Genesis of Geothermal Waters in Zhongshan City, China: Hydrochemical and H-O-C Isotopic Implications
Abstract
:1. Introduction
2. Overview of the Study Area
3. General Situation of Geothermal Resources in the Study Area
4. Sampling and Methods
5. Results
5.1. Water’s Chemical Characteristics
5.2. Water–Rock Equilibrium
5.3. Geothermal Water Source
5.3.1. Langlier–Ludwig Diagram
5.3.2. δD-δ18O Isotopic Analysis
5.4. Water–Rock Interactions
5.4.1. Gibbs Diagram
5.4.2. Ionic Ratio Diagram
5.5. Mixing Fraction of Shallow Groundwater
5.6. Replenishment Elevation of Geothermal Water
5.7. Occurrence Environment
5.8. Geothermal Water Age
5.9. Geothermometer
5.10. Circulation Depth of Geothermal Water
6. Discussion
6.1. Regional Geological Structure Background
6.2. Underground Structural Features
6.3. Distribution Characteristics of Geothermal Water Resources
6.4. Geothermal Water Heat Resources
6.5. Mode of Geothermal Water Circulation
7. Conclusions
- (1)
- The analysis of the chemical and isotopic characteristics of water samples in the study area at different periods shows that geothermal water has a relatively enclosed occurrence condition, and its main replenishment source is a mixture of atmospheric precipitation and seawater.
- (2)
- The westward subduction of the Pacific plate, the significant thinning of the crust, and the development of deep-seated faults promote the transmission of mantle-derived heat to shallow sections. Moreover, the radioactive decay of rich heat-producing elements, including 238U, 232Th, and 40K, supplies a large amount of heat to the study area.
- (3)
- At favorable structural positions with good water storage conditions, the mixture of atmospheric precipitation and seawater that circulates deep in the Earth is heated by terrestrial heat flow (geothermal warming) and rock-derived heat; undergoes a water–rock reaction to leach the salt; and uplifts along the faults until cropping out of the surface, thereby forming highly mineralized geothermal fields.
- (4)
- In this study, a conceptual genetic model of the geothermal water resources in the study area was established, but the driving mechanism of geothermal water was not found and will be emphatically studied in the future.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diego, M.; Clay, A.; Prasad, K. Geothermal energy: Power plant technology and direct heat applications. Renew. Sustain. Energy Rev. 2018, 94, 889–901. [Google Scholar]
- Axelsson, G. Sustainable geothermal utilization—Case histories definitions research issues and modeling. Geothermic 2010, 39, 283–291. [Google Scholar] [CrossRef]
- Pastor-Martinez, E.; Rubio-Maya, C.; Ambriz-Díaz, V.M.; Belman-Flores, J.M.; Pacheco-Ibarra, J.J. Energetic and exergetic performance comparison of different polygeneration arrangements utilizing geothermal energy in cascade. Energy Convers. Manag. 2018, 168, 252–269. [Google Scholar] [CrossRef]
- Kose, R. Geothermal energy potential for power generation inTurkey: A case study in Simav, Kutahya. Renew. Sustain. Energy Rev. 2007, 11, 497–511. [Google Scholar] [CrossRef]
- Guo, Q.H. Hydrogeochemistry of high-temperature geothermal systems in China: A review. Appl. Geochem. 2012, 27, 1887–1898. [Google Scholar] [CrossRef]
- Tang, X.C.; Liu, S.S.; Zhang, D.L.; Wang, G.L.; Luo, Y.F.; Hu, S.B. Geothermal accumulation constrained by the tectonic transformation in the Gonghe Basin, northeastern Tibetan Plateau. Lithosphere 2022, 5, 3936881. [Google Scholar] [CrossRef]
- Wang, Y.L.; Ma, F.; Xie, H.P.; Wang, G.L.; Wang, Z.H. Fracture characteristics and heat accumulation of Jixianian carbonate reservoirs in the Rongcheng Geothermal Field, Xiong’an New Area. Acta Geol. Sin. (Engl. Ed.) 2021, 95, 1902–1914. [Google Scholar] [CrossRef]
- Wang, J.Y. Geothermal energy development under energy and environment crisis. Sci. Technol. Rev. 2012, 30, 3. [Google Scholar]
- Ma, B.; Jia, L.X.; Yu, Y.; Wang, H.; Chen, J.; Zhong, S.; Zhu, J.C. Geoscience and carbon neutralization: Current status and development direction. Geol. China 2021, 48, 347–358. (In Chinese) [Google Scholar]
- Moeck, I.S. Catalog of Geothermal Play Types Based on Geologic Controls. Renew. Sustain. Energy Rev. 2014, 37, 867–882. [Google Scholar] [CrossRef]
- Guo, O.; Pang, Z.; Wang, Y. Fluid geochemistry and geother-mometry applications of the Kangding high-temperature geothermal system in eastern Himalayas. Appl. Geochem. 2017, 81, 63–75. [Google Scholar] [CrossRef]
- Lund, J.W.; Boyd, T.L. Direct utilization of geothermal energy 2015 world wide review. Geothermics 2016, 60, 66–93. [Google Scholar] [CrossRef]
- Stefansson, V. The renewability of geothermal energy. In Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000; pp. 883–888. [Google Scholar]
- Yang, F.; Pang, Z.H.; Wang, C.H.; Duan, Z.F.; Luo, L.; Li, Y.M. Genesis model of Laozishan geothermal field, Subei Basin. J. Jilin Univ. Earth Sci. Ed. 2012, 42, 468–475. [Google Scholar]
- Wang, G.L.; Lin, W.J. Main hydrogeothermal systems and their genetic models in China. Acta Geol. Sin. 2020, 94, 1923–1937. [Google Scholar]
- Mao, X.M.; Zhu, D.B.; Ndikubwimana, I.; He, Y.Y.; Shi, Z.D. The mechanism of high-salinity thermal groundwater in Xinzhou geothermal field, South China: Insight from water chemistry and stable isotopes. J. Hydrol. 2021, 593, 125889. [Google Scholar] [CrossRef]
- Chenaker, H.; Houha, B.; Vincent, V. Hydrogeochemistry and geothermometry of thermal water from north-eastern Algeria. Geothermics 2018, 75, 137–145. [Google Scholar] [CrossRef]
- Pasvanoglu, S.; Celik, M. A conceptual model for groundwater flow and geochemical evolution of thermal fluids at the Kizilcahamam geothermal area, Galatian volcanic Province. Geothermics 2018, 71, 88–107. [Google Scholar] [CrossRef]
- Verma, S.P.; Pandarinath, K.; Santoyo, E.; Gonzalez-Partida, E.; Torres-Alvarado, I.S.; Tello-Hinojosa, E. Fluid chemistry and temperatures prior to exploitation at the Las Tres Virgenes geothermal field. Mexico. Geothermics 2006, 35, 156–180. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Bagheri, R.; Jahanshahi, R. Hydrogeochemistry and geothermometry of Changal thermal springs, Zagros region, Iran. Geothermics 2010, 39, 242–249. [Google Scholar] [CrossRef]
- Pirlo, M.C. Hydrogeochemistry and geothermometry of thermal groundwaters from the Birdsville Track Ridge, Great Artesian Basin, South Australia. Geothermics 2004, 33, 743–774. [Google Scholar] [CrossRef]
- Wang, Y.J.; Fan, W.M.; Zhang, G.W.; Zhang, Y. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Res. 2013, 23, 1273–1305. [Google Scholar] [CrossRef]
- Shu, L.S.; Chen, X.G. Pre-Jurassic tectonics of South China. Acta Geol. Sin. 2020, 94, 333–360. [Google Scholar]
- Chen, L.; Ma, T.; Du, Y.; Xiao, C.; Chen, X.; Liu, C.; Wang, Y. Hydrochemical and isotopic (2H, 18O and 37Cl) constraints on evolution of geothermal water in coastal plain of Southwestern Guangdong Province, China. J. Volcanol. Geotherm. Res. 2016, 318, 45–54. [Google Scholar] [CrossRef]
- Liu, J.; Gao, M.; Jin, D.; Yang, J.; Wang, Q. Hydrochemical characteristics of surface water and analysis on influence factors in Yushen mining area. Coal Sci. Technol. 2020, 48, 336–354. [Google Scholar]
- Apollaro, C.; Caracausi, A.; Paternoster, M.; Randazzo, P.; Aiuppa, A.; De Rosa, R.; Fuoco, I.; Mongelli, G.; Muto, F.; Vanni, E.; et al. Fluid geochemistry in a low-enthalpy geothermal field along a sector of southern Apennines chain (Italy). J. Geochem. Explor. 2020, 219, 106618. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta 1988, 52, 2749–2765. [Google Scholar] [CrossRef]
- Arnorsson, S. Isotopic and Chemical Techniques in Geothermal Exploration, Development and Use; International Atomic Energy Agency: Vienna, Austria, 2000; pp. 152–199. [Google Scholar]
- Juliarka, B.R.; Niasari, S.W. Exploration using Geothermal geochemical data; study case: Parang Wedang geothermal field, Indonesia. AIP Conf. Publ. 2016, 1755, 100003. [Google Scholar]
- Wu, H.M.; Sun, Z.X. Calculation of the Fluid-rock Equilibrium State in the Geothermal System. J. East China Geol. Inst. 2000, 23, 39–42. [Google Scholar]
- Langelier, W.F.; Ludwig, H.F. Graphical methods for indicating the mineral character of natural waters. J. Am. Water Work. Assoc. 1942, 34, 335–352. [Google Scholar] [CrossRef]
- Vaselli, O.; Minissable, A.; Tassi, F.; Magro, G.; Seghedi, I.; Ioane, D.; Szakacs, A.A. Geochemical traverse across the Eastern Carpathians (Romania): Constraints on the origin and evolution of the mineral water and gas discharge. Chem. Geol. 2002, 182, 637–654. [Google Scholar] [CrossRef]
- Tan, H.; Zhang, Y.; Zhang, W.; Kong, N.; Huang, J. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes. Appl. Geochem. 2014, 51, 23–32. [Google Scholar] [CrossRef]
- Wang, S.F.; Pang, Z.H.; Liu, J.R.; Lin, P.; Liu, S.; Yin, M. Origin and evolution characteristics of geothermal water in the Niutuozhen geothermal field, North China plain. North China. J. Earth Sci. 2013, 24, 891–902. [Google Scholar] [CrossRef]
- Minissale, A.; Corti, G.; Tassi, F.; Darrah, T.; Vaselli, O.; Montanari, D.; Montegrossi, G.; Yirgu, G.; Selmo, E.; Teclu, A. Geothermal potential and origin of natural thermal fluids in the northern lake Abaya area, Main Ethiopian rift, East Africa. J. Volcanol. Geotherm. Res. 2017, 336, 1–18. [Google Scholar] [CrossRef]
- Zhang, B.X.; Ma, J.X. Analysis on groundwater supply source using hydrogen and oxygen isotope data-a case study of Yanggu-Qihesalient, Northwestern Shandong, China. China Geol. Bull. 2010, 29, 603–609. [Google Scholar]
- Ma, Z.Y.; Wang, X.G. Oxygen and hydrogen isotope exchange and its controlling factors in subsurface geothermal waters in the central Guanzhong basin, Shaanxi. China Geol. Bull. 2004, 27, 888–894. [Google Scholar]
- Su, Y.; Ma, Z.Y.; Liu, F.; Wu, W.; Li, F.; Mu, G.; Yu, G.; Hu, Y.; Jia, X. Deuterium excess parameter feature study on thermal groundwater of Xi′an and xianyang. Coal Geol. Explor. 2007, 35, 39–41. [Google Scholar]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Zhang, B.J.; Xiang, Y.F.; Wang, G.L. Fragmentation law of carbonate rocks under different confining pressure in Gaoyuzhuang Formation, Gaoyang geothermal field, Xiong’an New Area. Geol. China 2023, 50, 1138–1148. [Google Scholar]
- Mukherjee, A.; Fryar, A.E. Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, west Bengal, India. Appl. Geochem. 2008, 23, 863–894. [Google Scholar] [CrossRef]
- Li, H.Y.; Feng, Q.; Chen, L.J.; Zhao, Y.; Yang, H.D. Hydrochemical Characteristics and Evolution Mechanism of Groundwater in the Minqin Oasis. Airdzone Res. 2017, 34, 733–740. [Google Scholar]
- Li, C.C.; Gao, X.B. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Sci. Total Environ. 2015, 508, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Fournier, R.O.; Truesdell, A.H. Geochemical indicators of subsurface temperature PartII, Estimate of temperature and fractions of hot water mixed with cold water. J. Res. US Geol Surv. 1974, 2, 263–270. [Google Scholar]
- Sanchez Navarro, J.A.; Coloma-Lopez, P.; Perez-Garcia, A. Evalution of Geothermal Flow at the Springs in Aragon (Spain), and its Relation to Geological Structure. Hydrogeol. J. 2004, 12, 601–609. [Google Scholar] [CrossRef]
- Alcicek, H.; Bulbul, A.; Brogi, A. Originevolution and geothermometry of thermal waters in the Glemezli Geothermal Field, Denizli Basin (SW Anatolia, Turkey). J. Volcanol. Geotherm. Res. 2018, 349, 1–30. [Google Scholar] [CrossRef]
- Bai, B.W.; Ping, J.H. Chemical characteristics and causes analysis of the geochemical fluid in Huaiyang County, Henan Province. Geol. China 2022, 49, 956–966. [Google Scholar]
- Huang, W.; Deng, G.; Qiu, X.R.; Chen, S.N.; Yang, Y.J.; Huang, Y.; Wu, X.F.; Ye, H.L. Report of Geothermal Resources Investigation, Evaluation and Utilization Zoning in Guangzhou, China; Geological Survey Report; Guangdong Geological Technology Engineering Consulting Company & Geological Survey of Guangdong Province: Guangzhou, China, 2021. [Google Scholar]
- Zhao, J.Y.; Zhang, W. Geochemical characteristics of geothermal fluid in Rongcheng geothermal field, Xiongan New Area. Acta Geol. Sin. 2020, 94, 1991–2001. [Google Scholar]
- Chen, L.; Wang, G.C.; Hu, F.S.; Wang, Y.J.; Liu, L. Ground water hydrochemistry and isotope geochemistry in the Turpan Basin, Northwestern China. J. Arid Land 2014, 6, 378–388. [Google Scholar] [CrossRef]
- Zhou, X.; Jin, X.J. Monograph on Groundwater Science; Geological Publishing House: Beijing, China, 2017. [Google Scholar]
- Mondal, N.C.; Singh, V.P. Determing the interation between groundwater and saline water through groundwater major ions chemistry. J. Hydrol. 2010, 38, 100–111. [Google Scholar] [CrossRef]
- Zhang, B.J. Hydrogeochemical Characteristics and Formation Conditions of the Geothermal Water in Northwestern Shandong Province. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2011. [Google Scholar]
- Li, H.; Xia, X.L. Analysis on Geothermal Fluid Ion Ratios in Tianjin Area. Ground Water 2015, 37, 35–37. [Google Scholar]
- Zhang, M.; Lin, W.J. Hydrogeochemical characteristics and geneti model of Gulu high-temperature geothermal system in Tibet, China. J. Chengdu Univ. Technol. Sci. Technol. Ed. 2014, 41, 382–392. [Google Scholar]
- Shi, M.; Zhang, J. Hydrochemistry characteristic analysis of low-medium temperature convective geothermal resources in Jiaodong Peninsula. Acta Geol. Sin. (Chin. Ed.) 2019, 93, 138–148. [Google Scholar]
- Tamers, M.A. Validity of radiocarb on dates on groundwater. Geophys. Surv. 1975, 2, 217–239. [Google Scholar] [CrossRef]
- Illon, M.; Arbecot, F.; Gibert, E. Open toclosed system transition traced through the TDIC isotopicsignature at the aquifer recharge stage, implications forgroundwater 14C dating. Geochim. Cosmochim. Acta 2009, 73, 6488–6501. [Google Scholar]
- Clark, I.D.; Fritez, P. Environmental Isotopes in Hydrogeology; Lewis Publishers: New York, NY, USA, 1997; pp. 112–244. [Google Scholar]
- Fournier, R.O. Chemical geothermometers and mixing models for geothermal systems. Geothermics 1997, 5, 41–50. [Google Scholar] [CrossRef]
- Han, D.M.; Liang, X.; Jin, M.G. Evaluation of groundwaterhydrochemical characteristics and mixing behavior in the Daying and Qicun geothermal systems, Xinzhou Basin. J. Volcanol. Geotherm. Res. 2010, 189, 92–104. [Google Scholar] [CrossRef]
- Peiffer, L.; Wanner, C.; Spycher, N.; Sonnenthal, E.; Kennedy, B.; Iovenitti, J. Optimized multicomponent vs. classical geothermometry: Insights from modeling studies at the Dixie Valley geothermal area. Geothermics 2014, 51, 154–169. [Google Scholar] [CrossRef]
- Yang, P.H.; Cheng, Q.; Xie, S.Y.; Wang, J.; Chang, L.; Yu, Q.; Zhan, Z.; Chen, F. Hydrogeochemistry and geothermometry of deep thermal water in the carbonate formation in the main urban area of Chongqing, China. J. Hydrol. 2017, 549, 50–60. [Google Scholar] [CrossRef]
- Ma, Y.H.; Tang, B.C.; Su, S.Y.; Zhang, S.S.; Li, C.Y. Geochemical characteristics of Geothermal fluids and water-rock interaction in geothermal reservoirs and around the Gonghe Basin, Qinghai Province. Earth Sci. Front. 2017, 27, 123–133. [Google Scholar]
- Wang, J.Y. International Symposium on water-rock interaction. Adv. Earth Sci. 1997, 5, 101–102. [Google Scholar]
- Zhao, Q.S. The application of geothermometers in the exploration of hydrothermal resources in western Sichuan. J. Chengdu Univ. Sci. Technol. 1988, 37, 45–50. [Google Scholar]
- Pope, L.A.; Hajash, A.; Popp, R.K.K. An experimental investigation of fluid composition. J. Volcanol. Geotjermal Res. 1987, 31, 151–161. [Google Scholar] [CrossRef]
- Ding, Z.L. Research Methods of Solid Earth Science; Science Press: Beijing, China, 2013. [Google Scholar]
- Suo, Y.H.; Li, S.Z.; Jin, C.; Zhang, Y.; Zhou, J.; Li, X.; Wang, P.; Liu, Z.; Wang, X.; Somerville, I. Eastward Tectonic Migration and Transition of the Jurassic-Cretaceous Andean-Type Continental Margin along Southeast China. J. Earth-Sci. Rev. 2019, 196, 102884. [Google Scholar] [CrossRef]
- Wan, T. The Tectonics of China: Data, Maps and Evolution; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Li, J.H.; Zhang, Y.Q.; Dong, S.W. Late Mesozoic-Early Cenozoic Deformation History of the Yuanma Basin, Central South China. J. Tectonophys. 2012, 570–571, 163–183. [Google Scholar]
- Suo, Y.H.; Li, S.Z. Cenozoic tectonic migration and basin evolution in East Asia and its continental margins. Acta Petrol. Sin. 2012, 28, 2602–2618. [Google Scholar]
- Ren, Z.Y.; Ye, X.W. Deep faults interpreted by gravity and magnetic data in the Pearl River Delta and their new tectonic implications. Quat. Stud. 2009, 29, 625–632. [Google Scholar]
- Lu, J.Y. Structure of the Lubao-Foshan-Zhongshan-Sanxiang Section in the Pearl River Delta—New Exploration Results of Intensive Array Exploration. South China J. Seismol. 2021, 41, 1–9. [Google Scholar]
- Qiao, X.J.; Hou, Q.L. Research about the control of geological structure on karst groundwater system in Zhangfang, Beijing. Carsol. Sin. 2014, 33, 184–191. [Google Scholar]
- Gao, N.A. Genetic mechanism of geothermal system in Daming sag, Lin qing depression, Linqing, Shangdong. Geol. China 2023, 50, 1149–1162. [Google Scholar]
- Wang, S.J. Thermal Effects and Significance of Radioactive Heat Generation in Sedimentary Layers in the Tarim Basin. Pet. Explor. Dev. 1999, 26, 36–38. [Google Scholar]
- Yuan, Y.S.; Ma, Y.S.; Hu, S.B.; Guo, T.L.; Fu, X.Y. Present-day geothermal characteristics in South China. Chin. J. Geophys. 2006, 49, 1118–1126. [Google Scholar]
- Zhang, J.; Wang, B.Y.; Tang, X.C.; Dong, M.; Ai, Y.F. Temperature structure and dynamic background of crust and mantle beneath the high heat flow of south China continental margin. Chin. J. Geophys. 2018, 61, 3917–3932. [Google Scholar]
- Kuang, J.; Qi, S.H.; Wang, S. Granite Intrusion in Huizhou, Guangdong Province and Its Geothermal Implications. Earth Sci. 2020, 45, 1466–1480. [Google Scholar]
- Lin, L.F.; Sun, Z.X.; Wang, A.D. Radioactive geochemica characteristics of Mesozoic granites from Nanling region and constrints on lithospheric south west coastal region and their constraints on lithospheric thermal structure. Acta Petrol. Mineral. 2017, 36, 488–500. [Google Scholar]
Type of Water | Geothermal Field | Sample | TDS | PH | K+ | Na+ | Ca2+ | Mg2+ | Cl− | SO42− | HCO3− | NO3− | F− |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Geothermal water | Eastern Huchiwei geothermal field | D18 | 13,033 | 7.40 | 208.2 | 3230.00 | 1091.90 | 17.20 | 6556.00 | 206.90 | 62.79 | 1.05 | 2.89 |
Geothermal water | Yongmo geothermal field | D20 | 4284 | 7.41 | 70.08 | 1034.2 | 226.08 | 15.60 | 1888.10 | 142.50 | 116.67 | 3.33 | 2.12 |
Geothermal water | Zhangjiabian geothermal field | D40 | 10,499 | 6.92 | 83.81 | 2532.00 | 1171 | 51.62 | 5770.9 | 206.23 | 73.57 | 0.75 | 1.19 |
Geothermal water | Huweichi geothermal field | D26 | 9745 | 6.78 | 71.13 | 2487.7 | 1078.50 | 75.56 | 5644.50 | 162.07 | 78.45 | 0.80 | 0.75 |
Geothermal water | Huweichi geothermal field | D41 | 10,300 | 7.44 | 229.00 | 3000.00 | 1050.00 | 15.00 | 5680.00 | 208.00 | 66.50 | <0.1 | 2.22 |
Geothermal water | Huweichi geothermal field | D42 | 10,000 | 7.55 | 222.00 | 3030.00 | 1060.00 | 14.30 | 5340.00 | 205.00 | 70.60 | <0.1 | 2.42 |
Well water | / | D01 | 221 | 6.48 | 14.04 | 14.09 | 31.13 | 4.26 | 14.78 | 36.65 | 68.77 | 43.3 | 43.3 |
Well water | / | D02 | 188 | 6.39 | 14.10 | 17.07 | 23.32 | 7.43 | 20.03 | 22.62 | 107.72 | 22.39 | 0.21 |
Well water | / | D03 | 47 | 5.63 | 3.67 | 5.51 | 2.16 | 0.34 | 6.35 | 0.76 | 11.96 | 7.87 | 0.21 |
Well water | / | D05 | 101 | 5.32 | 4.78 | 13.24 | 10.46 | 1.25 | 15.81 | 10.22 | 11.96 | 33.71 | 0.12 |
Well water | D06 | 42 | 6.72 | 3.13 | 3.84 | 1.47 | 0.30 | 5.28 | 2.06 | 5.98 | 5.37 | 0.15 | |
Well water | / | D07 | 22 | 5.63 | 0.64 | 2.67 | 3.70 | 0.16 | 6.35 | 0.79 | 8.97 | 1.05 | 0.07 |
Well water | / | D08 | 155 | 4.55 | 4.05 | 13.79 | 14.33 | 1.45 | 21.09 | 9.79 | 2.99 | 53.24 | 0.15 |
Well water | / | D09 | 53 | 5.67 | 3.03 | 3.25 | 1.93 | 0.81 | 6.35 | 1.40 | 8.97 | 4.62 | 0.12 |
Well water | / | D10 | 264.0 | 6.86 | 18.85 | 11.21 | 46.12 | 3.50 | 15.81 | 20.91 | 140.59 | 35.59 | 0.21 |
Well water | / | D11 | 44 | 5.88 | 2.79 | 3.75 | 2.13 | 0.22 | 5.28 | 2.12 | 8.97 | 2.77 | 5.88 |
Well water | / | D12 | 195 | 7.06 | 26.77 | 11.85 | 27.81 | 1.90 | 16.77 | 23.59 | 83.78 | 25.79 | 0.09 |
Well water | / | D13 | 151 | 6.50 | 4.56 | 9.23 | 22.42 | 4.86 | 7.34 | 16.9 | 68.77 | 21.33 | 0.19 |
Well water | / | D14 | 88 | 5.74 | 3.56 | 6.07 | 9.79 | 0.89 | 5.25 | 8.85 | 29.90 | 9.48 | 0.10 |
Well water | / | D15 | 51 | 5.76 | 1.64 | 1.85 | 8.28 | 0.43 | 3.16 | 10.01 | 14.95 | 5.68 | 0.05 |
Well water | / | D16 | 64 | 6.04 | 3.81 | 3.43 | 4.21 | 0.30 | 6.31 | 1.48 | 11.96 | 5.89 | 0.05 |
Well water | / | D21 | 255 | 5.91 | 11.72 | 29.64 | 28.92 | 4.54 | 44.06 | 20.75 | 50.83 | 62.32 | 0.16 |
Well water | / | D24 | 56 | 5.57 | 1.31 | 3.30 | 4.41 | 1.53 | 5.25 | 0.07 | 20.93 | 5.33 | 0.12 |
Well water | / | D25 | 141 | 5.47 | 7.61 | 15.90 | 7.76 | 2.71 | 17.83 | 11.05 | 14.95 | 34.97 | 0.12 |
Well water | / | D27 | 309 | 7.46 | 2.55 | 21.73 | 41.76 | 1.04 | 7.39 | 4.75 | 171.44 | 0.88 | 3.25 |
Well water | / | D31 | 383 | 6.94 | 18.86 | 27.01 | 76.13 | 7.00 | 31.46 | 31.79 | 273.14 | 5.16 | 0.21 |
Well water | / | D32 | 171 | 7.78 | 1.67 | 5.84 | 44.60 | 4.65 | 12.59 | 18.57 | 130.76 | 7.19 | 0.14 |
Well water | / | D33 | 272 | 6.32 | 9.48 | 19.78 | 19.78 | 3.18 | 18.88 | 62.73 | 75.55 | 49.16 | 0.17 |
Well water | / | D35 | 373 | 7.40 | 9.30 | 22.31 | 83.13 | 5.32 | 30.42 | 34.95 | 232.46 | 35.44 | 0.09 |
Well water | / | D36 | 372 | 6.63 | 16.78 | 28.07 | 66.02 | 4.53 | 51.39 | 35.09 | 104.61 | 89.11 | 0.12 |
Well water | / | D37 | 152 | 6.71 | 7.31 | 19.76 | 16.81 | 1.79 | 29.37 | 11.57 | 55.21 | 11.43 | 0.23 |
Well water | / | D38 | 234 | 6.78 | 11.20 | 11.79 | 44.20 | 2.08 | 14.68 | 33.80 | 104.61 | 32.11 | 0.21 |
Mineral water | / | D19 | 114 | 6.37 | 2.86 | 5.69 | 11.30 | 2.30 | 7.34 | 6.37 | 35.88 | 6.89 | 0.61 |
Mineral water | / | D17 | 346 | 6.69 | 18.57 | 10.46 | 73.75 | 4.96 | 11.52 | 26.91 | 206.37 | 46.51 | 0.15 |
Spring water | / | D04 | 43 | 5.56 | 2.40 | 3.98 | 0.91 | 0.16 | 5.28 | 0.73 | 5.98 | 3.55 | 0.12 |
Spring water | / | D22 | 35 | 6.72 | 0.74 | 2.69 | 1.39 | 1.28 | 5.25 | 0.80 | 8.97 | 4.50 | 0.06 |
Spring water | / | D23 | 181 | 6.11 | 8.04 | 31.08 | 7.61 | 5.15 | 43.00 | 21.05 | 17.94 | 29.26 | 0.16 |
River water | / | D29 | 71.3 | 7.23 | 3.03 | 5.65 | 6.86 | 0.67 | 5.28 | 4.60 | 29.06 | 4.35 | 0.19 |
River water | / | D30 | 86.5 | 6.68 | 2.95 | 5.24 | 6.36 | 1.32 | 7.39 | 5.52 | 29.06 | 4.45 | 0.19 |
River water | / | D39 | 44.5 | 7.06 | 2.16 | 3.36 | 1.45 | 0.30 | 5.28 | 1.57 | 14.53 | 1.93 | 0.21 |
River water | / | D34 | 183 | 7.47 | 1.31 | 5.34 | 45.84 | 4.76 | 10.49 | 15.59 | 139.47 | 7.12 | 0.17 |
Sea water | / | D28 | 2402 | 8.43 | 30.19 | 617.60 | 73.83 | 102.23 | 1192.2 | 193.31 | 122.04 | 9.03 | 0.23 |
Type of Water | Geothermal Field | Sample | DV-SMOW‰ | 18OV-SMOW‰ |
---|---|---|---|---|
Atmospheric precipitation | / | S01 | −56.5 | −7.70 |
Atmospheric precipitation | / | S04 | −83.6 | −10.87 |
Atmospheric precipitation | / | S05 | −90.8 | −11.31 |
Atmospheric precipitation | / | S06 | −91.5 | −11.42 |
Atmospheric precipitation | / | S07 | −92.0 | −12.45 |
Atmospheric precipitation | / | S08 | −97.4 | −11.82 |
Atmospheric precipitation | / | S09 | −72.9 | −11.00 |
Atmospheric precipitation | / | S10 | −86.2 | −10.30 |
Atmospheric precipitation | / | S11 | −68.6 | −8.80 |
River water | / | D29 | −48.9 | −8.01 |
River water | / | D30 | −52.2 | −7.75 |
River water | / | D39 | −46.02 | −5.13 |
River water | / | D34 | −46.51 | −4.80 |
Geothermal water | Huweichi | D26 | −25.7 | −2.40 |
Geothermal water | Yongmo | D20 | −41.1 | −3.70 |
Geothermal water | Zhangjiabian | D40 | −36.08 | −3.65 |
Well water | D12 | −65.5 | −9.10 | |
Well water | / | D13 | −58.2 | −7.30 |
Well water | / | D22 | −39.33 | −5.22 |
Well water | / | D23 | −38.38 | −5.12 |
Well water | / | D24 | −40.26 | −5.10 |
Well water | / | D25 | −49.78 | −5.12 |
Mineral water | / | D25 | −38.34 | −5.03 |
Spring water | / | D04 | −42.0 | −9.1 |
Spring water | / | D22 | −35.6 | −8.2 |
Sea water | / | D28 | −45.86 | −4.88 |
Geothermal Field | Huweichi Geothermal Field | Yongmo Geothermal Field | Eastern Huchiwei Geothermal Field |
---|---|---|---|
14C age | 19,600 | 7515 | 22,880 |
Type of Water | Sample | K+/Mg2+ Geothermometers | SiO2 Geothermometers | Average Temperature |
---|---|---|---|---|
Geothermal water | D18 | 144.92 | 154.49 | 149.71 |
Geothermal water | D20 | 111.94 | 154.26 | 133.1 |
Geothermal water | D40 | 100.07 | 90.57 | 95.32 |
Geothermal water | D26 | 90.59 | 100.84 | 95.72 |
Geothermal water | D41 | 148.14 | 145.65 | 146.89 |
Geothermal water | D42 | 146.48 | 142.58 | 144.53 |
Sample | D18 | D20 | D40 | D26 | D41 | D42 |
---|---|---|---|---|---|---|
Thermal storage temperature (°C) | 149.71 | 133.1 | 95.32 | 95.72 | 148.14 | 146.48 |
Water circulation depth (m) | 4581.07 | 3987.86 | 2638.57 | 2652.86 | 4525 | 4465.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Bai, X.; Huang, C.; Chen, W.; Ma, C.; Huang, W.; Deng, G.; Qiu, X.; Chen, S.; Yang, Y.; et al. Genesis of Geothermal Waters in Zhongshan City, China: Hydrochemical and H-O-C Isotopic Implications. Water 2024, 16, 1765. https://doi.org/10.3390/w16131765
Li Y, Bai X, Huang C, Chen W, Ma C, Huang W, Deng G, Qiu X, Chen S, Yang Y, et al. Genesis of Geothermal Waters in Zhongshan City, China: Hydrochemical and H-O-C Isotopic Implications. Water. 2024; 16(13):1765. https://doi.org/10.3390/w16131765
Chicago/Turabian StyleLi, Yanan, Ximin Bai, Changsheng Huang, Wei Chen, Chuanming Ma, Wei Huang, Gao Deng, Xiangrong Qiu, Shengnan Chen, Yongjun Yang, and et al. 2024. "Genesis of Geothermal Waters in Zhongshan City, China: Hydrochemical and H-O-C Isotopic Implications" Water 16, no. 13: 1765. https://doi.org/10.3390/w16131765
APA StyleLi, Y., Bai, X., Huang, C., Chen, W., Ma, C., Huang, W., Deng, G., Qiu, X., Chen, S., Yang, Y., Huang, Y., Wu, X., & Ye, H. (2024). Genesis of Geothermal Waters in Zhongshan City, China: Hydrochemical and H-O-C Isotopic Implications. Water, 16(13), 1765. https://doi.org/10.3390/w16131765