Future Wave Climate-Driven Longshore Sediment Transport and Shoreline Evolution along the Southwestern Black Sea
Abstract
:1. Introduction
2. Study Area
3. Data and Methodology
3.1. Wave Forcing
3.2. Longshore Sediment Transport (LST)
3.3. Shoreline Change
4. Results
4.1. Assessment of Future Wave Climate
4.2. Assessment of Future Longshore Sediment Transport
4.3. Comparison with Historical Data
4.4. Assessment of Future Shoreline Change
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Adams, P. Effect of climate change and wave direction on longshore sediment transport patterns in Southern California. Clim. Chang. 2011, 109, 211–228. [Google Scholar] [CrossRef]
- Almar, R.; Kestenare, E.; Reyns, J.; Jouanno, J.; Anthony, E.J.; Laibi, R.; Hemer, M.; Du Penhoat, Y.; Ranasinghe, R. Response of the Bight of Benin (Gulf of Guinea, West Africa) Coastline to Anthropogenic and Natural Forcing, Part1: Wave Climate Variability and Impacts on the Longshore Sediment Transport. Cont. Shelf Res. 2015, 110, 48–59. [Google Scholar] [CrossRef]
- Bonaldo, D.; Benetazzo, A.; Sclavo, M.; Carniel, S. Modelling Wave-Driven Sediment Transport in a Changing Climate: A Case Study for Northern Adriatic Sea (Italy). Reg. Environ. Chang. 2015, 15, 45–55. [Google Scholar] [CrossRef]
- Casas-Prat, M.; Wang, X.L.; Swart, N. CMIP5-Based Global Wave Climate Projections Including the Entire Arctic Ocean. Ocean Model. 2016, 123, 66–85. [Google Scholar] [CrossRef]
- Dastgheib, A.; Reyns, J.; Thammasittirong, S.; Weesakul, S.; Thatcher, M.; Ranasinghe, R. Variations in the Wave Climate and Sediment Transport due to Climate Change Along the Coast of Vietnam. J. Mar. Sci. Eng. 2016, 4, 86. [Google Scholar] [CrossRef]
- Fernández-Fernández, S.; Silva, P.A.; Ferreira, C.C.; Carracedo-García, P.E. Longshore Sediment Transport Estimation at Areão Beach (NW Portugal) under Climate Change Scenario. J. Coast. Res. 2020, 95, 479–483. [Google Scholar] [CrossRef]
- Chowdury, P.; Behera, M.R.; Reeve, D.E. Future Wave-Climate Driven Longshore Sediment Transport Along the Indian Coast. Clim. Chang. 2020, 162, 405–424. [Google Scholar] [CrossRef]
- Dickson, M.E.; Kench, P.S.; Kantor, M.S. Longshore Transport of Cobbles on a Mixed Sand and Gravel Beach, Southern Hawke Bay, New Zealand. Mar. Geol. 2007, 287, 31–42. [Google Scholar] [CrossRef]
- Zacharioudaki, A.; Reeve, D.E. Shoreline Evolution Under Climate Change Wave Scenarios. Clim. Chang. 2011, 108, 73–105. [Google Scholar] [CrossRef]
- Rajasree, B.R.; Deo, M.C.; Sheela Nair, L. Effect of Climate Change on Shoreline Shifts at a Straight and Continuous coast. Estuar. Coast. Shelf Sci. 2016, 183, 221–234. [Google Scholar] [CrossRef]
- Suursaar, I.; Tnisson, H.; Alari, V.; Raudsepp, U. Projected Changes in Wave Conditions in the Baltic Sea by the end of 21st Century and the Corresponding Shoreline Changes. J. Coast. Res. 2016, 75, 1012–1016. [Google Scholar] [CrossRef]
- Enríquez, A.R.; Marcos, M.; Álvarez-Ellacuría, A.; Orfila, A.; Gomis, D. Changes in Beach Shoreline due to Sea Level Rise and Waves Under Climate Change Scenarios: Application to the Balearic Islands (Western Mediterranean). Nat. Hazards Earth Syst. Sci. 2017, 17, 1075–1089. [Google Scholar] [CrossRef]
- Gopikrishna, B.; Deo, M.C. Changes in the Shoreline at Paradip Port, India in Response to Climate Change. Geomorphology 2018, 303, 243–255. [Google Scholar] [CrossRef]
- Rajasree, B.R.; Deo, M.C. Future Geomorphologic Changes under the Changing Climate. J. Coast. Res. 2020, 89, 7–14. [Google Scholar] [CrossRef]
- Alvarez-Cuesta, M.; Toimil, A.; Losada, I.J. Modelling Long-Term Shoreline Evolution in Highly Anthropized Coastal Areas. Part 2: Assessing the Response to Climate Change. Coast. Eng. 2021, 169, 103985. [Google Scholar] [CrossRef]
- D’Anna, M.; Idier, D.; Castelle, B.; Rohmer, J.; Cagigal, L.; Mendez, F.J. Effects of Stochastic Wave Forcing on Probabilistic Equilibrium Shoreline Response Across the 21st Century Including Sea-Level Rise. Coast. Eng. 2021, 175, 104149. [Google Scholar] [CrossRef]
- Santiago, I.; Camus, P.; Gonzalez, M.; Liria, P.; Epelde, I.; Chust, G.; Campo, A.; Uriarte, A. Impact of Climate Change on Beach Erosion in the Basque Coast (NE Spain). Coast. Eng. 2021, 167, 103916. [Google Scholar] [CrossRef]
- Dastgheib, A.; Martinez, C.; Udo, K.; Ranasinghe, R. Climate Change Driven Shoreline Change at Hasaki Beach Japan: A Novel Application of the Probabilistic Coastline Recession (PCR) Model. Coast. Eng. 2022, 172, 104079. [Google Scholar] [CrossRef]
- Chowdury, P.; Behera, M.R. Effect of Long-Term Wave Climate Variability on Longshore Sediment Transport Along Regional Coastlines. Prog. Oceanogr. 2017, 156, 145–153. [Google Scholar] [CrossRef]
- Chowdhury, P.; Behera, M.R. Evaluation of CMIP5 and CORDEX Derived Wave Climate in Indian Ocean. Clim. Dyn. 2018, 52, 4463–4482. [Google Scholar] [CrossRef]
- Splinter, K.D.; Davidson, M.A.; Golshani, A.; Tomlinson, R. Climate Controls on Longshore Sediment Transport. Cont. Shelf Res. 2012, 48, 146–156. [Google Scholar] [CrossRef]
- Samaras, A.G.; Koutitas, C.G. Modeling the Impact of Climate Change on Sediment Transport and Morphology in Coupled Watershed-Coast Systems: A Case Study Using an Integrated Approach. Int. J. Sediment Res. 2014, 29, 304–315. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Callaghan, D.; Stive, M.J.F. Estimating Coastal Recession due to Sea Level Rise: Beyond the Bruun Rule. Clim. Chang. 2012, 110, 561–574. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Duong, T.; Uhlenbrook, S.; Roelvink, D.; Stive, M. Climate Change Impact Assessment for Inlet-Interrupted Coastlines. Nat. Clim. Chang. 2013, 3, 83–87. [Google Scholar] [CrossRef]
- Ashton, A.D.; Donnelly, J.P.; Evans, R.L. A Discussion of the Potential Impacts of Climate Change on the Shorelines of the Northeastern USA. Mitig. Adapt. Strategies Glob. Chang. 2008, 13, 719–743. [Google Scholar] [CrossRef]
- Vitousek, S.; Barnard, P.L.; Fletcher, C.H.; Frazer, N.; Erikson, L.; Storlazzi, C.D. Doubling of Coastal Flooding Frequency within Decades due to Sea-Level Rise. Sci. Rep. 2017, 7, 1399. [Google Scholar] [CrossRef] [PubMed]
- Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D. Coastal Systems and Low-Lying Areas in Climate Change 2014 Impacts, Adaptation, and Vulnerability. In IPCC 2014; Cambridge University Press: Cambridge, UK, 2014; pp. 361–410. [Google Scholar]
- Basaran, B.; Guner, H.A. Effect of Wave Climate Change on Longshore Transport in Southwestern Black Sea. Estuar. Coast. Shelf Sci. 2021, 258, 107415. [Google Scholar] [CrossRef]
- Avşar, N.B. Sea Level Changes in the Black Sea and Its Impacts on the Coastal Areas. Ph.D. Thesis, Zonguldak Bülent Ecevit University, Zonguldak, Türkiye, 2019. [Google Scholar]
- Divinsky, B.V.; Kosyan, R.D. Spatio Temporal Variability of the Black Sea Wave Climate in the Last 37 Years. Cont. Shelf Res. 2017, 136, 1–19. [Google Scholar] [CrossRef]
- Islek, F.; Yuksel, Y.; Sahin, C. Evaluation of Regional Climate Models and Future Wave Characteristics in an Enclosed Sea: A Case Study of the Black Sea. Ocean Eng. 2022, 262, 112220. [Google Scholar] [CrossRef]
- Islek, F.; Yuksel, Y.; Sahin, C. Evaluation of Regional Climate Models and Future Wind Characteristics in the Black Sea. Int. J. Climatol. 2021, 42, 1877–1901. [Google Scholar] [CrossRef]
- Kamphuis, J.W. Alongshore Sediment Transport Rate. J. Waterw. Port Coast. Ocean Eng. 1991, 117, 624–640. [Google Scholar] [CrossRef]
- Kaczmarek, L.M.; Ostrowski, R.; Pruszak, Z.; Rozynski, G. Selected Problems of Sediment Transport and Morphodynamics of a Multi-Bar Nearshore Zone. Estuar. Coast. Shelf Sci. 2005, 62, 415–425. [Google Scholar] [CrossRef]
- Bayram, A.; Larson, M.; Hanson, H. A New Formula for the Total Longshore Sediment Transport Rate. Coast. Eng. 2007, 54, 700–710. [Google Scholar] [CrossRef]
- DHI. LITPACK-Noncohesive Sediment Transport in Currents and Waves, User Guide; DHI Water and Environment: Hersholm, Denmark, 2016. [Google Scholar]
- DHI. LITDRIFT Longshore Current and Littoral Drift, User Guide; DHI Water and Environment: Hersholm, Denmark, 2016. [Google Scholar]
- DHI. LITLINE Coastline Evolution, User Guide; DHI Water and Environment: Hersholm, Denmark, 2016. [Google Scholar]
- Santer, B.D.; Wigkey, T.M.L.; Boyle, J.S.; Gaffen, J.S.; Hnilo, J.J.; Nychka, D.; Parker, D.E.; Taylor, K.E. Statistical Significance of Trends and Trend Differences in Layer-Average Atmospheric Temperature Time Series. J. Geophys. Res. 2000, 105, 7337–7356. [Google Scholar] [CrossRef]
Method | Formula | Definition |
---|---|---|
Kamphuis [33] | Hsb: significant wave height (m), Tp: peak wave period, mb: slope of the beach in breaking zone, D50: average grain size (m), αbs: angle of breaking wave. | |
Kaczmarek et al. [34] | , , | kv: site-specific constant, γb: constant wave breaker parameter, λ: correction factor, δ: coupling coefficient, ε: transport coefficient. |
Bayram et al. [35] | , , , , | ε: transport coefficient, average longshore sediment current velocity in the surf zone, F: wave energy flux, A: porosity, ws: fall velocity of the sediment. |
RCP4.5 Wave Climate Scenario | |||
---|---|---|---|
For 80 Years (2021–2100) | |||
Wave Parameters | Total Wave | Swell Wave | Wind Wave |
Significant Wave Height | 0.42% increase | 1.10% increase | 4.40% increase |
Peak Wave Period | 0.52% decrease | 0.52% decrease | 2.20% increase |
Mean Wave Direction | 0.60° shift to ESE | 0.80° shift to ESE | 0.30° shift to ESE |
Near Future (2021–2060) | |||
Wave Parameters | Total Wave | Swell Wave | Wind Wave |
Significant Wave Height | 6.50% increase | 5.80% increase | 9.90% increase |
Peak Wave Period | 2.20% increase | 2.30% increase | 4.20% increase |
Mean Wave Direction | 1.10° shift to ESE | 1.00° shift to ESE | 1.70° shift to ESE |
Middle Future (2061–2100) | |||
Wave Parameters | Total Wave | Swell Wave | Wind Wave |
Significant Wave Height | 2.60% decrease | 3.00% decrease | 2.50% decrease |
Peak Wave Period | 0.90% decrease | 0.93% decrease | 1.70% decrease |
Mean Wave Direction | 0.40° shift to WNW | 0.20° shift to WNW | 0.25° shift to ESE |
RCP8.5 Wave Climate Scenario | |||
For 80 Years (2021–2100) | |||
Wave Parameters | Total Wave | Swell Wave | Wind Wave |
Significant Wave Height | 0.74% increase | 1.50% increase | 1.70% increase |
Peak Wave Period | 0.17% decrease | 0.35% decrease | 0.76% increase |
Mean Wave Direction | 3.60° shift to ESE | 3.50° shift to ESE | 2.80° shift to ESE |
Near Future (2021–2060) | |||
Wave Parameters | Total Wave | Swell Wave | Wind Wave |
Significant Wave Height | 1.10% increase | 1.70% increase | 1.27% decrease |
Peak Wave Period | 0.40% increase | 0.30% increase | 0.11% decrease |
Mean Wave Direction | 2.70° shift to ESE | 2.70° shift to ESE | 1.0° shift to ESE |
Middle Future (2061–2100) | |||
Wave Parameters | Total Wave | Swell Wave | Wind Wave |
Significant Wave Height | 1.60% decrease | 1.30% decrease | 6.85% decrease |
Peak Wave Period | 1.70% decrease | 1.70% decrease | 0.53% decrease |
Mean Wave Direction | 1.10° shift to ESE | 0.30° shift to ESE | 0.30° shift to WNW |
RCP4.5 Wave Climate Scenario | ||||
---|---|---|---|---|
Sediment Transport Rate (m3/year) | Kamphuis [33] | Kaczmarek et al. [34] | Bayram et al. [35] | LITDRIFT [37] |
NET | 48,500 | 38,400 | 51,500 | 53,800 |
GROSS | 264,000 | 235,200 | 234,850 | 264,600 |
RCP8.5 Wave Climate Scenario | ||||
Sediment Transport Rate (m3/year) | Kamphuis [33] | Kaczmarek et al. [34] | Bayram et al. [35] | LITDRIFT [37] |
NET | 51,700 | 41,150 | 54,500 | 58,350 |
GROSS | 270,600 | 239,150 | 242,000 | 268,500 |
Near Future (2021–2060) | ||||
---|---|---|---|---|
Scenario | (%) | t | Significance % | |
RCP4.5 | 24,500.00 | 10.40 | 0.84 | >80% |
RCP8.5 | 4500.00 | 1.75 | - | NST |
Middle Future (2061–2100) | ||||
Scenario | (%) | t | Significance % | |
RCP4.5 | 34,000.00 | 12.70 | 0.70 | >75% |
RCP8.5 | 19,500.00 | 8.00 | 0.68 | >75% |
Future (2021–2100) | ||||
Scenario | (%) | t | Significance % | |
RCP4.5 | 0.00 | 0.00 | - | NST |
RCP8.5 | 25,000.00 | 9.30 | 1.28 | >85% |
Period | Average LST Rates (m3/year) | |
---|---|---|
Net | Gross | |
1979–2018 (Historical) | 66,400 | 188,400 |
2021–2100 (RCP4.5) | 48,000 | 250,000 |
2021–2100 (RCP8.5) | 51,500 | 255,000 |
Period | Wave Parameters | ||
---|---|---|---|
Hs (m) | Tp (s) | Dm (°) | |
Historical | 0.92 | 5.53 | 12.0° |
RCP4.5 | 0.94 | 5.74 | 15.2° |
RCP8.5 | 0.95 | 5.75 | 17.5° |
Wave Climate Scenario | Period | Maximum Erosion (m3/year) | Maximum Accretion (m3/year) |
---|---|---|---|
RCP4.5 | 2021–2060 | 0.50 | 6.50 |
2061–2100 | 0.10 | 2.60 | |
2021–2100 | 0.26 | 4.60 | |
RCP8.5 | 2021–2060 | 0.50 | 4.90 |
2061–2100 | 0.10 | 2.00 | |
2021–2100 | 0.26 | 3.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Başaran, B.; Arı Güner, H.A. Future Wave Climate-Driven Longshore Sediment Transport and Shoreline Evolution along the Southwestern Black Sea. Water 2024, 16, 1787. https://doi.org/10.3390/w16131787
Başaran B, Arı Güner HA. Future Wave Climate-Driven Longshore Sediment Transport and Shoreline Evolution along the Southwestern Black Sea. Water. 2024; 16(13):1787. https://doi.org/10.3390/w16131787
Chicago/Turabian StyleBaşaran, Büşra, and H. Anıl Arı Güner. 2024. "Future Wave Climate-Driven Longshore Sediment Transport and Shoreline Evolution along the Southwestern Black Sea" Water 16, no. 13: 1787. https://doi.org/10.3390/w16131787
APA StyleBaşaran, B., & Arı Güner, H. A. (2024). Future Wave Climate-Driven Longshore Sediment Transport and Shoreline Evolution along the Southwestern Black Sea. Water, 16(13), 1787. https://doi.org/10.3390/w16131787