Interactive Changes in Climatic and Hydrological Droughts, Water Quality, and Land Use/Cover of Tajan Watershed, Northern Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Data Sources and Processing
2.2.2. Climatic Drought Calculation
2.2.3. Hydrological Drought Calculation
2.2.4. IHACRES Hydrological Model
2.2.5. Surface Water Quality Assessment
2.2.6. Trend Analysis and Predicting Land Use/Cover Change
3. Results and Discussion
3.1. Results of Climatic Drought Assessment
3.2. Results of Hydrological Drought Assessment
3.3. Results of Surface Water Quality Assessment
3.4. Results of Land Use/Cover Changes Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Madhu, M.; Singh, R.K.; Kaushal, R.; Dash, C.J.; Gowda, H.H.; Barla, G. Changes in the value of ecosystem services due to watershed development in India’s Eastern Ghats and incentives for better stewardship. Ecosyst. Serv. 2024, 65, 101580. [Google Scholar] [CrossRef]
- Moghadam, N.T.; Malekmohammadi, B.; Schirmer, M. Vulnerability assessment of hydrological ecosystem services under future climate and land use change dynamics. Ecol. Indic. 2024, 160, 111905. [Google Scholar] [CrossRef]
- Hazbavi, Z.; Sadeghi, S.H.; Gholamalifard, M.; Davudirad, A.A. Watershed health assessment using the pressure–state–response (PSR) framework. Land Degrad. Dev. 2019, 31, 3–19. [Google Scholar] [CrossRef]
- Xue, D.; Zhou, J.; Zhao, X.; Liu, C.; Wei, W.; Yang, X.; Li, Q.; Zhao, Y. Impacts of climate change and human activities on runoff change in a typical arid watershed, NW China. Ecol. Indic. 2021, 121, 107013. [Google Scholar] [CrossRef]
- Mo, C.; Lai, S.; Yang, Q.; Huang, K.; Lei, X.; Yang, L.; Yan, Z.; Jiang, C. A comprehensive assessment of runoff dynamics in response to climate change and human activities in a typical karst watershed, southwest China. J. Environ. Manag. 2023, 332, 117380. [Google Scholar] [CrossRef]
- IPCC. Summary for policymakers. In Climate Change 2023: Synthesis Report; The Core Writing Team, Lee, H., Romero, J., Eds.; Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar] [CrossRef]
- Scafetta, N. Impacts and risks of “realistic” global warming projections for the 21st century. Geosci. Front. 2024, 15, 101774. [Google Scholar] [CrossRef]
- Hazbavi, Z.; Baartman, J.E.; Nunes, J.P.; Keesstra, S.D.; Sadeghi, S.H. Changeability of reliability, resilience and vulnerability indicators with respect to drought patterns. Ecol. Indic. 2018, 87, 196–208. [Google Scholar] [CrossRef]
- Azizi, E.; Nikoo, M.R.; Mostafazadeh, R.; Hazbavi, Z. Flood vulnerability analysis using different aggregation frameworks across watersheds of Ardabil province, northwestern Iran. Int. J. Disaster Risk Reduct. 2023, 91, 103680. [Google Scholar] [CrossRef]
- Afsahhosseini, F. The impact of Iran’s urban heritage on sustainability, climate change and carbon zero. Environ. Dev. Sustain. 2024, 1–41. [Google Scholar] [CrossRef]
- Khoorani, A.; Balaghi, S.; Mohammadi, F. Projecting drought trends and hot spots across Iran. Nat. Hazards 2024, 1–14. [Google Scholar] [CrossRef]
- Afsari, R.; Nazari-Sharabian, M.; Hosseini, A.; Karakouzian, M. A CMIP6 multi-model analysis of the impact of climate change on severe meteorological droughts through multiple drought indices—Case study of Iran’s Metropolises. Water 2024, 16, 711. [Google Scholar] [CrossRef]
- Madani, K.; AghaKouchak, A.; Mirchi, A. Iran’s socio-economic drought: Challenges of a water-bankrupt nation. Iran. Stud. 2016, 49, 997–1016. [Google Scholar] [CrossRef]
- WMO. Guidelines on the Definition and Monitoring of Extreme Weather and Climate Events; Final Version Forthcoming; World Meteorological Organization (WMO): Geneva, Switzerland, 2020; Available online: https://library.wmo.int/records/item/58396-guidelines-onthe-definition-and-characterization-of-extreme-weather-and-climate-events (accessed on 29 April 2022).
- Ghabelnezam, E.; Mostafazadeh, R.; Hazbavi, Z.; Huang, G. Hydrological drought severity in different return periods in rivers of Ardabil Province, Iran. Sustainability 2023, 15, 1993. [Google Scholar] [CrossRef]
- CRED. 2021: Disasters in Numbers; CRED: Brussels, Belgium, 2022; Available online: https://cred.be/sites/default/files/2021_EMDAT_report.pdf (accessed on 29 April 2022).
- Stefanidis, S.; Rossiou, D.; Proutsos, N. Drought severity and trends in a Mediterranean oak forest. Hydrology 2023, 10, 167. [Google Scholar] [CrossRef]
- Wei, W.; Liu, T.; Zhou, L.; Wang, J.; Yan, P.; Xie, B.; Zhou, J. Drought-related spatiotemporal cumulative and time-lag effects on terrestrial vegetation across China. Remote. Sens. 2023, 15, 4362. [Google Scholar] [CrossRef]
- Kazemzadeh, M.; Malekian, A. Changeability evaluation of hydro-climate variables in Western Caspian Sea region, Iran. Environ. Earth Sci. 2018, 77, 120. [Google Scholar] [CrossRef]
- Luo, Z.; Shao, Q.; Zuo, Q.; Cui, Y. Impact of land use and urbanization on river water quality and ecology in a dam dominated basin. J. Hydrol. 2020, 584, 124655. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Li, Z.; Li, P.; Xu, G. Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales. Catena 2017, 151, 182–190. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, Y.; Fu, L.; Liu, Q.; Peng, Q.; Kang, M. Impacts of land use on surface water quality in a subtropical River Basin: A case study of the Dongjiang River Basin, Southeastern China. Water 2015, 7, 4427–4445. [Google Scholar] [CrossRef]
- Moradzadeh, V.; Hazbavi, Z.; Ouri, A.E.; Mostafazadeh, R.; Rodrigo-Comino, J.; Zareie, S.; Fernández-Raga, M. A Multifunctional conceptual framework for ecological disturbance assessment. Earth Syst. Environ. 2024, 1–19. [Google Scholar] [CrossRef]
- Alamdari, N.; Claggett, P.; Sample, D.J.; Easton, Z.M.; Yazdi, M.N. Evaluating the joint effects of climate and land use change on runoff and pollutant loading in a rapidly developing watershed. J. Clean. Prod. 2022, 330, 129953. [Google Scholar] [CrossRef]
- Mishra, A.; Alnahit, A.; Campbell, B. Impact of land uses, drought, flood, wildfire, and cascading events on water quality and microbial communities: A review and analysis. J. Hydrol. 2020, 596, 125707. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, X.; Pan, G.; Zhao, J.; Zhao, Y. Hydrological responses to co-impacts of climate change and land use/cover change based on CMIP6 in the Ganjiang River, Poyang Lake basin. Anthropocene 2023, 41, 100368. [Google Scholar] [CrossRef]
- Ahmadi, A.; Jalali, J.; Mohammadpour, A. Future runoff assessment under climate change and land-cover alteration scenarios: A case study of the Zayandeh-Roud dam upstream watershed. Hydrol. Res. 2022, 53, 1372–1392. [Google Scholar] [CrossRef]
- Ahmed, N.; Wang, G.; Booij, M.J.; Xiangyang, S.; Hussain, F.; Nabi, G. Separation of the impact of landuse/landcover change and climate change on runoff in the upstream area of the Yangtze River, China. Water Resour. Manag. 2022, 36, 181–201. [Google Scholar] [CrossRef]
- Chang, D.; Li, S.; Lai, Z.; Fu, F.; Qi, X. Integrated effects of co-evolutions among climate, land use and vegetation growing dynamics to changes of runoff quantity and quality. J. Environ. Manag. 2023, 331, 117195. [Google Scholar] [CrossRef]
- Haleem, K.; Khan, A.U.; Ahmad, S.; Khan, M.; Khan, F.A.; Khan, W.; Khan, J. Hydrological impacts of climate and land-use change on flow regime variations in upper Indus basin. J. Water Clim. Change 2022, 13, 758–770. [Google Scholar] [CrossRef]
- Sabitha, N.M.; Thampi, S.G.; Kumar, D.S. Application of a distributed hydrologic model to assess the impact of climate and land-use change on Surface Runoff from a small urbanizing Watershed. Water Resour. Manag. 2023, 37, 2347–2368. [Google Scholar] [CrossRef]
- Shahid, M.; Rahman, K.U.; Haider, S.; Gabriel, H.F.; Khan, A.J.; Pham, Q.B.; Pande, C.B.; Linh, N.T.T.; Anh, D.T. Quantitative assessment of regional land use and climate change impact on runoff across Gilgit watershed. Environ. Earth Sci. 2021, 80, 743. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, C.; Wang, Y.; Wang, Y.; Li, M. Comprehensive evaluation of the effects of climate change and land use and land cover change variables on runoff and sediment discharge. Sci. Total. Environ. 2020, 702, 134401. [Google Scholar] [CrossRef]
- de Mello, K.; Taniwaki, R.H.; de Paula, F.R.; Valente, R.A.; Randhir, T.O.; Macedo, D.R.; Leal, C.G.; Rodrigues, C.B.; Hughes, R.M. Multiscale land use impacts on water quality: Assessment, planning, and future perspectives in Brazil. J. Environ. Manag. 2020, 270, 110879. [Google Scholar] [CrossRef] [PubMed]
- Gani, M.A.; Sajib, A.M.; Siddik, M.A.; Moniruzzaman, M. Assessing the impact of land use and land cover on river water quality using water quality index and remote sensing techniques. Environ. Monit. Assess. 2023, 195, 449. [Google Scholar] [CrossRef]
- Gu, Q.; Hu, H.; Ma, L.; Sheng, L.; Yang, S.; Zhang, X.; Zhang, M.; Zheng, K.; Chen, L. Characterizing the spatial variations of the relationship between land use and surface water quality using self-organizing map approach. Ecol. Indic. 2019, 102, 633–643. [Google Scholar] [CrossRef]
- Sadeghi, S.H.; Vafakhah, M.; Moosavi, V.; Asadabadi, S.P.; Sadeghi, P.S.; Darvishan, A.K.; Fahraji, R.B.; Mosavinia, S.H.; Majidnia, A.; Gharemahmudli, S.; et al. Interactive impacts of climatic, hydrologic, and anthropogenic activities on watershed health. Sci. Total Environ. 2019, 648, 880–893. [Google Scholar] [CrossRef]
- Wan, R.; Cai, S.; Li, H.; Yang, G.; Li, Z.; Nie, X. Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River Watershed, China. J. Environ. Manag. 2014, 133, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Chen, C.; He, M.; Cui, Z.; Mo, K.; Pang, R.; Chen, Q. Land use as an important indicator for water quality prediction in a region under rapid urbanization. Ecol. Indic. 2023, 146, 109768. [Google Scholar] [CrossRef]
- Khadka, D.; Babel, M.S.; Tingsanchali, T.; Penny, J.; Djordjevic, S.; Abatan, A.A.; Giardino, A. Evaluating the impacts of climate change and land-use change on future droughts in northeast Thailand. Sci. Rep. 2024, 14, 9746. [Google Scholar] [CrossRef]
- Peña-Guerrero, M.D.; Nauditt, A.; Muñoz-Robles, C.; Ribbe, L.; Meza, F. Drought impacts on water quality and potential implications for agricultural production in the Maipo River Basin, Central Chile. Hydrol. Sci. J. 2020, 65, 1005–1021. [Google Scholar] [CrossRef]
- Avand, M.; Moradi, H.; Lasboyee, M.R. Spatial modeling of flood probability using geo-environmental variables and machine learning models, case study: Tajan watershed, Iran. Adv. Space Res. 2021, 67, 3169–3186. [Google Scholar] [CrossRef]
- Tavangar, S.; Moradi, H.; Massah Bavani, A.R. Climate change effect on the rainfall amount and intensity in the southern coast of the Caspian Sea. Irrig. Water Eng. 2019, 10, 190–204. [Google Scholar]
- Semenov, M.A.; Barrow, E.M. LARS-WG: A Stochastic Weather Generator for Use in Climate Impact Studies, User Manual; Version 3.0, Herts, UK; 2002; pp. 1–27. Available online: http://resources.rothamsted.ac.uk/sites/default/files/groups/mas-models/download/LARS-WG-Manual.pdf (accessed on 29 April 2022).
- McKee, T.B.N.; Doesken, J.; Kliest, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Washington, DC, USA, 1993. 6p. [Google Scholar]
- Jang, D. Assessment of meteorological drought indices in Korea using RCP 8.5 scenario. Water 2018, 10, 283. [Google Scholar] [CrossRef]
- Nalbantis, I. Evaluation of a hydrological drought index. Eur. Water 2008, 23, 67–77. [Google Scholar]
- Hong, X.; Guo, S.; Zhou, Y.; Xiong, L. Uncertainties in assessing hydrological drought using streamflow drought index for the upper Yangtze River basin. Stoch. Environ. Res. Risk Assess. 2015, 29, 1235–1247. [Google Scholar] [CrossRef]
- Jakeman, A.J.; Littlewood, I.G.; Whitehead, P.G. Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments. J. Hydrol. 1990, 117, 275–300. [Google Scholar] [CrossRef]
- Croke, B.F.W.; Jakeman, A.J. Use of the IHACRES rainfall-runoff model in arid and semi arid regions. In Hydrological Modelling in Arid and Semi-Arid Areas; International Hydrology Series, Weather, H., Soroshian, S., Sharma, K.D., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 41–48. [Google Scholar]
- Mohammadi, B.; Safari, M.J.S.; Vazifehkhah, S. IHACRES, GR4J and MISD-based multi conceptual-machine learning approach for rainfall-runoff modeling. Sci. Rep. 2022, 12, 12096. [Google Scholar] [CrossRef] [PubMed]
- Dodangeh, E.; Shahedi, K.; Soleimani, K. Application of Copula theory for IHACRES hydrologic model evaluation (Case study: Taleghan watershed). J. Earth Space Phys. 2018, 44, 71–88. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Todman, J.; Dugard, R. Approaching Multivariate Analysis: A Guide for Psychology; Psychological Press: Hove, UK, 2007. [Google Scholar]
- Abijith, D.; Saravanan, S. Assessment of land use and land cover change detection and prediction using remote sensing and CA Markov in the northern coastal districts of Tamil Nadu, India. Environ. Sci. Pollut. Res. 2022, 29, 86055–86067. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A.J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote. Sens. Environ. 2003, 87, 85–98. [Google Scholar] [CrossRef]
- Lin, C.Y. A study on the width and placement of vegetated buffer strips in a mudstone-distributed watershed. J. Chin. Soil Water Conserv. 1997, 29, 250–266, (In Chinese with English abstract). [Google Scholar]
- Tramblay, Y.; El Khalki, E.M.; Ciabatta, L.; Camici, S.; Hanich, L.; Saidi, M.E.M.; Ezzahouani, A.; Benaabidate, L.; Mahé, G.; Brocca, L. River runoff estimation with satellite rainfall in Morocco. Hydrol. Sci. J. 2023, 68, 474–487. [Google Scholar] [CrossRef]
Condition | Classification | SDI Value |
---|---|---|
0 | Non-drought | SDI ≥ 0 |
1 | Mild drought | 0 ≤ SDI < −1 |
2 | Moderate drought | −1 ≤ SDI < −1.5 |
3 | Severe drought | −1.5 ≤ SDI < −2 |
4 | Extreme drought | SDI < −2 |
Row | Classification | SPI Value |
---|---|---|
1 | Super humid | ≤2 |
2 | Very humid | 1.99 to 1.5 |
3 | Relatively humid | 1.49 to 1 |
4 | Near normal | 0.99 to −0.99 |
5 | Moderate drought | −1 to −1.49 |
6 | Severe drought | −1.5 to −1.99 |
7 | Extreme drought | ≤−2 |
Station | Soleyman Tangeh | Rig Cheshmeh | Kordkhil | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | SPI (RCP2.6) | Class * | SPI (RCP8.5) | Class * | SPI (RCP8.5) | Class * | SPI (RCP8.5) | Class * | SPI (RCP8.5) | Class * | SPI (RCP8.5) | Class * |
2023–24 | 0.08 | 4 | 0.08 | 4 | −0.84 | 4 | −0.73 | 4 | 0.51 | 4 | 0.51 | 4 |
2024–25 | −1.13 | 5 | −1.07 | 5 | 1.45 | 3 | 1.44 | 3 | 0.2 | 4 | 0.14 | 4 |
2025–26 | −0.2 | 4 | −0.38 | 4 | −0.43 | 4 | −0.58 | 4 | 0.42 | 4 | 0.32 | 4 |
2026–27 | 1.13 | 3 | 1.09 | 3 | 1.05 | 3 | 1.07 | 3 | 0.87 | 4 | 0.56 | 4 |
2027–28 | 1.22 | 3 | 1.18 | 3 | −0.95 | 4 | −0.89 | 4 | −0.03 | 4 | 0.15 | 4 |
2028–29 | 0.45 | 4 | 0.65 | 4 | −0.6 | 4 | −0.62 | 4 | 0.02 | 4 | 0.06 | 4 |
2029–30 | −1.57 | 6 | −1.58 | 6 | −2.07 | 7 | −2.11 | 7 | 1.59 | 2 | 1.58 | 2 |
2030–31 | −0.03 | 4 | −0.02 | 4 | −0.31 | 4 | −0.28 | 4 | −0.4 | 4 | −0.54 | 4 |
2031–32 | −0.29 | 4 | −0.45 | 4 | 0.19 | 4 | 0.05 | 4 | −0.77 | 4 | −0.79 | 4 |
2032–33 | −1.15 | 5 | −1.18 | 5 | −1.2 | 5 | −1.23 | 5 | −2.92 | 7 | −2.85 | 7 |
2033–34 | −1.55 | 6 | −1.4 | 5 | −0.02 | 4 | −0.01 | 4 | 0.28 | 4 | 0.32 | 4 |
2034–35 | 0.25 | 4 | 0.07 | 4 | −0.59 | 4 | −0.58 | 4 | −1.14 | 5 | −1.11 | 5 |
2035–36 | 0.38 | 4 | 0.45 | 4 | 0.1 | 4 | 0.14 | 4 | −0.1 | 4 | −0.19 | 4 |
2036–37 | 0.1 | 4 | 0.07 | 4 | 1.44 | 3 | 1.47 | 3 | 0.53 | 4 | 0.6 | 4 |
2037–38 | −0.83 | 4 | −0.92 | 4 | 0.76 | 4 | 0.86 | 4 | −0.15 | 4 | −0.17 | 4 |
2038–39 | −0.27 | 4 | −0.1 | 4 | 0.17 | 4 | 0.22 | 4 | −2.05 | 7 | −2.03 | 7 |
2039–40 | 1.2 | 3 | 1.22 | 3 | 2.77 | 1 | 2.76 | 1 | 0.9 | 4 | 1.11 | 3 |
2040–41 | 0.77 | 4 | 0.88 | 4 | −0.49 | 4 | −0.58 | 4 | −1.51 | 6 | −1.52 | 6 |
2041–42 | 1.94 | 2 | 1.89 | 2 | 0 | 4 | 0 | 4 | −0.26 | 4 | −0.25 | 4 |
2042–43 | 1.35 | 3 | 1.4 | 3 | −1.12 | 5 | −1.04 | 5 | −0.19 | 4 | −0.13 | 4 |
2043–44 | −0.64 | 4 | −0.63 | 4 | 1 | 3 | 0.94 | 4 | 0.38 | 4 | 0.42 | 4 |
2044–45 | 0.15 | 4 | 0.2 | 4 | 1 | 3 | 0.91 | 4 | 0.25 | 4 | 0.22 | 4 |
2045–46 | 1.08 | 3 | 1.04 | 3 | −0.04 | 4 | 0.05 | 4 | 1.34 | 3 | 1.33 | 3 |
2046–47 | 0.21 | 4 | 0.13 | 4 | 0.38 | 4 | 0.4 | 4 | 0.56 | 4 | 0.58 | 4 |
2047–48 | 0.57 | 4 | 0.62 | 4 | −0.01 | 4 | −0.03 | 4 | 0.31 | 4 | 0.3 | 4 |
2048–49 | −1.03 | 5 | −1.09 | 5 | −1.05 | 5 | −1.05 | 5 | 1.57 | 3 | 1.65 | 2 |
2049–50 | −2.18 | 7 | −2.16 | 7 | −0.6 | 4 | −0.6 | 4 | −0.18 | 4 | −0.25 | 4 |
2050–51 | −1.2 | 5 | −2.2 | 5 | −0.24 | 4 | −0.72 | 4 | 0.45 | 4 | 0.32 | 4 |
Station | Stage | Time Step | R Squared | Nash–Sutcliffe Coefficient (NSE) | Bias (mm y−1) | Q (mm y−1) * | P (mm y−1) * |
---|---|---|---|---|---|---|---|
Kordkhil | Calibration | Daily | 0.64 | 0.53 | 21.12 | 48.7 | 673.13 |
Validation | Daily | 0.58 | 0.48 | 26.16 | 61.22 | 838.23 |
Station | Kordkhil | |||
---|---|---|---|---|
Year | SDI (RCP8.5) | * Class | SDI (RCP8.5) | * Class |
2021–22 | −0.17 | 1 | 0.1 | 0 |
2022–23 | 0.4 | 0 | 0.62 | 0 |
2023–24 | −0.59 | 1 | −0.44 | 1 |
2024–25 | 0.26 | 0 | 0.24 | 0 |
2025–26 | −0.74 | 1 | −0.75 | 1 |
2026–27 | 1.04 | 0 | 0.96 | 0 |
2027–28 | −0.16 | 1 | −0.03 | 1 |
2028–29 | 3.18 | 0 | 3.15 | 0 |
2029–30 | 0.73 | 0 | 0.61 | 0 |
2030–31 | 0.68 | 0 | 0.7 | 0 |
2031–32 | −0.92 | 1 | −0.83 | 1 |
2032–33 | 0.32 | 0 | 0.16 | 0 |
2033–34 | −0.06 | 1 | −0.1 | 1 |
2034–35 | −1.62 | 3 | −1.49 | 2 |
2035–36 | −0.91 | 1 | −1.22 | 2 |
2036–37 | −0.11 | 1 | −0.33 | 1 |
2037–38 | −0.52 | 1 | −0.73 | 1 |
2038–39 | −0.95 | 1 | −0.97 | 1 |
2039–40 | −0.01 | 1 | 0.19 | 0 |
2040–41 | 0.35 | 0 | 0.34 | 0 |
Station | Kordkhil (Downstream) | Parvich Abad (Upstream) | |
---|---|---|---|
Characteristic | |||
Type of water | Ca-HCO3 | Ca-HCO3 | |
Hardness (mg L−1) | 273.75 | 240 | |
Electrical conductivity (µmoh cm−1) | 770 | 561 | |
Salinity risk | High | Moderate | |
SAR | 0.196 | 0.069 | |
ESR | 0.231 | 0.092 | |
Magnesium risk | 49.8 | 46.2 | |
Dissolved solids (mg kg−1) | 506 | 351 | |
Density (g cm3) | 0.997 | 0.997 | |
The difference percentage of anion and cation | 53.36 | 52.67 | |
Measured TDS to EC ratio | 0.657 | 0.635 |
Station | Parameter | SO4 | Cl | CO3 | HCO3 | K | Na | Mg | Ca | PH | T.D.S | EC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | SD | 0.61 | 1.27 | 148.3 | 0.7 | 0.02 | 1.23 | 0.5 | 0.91 | 0.13 | 160.57 | 243.09 |
2 | 0.58 | 0.13 | 118.3 | 0.52 | 0.01 | 0.1 | 0.47 | 0.32 | 0.19 | 33.07 | 49.61 | |
1 | CV (%) | 42.36 | 62.87 | 49.96 | 15.91 | 28.57 | 57.75 | 25.25 | 23.64 | 1.65 | 29.29 | 28.74 |
2 | 34.73 | 19.4 | 47.47 | 15.62 | 20 | 16.67 | 27.81 | 9.17 | 2.37 | 8.6 | 8.27 | |
1 | Median | 1.3 | 1.4 | 275 | 4.5 | 0.06 | 1.95 | 2.2 | 3.65 | 7.9 | 506 | 770 |
2 | 1.6 | 0.6 | 255 | 3.5 | 0.05 | 0.6 | 1.75 | 3.5 | 7.9 | 381.5 | 593.5 | |
1 | Variance | 0.37 | 1.62 | 21,989 | 0.5 | 0 | 1.52 | 0.25 | 0.82 | 0.02 | 25,783 | 59,092 |
2 | 0.34 | 0.02 | 13,983 | 0.27 | 0 | 0.01 | 0.22 | 0.1 | 0.04 | 1093.6 | 2461.5 |
Parameter | Standard Deviation | p-Value | OLS Regression Slope | M-K Test Value | Trend |
---|---|---|---|---|---|
TDS | 33.1 | 0.06 | 9.36 | 51 | ↑ |
EC | 33.1 | 0.06 | 13.98 | 51 | ↑ |
PH | 32.43 | 0.35 | 0.001 | 13 | ↑ |
Na | 33.08 | 0.26 | 0.03 | 22 | ↑ |
TH | 33.08 | 0.05 | 3.16 | 54 | ↑ |
Cl | 33.02 | 0.01 | 0.08 | 75 | ↑ |
SO4 | 33.04 | 0.07 | 0.03 | 49 | ↑ |
HCO3 | 33.3 | 0.38 | 0.009 | 11 | ↑ |
Ca | 33.3 | 0 | 0.01 | 111 | ↑ |
Mg | 33.4 | 0.024 | −0.03 | −66 | ↓ |
K | 32.64 | 0.005 | 0.001 | 85 | ↑ |
Parameter | Standard Deviation | p-Value | OLS Regression Slope | M-K Test Value | Trend |
---|---|---|---|---|---|
TDS | 22.21 | 0.039 | −4.45 | −40 | ↓ |
EC | 22.21 | 0.032 | −6.18 | −42 | ↓ |
PH | 21.74 | 0.029 | 0.027 | 42 | ↑ * |
Na | 21.84 | 0 | −0.02 | −60 | ↓ |
TH | 22.18 | 0.29 | −1.55 | −13 | ↓ |
Cl | 21.61 | 0.5 | −0.003 | 1 | ↓ |
SO4 | 22.14 | 0.08 | −0.03 | −31 | ↓ |
HCO3 | 22.16 | 0.12 | −0.02 | −26 | ↓ |
Ca | 22.06 | 0 | 0.04 | 56 | ↑ * |
Mg | 22.16 | 0 | −0.08 | −86 | ↓ |
K | 18.01 | 0.06 | −0.003 | −28 | ↓ |
Land Use | 1991 | 2010 | 2020 | 2040 | Difference (Km2) | Difference (%) |
---|---|---|---|---|---|---|
Residential | 32.62 | 43.96 | 47.05 | 64.34 | 17.29 | 0.45 |
Agriculture | 585.17 | 681.84 | 614.54 | 874.75 | 260.21 | 6.82 |
Forest | 1974.3 | 1872.8 | 1890.61 | 1813.42 | −77.19 | −2.02 |
Garden | 145.97 | 177.42 | 152.02 | 187 | 34.98 | 9.17 |
Rangeland | 1218.59 | 1172.17 | 1229.6 | 1010.77 | −218.83 | −5.74 |
Index | Mean | Standard Deviation | Standard Error | Mean Absolute Deviation | Median |
---|---|---|---|---|---|
SPI (Soleyman tangeh) | 0.319 | 0.718 | 0.156 | 0.575 | 0.59 |
SPI (Kordkhil) | 0.004 | 1.02 | 0.222 | 0.871 | 0.29 |
SPI (Rigcheshmeh) | 0.138 | 1.104 | 0.24 | 0.893 | 0.14 |
NDVI | 0.417 | 0.031 | 0.006 | 0.027 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avand, M.; Moradi, H.R.; Hazbavi, Z. Interactive Changes in Climatic and Hydrological Droughts, Water Quality, and Land Use/Cover of Tajan Watershed, Northern Iran. Water 2024, 16, 1784. https://doi.org/10.3390/w16131784
Avand M, Moradi HR, Hazbavi Z. Interactive Changes in Climatic and Hydrological Droughts, Water Quality, and Land Use/Cover of Tajan Watershed, Northern Iran. Water. 2024; 16(13):1784. https://doi.org/10.3390/w16131784
Chicago/Turabian StyleAvand, Mohammadtaghi, Hamid Reza Moradi, and Zeinab Hazbavi. 2024. "Interactive Changes in Climatic and Hydrological Droughts, Water Quality, and Land Use/Cover of Tajan Watershed, Northern Iran" Water 16, no. 13: 1784. https://doi.org/10.3390/w16131784
APA StyleAvand, M., Moradi, H. R., & Hazbavi, Z. (2024). Interactive Changes in Climatic and Hydrological Droughts, Water Quality, and Land Use/Cover of Tajan Watershed, Northern Iran. Water, 16(13), 1784. https://doi.org/10.3390/w16131784