
(

B/Aj
)

p(B)
= ln

Nj/Sj

N/S
(j = 1, 2, . . . n) (1)

where IAj→B is the amount of information about the occurrence of geohazard B in the jth
interval of the corresponding disaster-forming element A, Nj is the area value or number of
disaster points of the geohazard in the jth interval in the corresponding disaster-forming
element A, Sj is the area of distribution for the jth interval in the disaster-forming element
A, N is the total area of distribution or total number of disaster points of regional geological
hazards, and S is the total area of the region.

The “positive value” of IAj→B indicates that the element interval is favorable to the
occurrence of geological hazards, a “negative value” indicates that the element interval is
unfavorable to the occurrence of geological hazards, and a “zero value” indicates that the
element interval is not favorable to the occurrence of geological hazards. The “0 value”
indicates that this factor interval has a medium level of contribution to the formation of
geological hazards.

(2) Hierarchical analysis model.
This study adopted hierarchical analysis and GIS spatial analysis to evaluate and zone

the vulnerability of geological hazards, and the main processes included the following:
(i) determining evaluation units and evaluation factors and determining the weights of
each factor and each element using hierarchical analysis; (ii) quantifying the indicators
of each evaluation factor and using the normalized numerical transformation method to
unify the outline of the quantity; (iii) on the basis of the determination of evaluation index
weights and data normalization, using the spatial analysis function of the GIS system for
spatial superposition and the statistics of data; and (iv) determining the boundary points
of the susceptibility zone via statistical analysis and dividing the evaluation results into
different levels so as to complete the geological disaster susceptibility zone map.

3.1.2. Local Scale

The 24 historical debris flows in the Longnan area, also in Gansu Province, were taken
as an example. A detailed field survey was conducted to obtain their critical information.
Some nonlinear statistical methods [51–53], available on the Matlab platform, were used
to establish a maximum outflow prediction model for debris flows in the study area and
the previous prediction model optimization to improve the construction of different-scale
rainfall frequency for the debris-flow activity scale’s quantitative expression. The equation
is as follows:

vi = 0.0182 × p × (AbW)0.5903 (2)

where vi is the maximum flushing-out volume (104 m3) of the mudflow at one time in year
i of the rainfall frequency, W is the total amount of loose solids (104 m3) in the mudflow
basin, which represents the materials from the source area, Ab is the area of the future
mudflow disaster outbreak area (km2), p is the rainfall coefficient, i.e., (i/10) dimensionless,
for the rainfall frequency (year) of mudflow of different scales, and its correlation coefficient
is R2 = 0.92.
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An empirical formula proposed by Liu Xilin et al. [54] was used to calculate the
maximum mudflow accumulation thickness and length, considering that the rainfall-type
mudflows in the study area are generally large in scale, so the mudflow capacity value was
also used as the calculation index, and the final improved formula is as follows:

l = 8.71 × (vi × I × r4
D/ log rD)

1/3
(3)

d = 0.017 × (vi × rD/(I2 × log rD))
1/3

(4)

where l is the predicted maximum accumulation length of a debris flow (m), d is the
predicted maximum accumulation thickness of a debris flow (m), vi is the maximum
amount of debris flow in the rainfall frequency for an annual maximum washout (m3),
I is the specific drop of a debris-flow gully bed (decimal representation), and rD is the
debris-flow capacitance (g/cm3).

3.1.3. Site Scale

This time, the FLO-2D fluid model [55–57] was mainly used to numerically simulate
and analyze the Wujiagou mudflow. The model is based on a non-Newtonian fluid model
and finite difference method to solve the motion process, so it is commonly used for debris-
flow motion analysis and flood hazard management. The model continuum equation is as
Equation (5), and the equations of motion are as Equations (6) and (7):

∂h
∂t

+
∂(uh)

∂x
+

∂(uh)
∂y

= I (5)

s f x = sox −
∂h
∂x

− ∂u
g∂t

− u
∂u
∂x

− v
∂y

g∂y
(6)

s f y = soy −
∂h
∂x

− ∂u
g∂t

− u
∂u
∂x

− v
∂y

g∂y
(7)

where h is the flow depth of the debris-flow fluid (m), I is the hydraulic slope drop (%),
u represents the average flow velocity of the fluid in the horizontal direction (m/s), and
v represents the average flow velocity of the fluid in the vertical direction (m/s). Sfx
and Sfy are frictional slopes (%); Sox and Soy are bed-bottom slopes (%), and they can
be computed from the DEM data in the FLO-2D software version 6.0, whereas then, the
frictional slopes are obtained from equations. Equations (6) and (7) are the momentum
equations representing the dynamic balance.

3.2. Vulnerability Evaluation Methods
3.2.1. Regional Scale

Vulnerability evaluation first identifies and classifies elements at risk, which is mainly
achieved by means of data collection and the analysis of the evaluation area, a field survey,
high-resolution remote sensing interpretation, large-scale topographic mapping, or aerial
photogrammetry. The main contents include population distribution, buildings, roads,
land use, and four 4 other major categories.

The social vulnerability sub-indicators are mainly population distribution; for conve-
nience, population distribution density was used and given a corresponding loss probability,
and finally, social vulnerability was expressed through monetary quantity. The following
formula was used for these calculations: social vulnerability is the product of the number
of people per square meter, the average individual value, and the average probability
of damage.

Physical vulnerability: The potential economic loss of different base buildings and land
use types of elements at risk was selected as the sub-index for evaluation. The vulnerability
of residential buildings can be calculated using the following formula, and so on for other
building types: the total value of a house is the product of the cost per square meter of its
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construction and floor area and the interior and other property. The vulnerability of a civil
house is the product of the total value of the civil house and overall damage probability. In
addition, the vulnerability of elements at risk, such as highways, bridges, and drylands,
was calculated according to the following formula: road vulnerability is the product of the
cost per square meter, the area of the road, and the probability of damage.

The vulnerability of geological hazards in the work area was evaluated by constructing
a model using the ArcGIS software version 10.2. The economic value of the vulnerability of
different types of elements at risk was spatially superimposed under the ArcGIS platform
to obtain the vulnerability zoning map of the work area, and the total economic value in
each grid was subjected to a normalization process as follows:

V = 0.1 +
X − Xmin

Xmax − Xmin
× 0.9 (8)

where V is the normalized value of vulnerability, and Xmax and Xmin are the maximum and
minimum values of economic value in the raster data. According to the actual situation
of the evaluation area, combined with past disaster losses, the normalized vulnerability
index of the disaster-bearing body was divided into 4 levels: when 0 < V ≤ 0.25, the
disaster-bearing body has very low vulnerability; when 0.25 < V ≤ 0.45, the disaster-
bearing body is low-vulnerability; when 0.45 < V ≤ 0.75, the disaster-bearing body is
medium-vulnerability; when 0.75 < V ≤ 1.0, the disaster-bearing body is high-vulnerability.
Finally, the vulnerability evaluation map of the disaster-bearing body under different
working conditions in the West Han River Basin was formed.

3.2.2. Local Scale

Vulnerability scoring indexes mainly consider the value of elements that are at risk
and threatened due to geohazards in key areas and their resilience to disasters, including
eight indexes of fixed people, mobile people, buildings, line facilities, others, and vulner-
ability. The scoring indexes are based on the type of geological hazards, characteristics,
development geological conditions, and the types of elements at risk in different moun-
tainous key areas, etc. Different combinations of scoring indexes should be selected to
make the evaluation results of the slope risk classification system in mountainous key areas
more realistic.

The vulnerability score is composed of two parts, namely weight and the following
factors:

B = ∑ XiYi (9)

where Xi indicates different factors under each category, Yi indicates the weight of each
factor, and the total score of each factor is summed up to get the vulnerability-grade score.
A slope-by-slope survey was conducted to obtain a slope vulnerability assessment score
sheet for the circled slope. Based on the results of the slope vulnerability survey, the natural
interval method was used to classify the hazards into four levels, including very high
vulnerability, high vulnerability, medium vulnerability, and low vulnerability.

3.2.3. Site Scale

Different elements at risk have different damage probabilities due to different struc-
tures and functions. The probability of possible damage in the high-risk area was set to 80%,
the probability of possible damage in the high-risk area to 60%, the probability of possible
damage in the medium-risk area to 40%, and the probability of possible damage in the
low-risk area to 20%. Finally, on the basis of type identification, quantity range extraction,
the field survey and verification, and the statistical analysis of the value accounting of
elements at risk in the evaluation area, the economic value of the vulnerability of different
types of elements at risk was calculated via spatial superposition on the ArcGIS platform
to obtain the vulnerability zoning map of the study area.
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3.3. Risk Assessment Methods
3.3.1. Regional Scale

Based on the results of geological hazard and vulnerability analysis, the risk value
of each evaluation unit under different precipitation working conditions was calculated
according to the definition of hazard risk.

R = H × V × Pi (10)

where R is the value of the risk index of the evaluation unit, H is the value of the hazard
index of the evaluation unit, V is the value of the vulnerability index of the evaluation
unit, and Pi is the probability of geohazard occurrence under different precipitation work-
ing conditions.

Before calculation, all kinds of indices in the formula had to be normalized, and their
normalization method was as follows:

H‘ = (H − Hmin)/(Hmax − Hmin) (11)

V‘ = (V − Vmin)/(Vmax − Vmin) (12)

where H‘ is the normalized value of a hazard, H is the value of the hazard index, Hmax and
Hmin are the maximum hazard value and minimum hazard value, respectively, v‘ is the
normalized value of vulnerability, V is the value of the vulnerability index, and Vmax and
Vmin are the maximum vulnerability value and minimum vulnerability value, respectively.

The Pi calculation method uses the previous Longnan mountain geological disaster
statistics sample as an example in the completion of the regional geological disaster risk
zoning, based on the use of the logistic regression statistical model to determine the spatial
and temporal probability of geological disaster risk Pi [58]. The values are 0.72 for the
100-year-return-period (100a) rainfall condition, 0.23 for the 50-year-return-period (50a)
rainfall condition, and 0.08 for the 20-year-return-period (20-a) rainfall condition.

After determining the values of normalized H, normalized V, and Pi, the risk probabil-
ity at each unit was calculated in ArcGIS 10.2, and the values ranged from 0 to 1; 0 means no
risk, and 1 means the highest risk. Then, the natural break method was utilized to separate
the risk value into four different levels: very high risk (0.697–1), high risk (0.538–0.697),
medium risk (0.356–0.538), and low risk (0–0.356).

3.3.2. Local Scale

The risk of regional geohazards was evaluated by combining qualitative and quantita-
tive methods, dividing the investigation area into several evaluation units, analyzing the
danger and vulnerability of each evaluation unit, determining the risk level of each evalua-
tion unit according to the risk evaluation matrix (Table 2), and forming a risk evaluation
and zoning map.

R = H × V (13)

where R represents the expected value of the loss of people and property or damage to
social and economic activities caused due to geological hazards, H denotes the hazard,
the probability of occurrence of geological hazards within a certain period of time, and
V indicates vulnerability, the degree of damage caused to the threatened object due to
the occurrence of geological hazards with a certain probability. This definition reflects
the natural and social nature of geological hazards: a larger H indicates that it is more
dangerous, while a larger R indicates a greater risk.

3.3.3. Site Scale

After normalizing the risk and vulnerability of the Wujiapo debris flow, the calculation
method for risk evaluation was used to analyze the risk probability of geohazards under
different working conditions, and the comprehensive risk degree of the Wujiapo debris
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flow was obtained by multiplying the normalized data for the hazard of geohazard chain
and the normalized data for the vulnerability of the disaster-bearing body.

Table 2. Qualitative analysis and evaluation table of geological disaster risk.

Risk Classification Very High
Vulnerability

High
Vulnerability

Medium
Vulnerability

Low
Vulnerability

Very high hazard H H M L
High hazard H M M L

Medium hazard M M L L
Low hazard L L L VL

Note: H—very high risk; M—high risk; L—medium risk; VL—low risk.

In the risk classification, according to the characteristics of the geological environment
of a single geological disaster, the characteristics of mudflow development, the socio-
economic situation, the results of the investigation of the threat to people and properties
due to a geological disaster in recent years, and the preliminary results of the above
comprehensive analysis, the natural breakpoint method and characteristic points were
selected to grade the evaluation results, and the risk degree was generally classified as
very high-risk (0.697~1), high-risk (0.538~0.697), medium-risk (0.356~0.538), and low-risk
(0~0.356).

4. Results
4.1. Risk Results and Assessment at a Regional Scale

The results of the geohazard risk assessment at the regional scale under seismic
conditions (p = 50a) and under different precipitation conditions are shown in Figure 2.
Spatially, the hazard was higher in the central part when p = 20a, and it increased in the
northeast as the rainfall recurrence period increased to 100a, and the hazard risk was
particularly severe in the northeast under seismic conditions.

The percentages of each hazard level under different conditions were summarized,
and the results (Figure 3) showed that, as the rainfall return period increased from 20a
to 100a, the total very high- and high-hazard areas in the study region increased from
10.19% to 43.60%, the medium area remained almost unchanged, and the low-hazard
area decreased significantly from 51.12% to 18.86%; at p = 50a, the total very high- and
high-hazard areas for geological hazards in the study area increased slightly from 28.36% to
31.21%, the medium-hazard areas increased by 11.04%, and the low-hazard areas decreased
by 13.90% from no to extreme seismic conditions. In general, the risk is higher in the central
and northeastern parts of the West Han River watershed, while it is lower in the southern
and northwestern parts, and storm conditions cause a greater risk than seismic conditions.

The results of a geohazard vulnerability evaluation under seismic conditions (p = 50a)
and different precipitation conditions are shown in Figure 4. Spatially, the overall regional
vulnerability was low at p = 20a and 50a, and under p = 100a and seismic conditions, the
vulnerability was larger in the central and northeastern parts, while the vulnerability grew
in some scattered areas in the south.

The results (Figure 5) show that, as the rainfall return period increases from 20a to 100a,
the total very high- and high-vulnerability areas in the study area increased from 2.15%
to 15.95%, the medium-vulnerability areas increased by 12.76%, and the low-vulnerability
areas decreased significantly from 81.31% to 54.75%. At p = 50a, there was a significant
increase in the total very high- and high-vulnerability areas of geological hazards in the
study region from no to extreme seismic conditions; from 9.19% to 31.37%, an increase
of 12.35% in medium-vulnerability areas and a decrease of 34.53% in low-risk areas were
observed. In general, the regional vulnerability was low under lower rainfall return period
conditions, and under heavy rainfall and seismic conditions, the whole area’s vulnerability
increased, and it was the greatest in the central and northeastern regions.
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The results of the geohazard risk evaluation under seismic conditions (p = 50a) and
different precipitation conditions are shown in Figure 6. Spatially, the region is safer under
the 1-in-20-year rainfall condition; there was a small increase in riskiness in the central and
northeastern parts under the 1-in-50-year rainfall condition, and the riskiness was higher
in the central and northeastern parts under the 1-in-100-year precipitation condition and
extreme earthquake condition.
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The results (Figure 7) show that, as the rainfall return period increases from 20a to
100a, the total very high- and high-risk geological hazards in the study area increased from
2.42% to 24.18%, the medium area increased by 18.89%, and the low-risk area decreased
significantly by 40.64%; at p = 50a, from no seismic conditions to extreme seismic condi-
tions, the total area of the very high- and high-risk geological hazards in the study region
increased. Under extreme seismic conditions, the total area of very high- and high-risk
geological hazards in the study region underwent a significant increase from 11.56% to
21.84%, the medium-risk area had almost no change, and the low-risk area decreased
by 10.78%. In general, the overall riskiness evaluation was similar to the vulnerability
evaluation, indicating that vulnerability has a greater impact on riskiness than hazards.
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4.2. Risk Results and Assessment at Local Scale

The results of the geohazard risk evaluation under seismic conditions (p = 50a) and
under different precipitation conditions are shown in Figure 8. Spatially, there were only
three very high-risk areas under the 20-year rainfall conditions, eight very high-risk areas
under the 50-year rainfall conditions, two of which were large, and more than ten very
high-risk areas under both the 100-year precipitation conditions and extreme earthquake
conditions. The southwest was always above the high danger zone, and when the rainfall
scale was slightly larger, the northeast was also above the high danger zone.

The results (Table 3) summarize the percentages of each hazard level under different
conditions and show that, as the rainfall return period increased from 20a to 100a, the
total very high- and high-hazard areas in the study region increased significantly from
15.42% to 64.34%, the medium area increased by 9.67%, and the low-hazard area decreased
significantly by 58.29%; at p = 50a, from no earthquake conditions to extreme seismic
conditions, the total very high- and high-risk areas for geological hazards in the study
region increased from 36.35% to 60%, the medium-risk area increased by 7.36%, and the
low-risk area decreased by 31.01%. In general, the riskiness was higher in the southwest
and northeast, and even more so in the southeast and west, and the seismic and storm
conditions had comparable effects on the riskiness.

Table 3. Geological hazard evaluation grading table for the key area of the Longlin-Leiba Town section.

Frequency
Evaluation Result Grading Area (km2) Evaluation Result Grading Ratio (%)

Low Zone Medium Zone High Zone Very High
Zone Low Zone Medium Zone High Zone Very High

Zone

20-year event 64.32 21.06 13.76 2.17 63.49 20.79 13.58 2.14
50-year event 35.82 28.66 6.79 30.04 35.36 28.29 6.70 29.65
100-year event 5.27 30.86 29.69 35.49 5.20 30.46 29.31 35.03

Seismic
conditions 4.41 36.12 35.05 25.73 4.35 35.65 34.60 25.40

The results of the qualitative evaluation of the geological hazard susceptibility by
slope unit are shown in Figure 9. The eastern, northeastern, and southwestern parts of
the focal area were all extremely high and had highly susceptible slopes, with a small
portion of extremely high-susceptibility areas in the north and low susceptibility in the
west and southeast.
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Figure 8. Slope hazard evaluation under different conditions in the region: (a) the return period
of rainfall is 20a; (b) the return period of rainfall is 50a; (c) the return period of rainfall is 100a;
(d) earthquake.

The results of the geohazard risk evaluation under different working conditions are
shown in Figure 10. It can be found that, spatially, when the rainfall return period was small,
the risk was higher in the southwest and central parts of the study area; however, when
the precipitation conditions increased to a 100-year event, some slope units in the northern
part of the study area also increase from medium risk to a high risk level. However, the
risk in the western and southeastern parts of the study area was consistently lower because
their hazard and susceptibility assessments were both relatively low.



Water 2024, 16, 1764 15 of 26

Water 2024, 16, x FOR PEER REVIEW 16 of 27 
 

of extremely high-susceptibility areas in the north and low susceptibility in the west and 
southeast. 

 
Figure 9. Evaluation of slope vulnerability in key areas of Longlin-Leiba Town section, where the 
number represents the order of the slope units. 

The results of the geohazard risk evaluation under different working conditions are 
shown in Figure 10. It can be found that, spatially, when the rainfall return period was 
small, the risk was higher in the southwest and central parts of the study area; however, 
when the precipitation conditions increased to a 100-year event, some slope units in the 
northern part of the study area also increase from medium risk to a high risk level. How-
ever, the risk in the western and southeastern parts of the study area was consistently 
lower because their hazard and susceptibility assessments were both relatively low. 

The percentages of each risk level under different scenarios were further summa-
rized, and the results (Figure 11) show that, as the rainfall return period increased from 
20a to 100a, the very high- and high-risk areas of geological hazards increased signifi-
cantly from 16.23% to 57.33%, the medium areas increased by 13.96%, and the low-risk 
areas decreased significantly with a change of up to 55.04%; at p = 50a, the total very high- 
and high-risk areas for geological hazards in the study region increased from 30.89% to 
37.29%, the medium-risk areas increased by 3.23%, the and low-risk areas decreased by 
only 9.63% from no to extreme seismic conditions. Thus, the overall risk level of the study 
area is more responsive to storm conditions. It is also important to note that the central 

Figure 9. Evaluation of slope vulnerability in key areas of Longlin-Leiba Town section, where the
number represents the order of the slope units.

The percentages of each risk level under different scenarios were further summarized,
and the results (Figure 11) show that, as the rainfall return period increased from 20a
to 100a, the very high- and high-risk areas of geological hazards increased significantly
from 16.23% to 57.33%, the medium areas increased by 13.96%, and the low-risk areas
decreased significantly with a change of up to 55.04%; at p = 50a, the total very high- and
high-risk areas for geological hazards in the study region increased from 30.89% to 37.29%,
the medium-risk areas increased by 3.23%, the and low-risk areas decreased by only 9.63%
from no to extreme seismic conditions. Thus, the overall risk level of the study area is
more responsive to storm conditions. It is also important to note that the central slope
unit (No. 23) was consistently at a very high risk level, and units No. 20 and No. 3 were
consistently at a high or very high risk level in all working conditions, so these areas should
be further investigated and monitored with emphasis.
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4.3. Risk Results and Assessment for Wujiagou Debris Flow

The FLO-2D simulation results for the Wujiagou debris flow are shown in Figure 12,
and the simulation accuracy coefficients are 81.38% (20-year event), 75.53% (50-year event),
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and 86.74% (100-year event) for the three working conditions, indicating that the simulation
results are good. From the figure, it can be found that the debris-flow trench has always
belonged to the very high-danger zone, regardless of the working conditions, the flow
velocity gradually decreases as the debris flows downward, and the accumulation piles
up in the trench valley location, forming a low-danger zone. In the lateral comparison,
the gully channel has been in the very high-danger area, and with the increase in the
rainfall recurrence period, the accumulation area has been upgraded from low danger
to high danger. With the increase in the rainfall recurrence period from 20a to 100a, the
proportion of the very high- and high-hazard areas increased from 20.88% to 50.24%, the
medium-hazard area increased by 19.80%, and the low-hazard area decreased by 49.15%.
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The results of debris-flow susceptibility evaluation are shown in Figure 13. It can be
found that the susceptibility was low because there were fewer properties at the gully, the
northern part belonged to the medium-susceptibility zone at the debris-flow accumulation,
and most of the southern part belonged to the low-susceptibility zone, but a small part of
the very high-susceptibility zone appeared.

The results of the debris-flow risk evaluation show (Figures 14 and 15) that, spatially,
the risk was more similar to the vulnerability, although the risk was high at the gully, but
there was not much property damage, which made the risk greatly reduced; there were
more properties at the pile-up, but the risk was less, so the overall risk was also small,
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and there were only small very high-risk areas. In terms of time, as the rainfall recurrence
period increased from 20a to 100a, the very high- and high-risk areas increased from 6.97%
to 14.27%, the medium-risk areas increased by 31.54%, and the low-risk areas decreased
by 38.84%.
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4.4. Multi-Scale Geological Disaster Risk Control

Geological disaster risk consists of the possibility of the occurrence of (hazard) and pos-
sible consequences (vulnerability) of geological disasters, and its essence is to express the
uncertainty of disasters through probability. Reducing the risk of the hazard body, decreas-
ing the encounter probability between the hazard-causing body and the hazard-bearing
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body, and improving the damage resistance of the hazard-bearing body can effectively
reduce the risk of geological hazards. The evaluation methods and accuracy of geological
hazard risk evaluation vary from scale to scale, and the degree of supporting risk control
also varies. Hence, recommendations of geological hazard risk control are introduced using
three spatial scales in this section.
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At the regional scale, the risk sources in the hilly loess area in the upper reaches of
West Han River are a loess landslide and a loess mudflow. The main risk control measures
are to reduce the impact of production and living activities on geological hazards and
control the hazard risk. Regarding the middle reaches of the West Han River, the risk
sources are large and medium-sized gully storm-type debris flows and mound landslides,
which are large in scale and strong in destructive power. The main measures are to reduce
the encounter probability between the disaster itself and elements at risk. For example, the
centralized resettlement of threatened residents and the strengthening of early warnings
are potential measures. In view of the current situation of geological disaster development
and the spatial distribution of danger and risk in the West Han River watershed, it is
appropriate to adopt the general policy of “prevention as a prerequisite, monitoring and
early warning as the main focus, engineering prevention and control as a supplement, long-
term biological protection and avoidance of key disasters”. Overall, in basin or regional
geological disaster risk control, it is necessary to conduct risk analysis and risk mitigation
cost analysis according to the characteristics of geological disaster development, danger,
and the hazard in different areas and determine the combination of measures in order
to achieve the optimal effect of risk prevention and control on the basis of economic and
reasonable approaches.

Based on the risk mapping and results at the local scale, the comprehensive risk control
and management methods for geological hazards at Longlin-Leiba Town can be obtained.
The specific measures include natural ecological restoration and artificial intervention
restoration in slope areas and low- and medium-risk areas, engineering treatments for very
high-risk hazard sites, monitoring and early warning, and six other categories. The specific
control recommendations are shown in Figure 16. The details for these measures can be
described as follows:

(i) Engineering management is mainly for geological hazards or hidden spots with poor
stability threatened due to towns and surrounding infrastructure and residents, threatened
due to a large population, and difficult to relocate. (ii) Monitoring and early warning are
mainly for geological hazards of medium–large scale, threatening property and population,
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hazards that are difficult to manage, and hazards with a high economic cost of management.
(iii) Mass observation and mass prevention are mainly for geological hazards or hidden
spots with a small-to-medium scale, poor stability, or medium-to-high susceptibility and
unstable future development trends with a clear threat to people. (iv) The popularization of
science is mainly for geological hazards or hidden spots with low vulnerability to geological
hazards, threatening farmland and rivers. (v) Establishing warning signs is mainly for
geological hazards or hidden spots that only threaten roads. (vi) The ecological restoration
in an ecological engineering zone is mainly located in areas below a high or medium risk,
where there is no geological hazard zone that threatens people’s lives and properties or has
a greater impact on major engineering construction. A natural restoration area is mainly
located within the medium–low-risk area, and the land use type is mainly within areas of
farmland and mature forests.
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Figure 16. Slope risk control proposal in the key area of the Longlin-Leiba Town section, where the
number represents the order of the slope units: ((1) engineering management, (2) monitoring and early
warning, (3) mass observation and mass prevention, (4) popularization of science, (5) establishing
warning signs, and (6) ecological restoration).



Water 2024, 16, 1764 21 of 26

Regarding the Wujiagou debris flow, according to the geological hazard body, the
characteristics of the disaster-bearing body, and the deployment status of prevention and
control measures, one or more types of risk control measures can be proposed. Specifically,
these measures include engineering management measures, ecological restoration, evasive
relocation, monitoring and early-warning means, the popularization of science, and warn-
ing signs. The above risk control measures are characterized by a combination of points,
lines, and surfaces. The proposed risk control measures for the Wujiagou debris flow under
different rainfall conditions are shown in Figures 17 and 18.
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5. Discussion

The modeling uncertainties and limitations of the present study were mainly asso-
ciated with three aspects: (i) the empirical equations used during the hazard assessments,
(ii) the vulnerability assessments, and (iii) the risk zonation method for the zonation mapping.

Firstly, an event-based, empirical approach was used to analyze the potential kine-
matic process of debris flows under a specific condition. The purpose of this was to
determine the influencing area for the debris flow at the local scale. The empirical equa-
tions (Equations (2) and (3)) applied during this procedure allowed us to directly calculate
the maximum flushing-out volume, movement distance, and accumulation depth of the
debris flow. It should be noted that the coefficients used in these equations should be as-
sessed more strictly because they inherited the characteristics of historical events, not those
occurring in the test area. However, the historical events had similar geological contexts
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as the debris flows in the study area (they were in the same province), and the correlation
coefficient indicated that the fitting result was not bad. Similar empirical approaches were
also observed in some of the other literature regarding the modeling for debris flows [59,60].
Hence, this led us to conclude that predicting the hazard of debris flows quantitatively,
using the empirical method, may be feasible for regional studies, especially the debris-flow
events that had not happened yet. Similar conditions also existed when it came to the
vulnerability assessment. As reported in many previous studies [38,41,61], this component
may provide the highest uncertainty for risk assessment, as it is complicated to estimate
vulnerability quantitatively, and many factors should be taken into account. In the present
study, a semi-quantitative model was applied to estimate the vulnerability of elements at
risk due to the geohazard. This was close to an empirical method because high subjectivity
was included. The development of physical models based on vulnerability curves may be
of high interest since they could be a potential solution to this issue. Some efforts have been
made on this topic [30,31], but they were not the case in this study.

After determining the hazard and vulnerability at the local scale, the risk matrix was
used to define the risk level and zonation. Obviously, this step also mixed uncertainties
with risk mapping. However, the risk results’ zonation via this procedure presented a more
relative risk level, rather than an absolute level. This means that users should consider the
final mapping from multiple views. On one hand, the risk map may have inherited a certain
amount of uncertainties from previous steps, hence reducing the results’ accuracy. On the
other hand, the obtained zonation can indeed represent the actual potential risk posed due
to geohazards, which can provide a foundation for risk mitigation and reduction. Therefore,
although some improvements can be made, uncertainty in risk assessment will always
occur. Honestly informing the user of the associated limitations is important, instead of
ignoring them [62].

Last but not least, the return period of rainfall was utilized in determining the scenarios
of risk assessment in this study. It should be noted that this is not standard, as the well-
known IPCC report recommended using the standard levels of probability, rather than
the return period of triggering events. However, this method has been widely applied
for case studies in China [38,63]. So, we continued this practice in the present study.
Additionally, we also observed a similar method in some international publications in other
countries [64,65].

6. Conclusions

The risk assessment of geohazards has been widely implemented at various scales,
but limited efforts have been made to compare the framework and detailed procedures at
multiple scales. In this study, the risk and vulnerability assessment of geological hazards
was carried out using different scales in the West Han River watershed of Gansu Province,
China, and a risk zoning map was ultimately obtained. Our main objective was to present
the difference during a geohazard risk assessment within the scope of the framework
of GIS techniques. The hazard assessment mainly utilized GIS-based evaluation models
and numerical simulation methods, whereas the vulnerability assessment was mainly
associated with empirical methods.

The results indicate that the regional risk in the West Han River watershed is low under
low rainfall-recurrence conditions, and the risk is higher in the central and northeastern
parts of the watershed under heavy rainfall and earthquake conditions, which require
early warning and prevention. The overall risk level of the study area in the Longlin-Leiba
Town section responds more significantly to heavy rainfall conditions, with higher risk
in the southwestern, central, and northeastern parts of the region and higher risk in the
north under extreme weather. In Wujiagou, although the hazard value is high at the
trench, the amount of property is small, thus making the final risk not high. Regarding the
accumulation area, the property value is higher, but the hazard value is lower. Hence, the
obtained risk level is also low.
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In general, the present study has shown a specific example and procedure regarding
risk assessment for geohazards at multiple scales, which can provide scientific references
for risk management and a reduction in geohazards in areas with similar conditions.
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