Rainwater Harvesting Site Selection for Drought-Prone Areas in Somali and Borena Zones, Oromia Regional State, Ethiopia: A Geospatial and Multi-Criteria Decision Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Methodology
Parameter Selection
2.4. Data Processing
2.4.1. Rainfall
2.4.2. Slope
2.4.3. Soil Texture
2.4.4. LULC
2.4.5. Drainage Density
2.5. AHP and Weight for Different Factors
2.6. Addressing Subjectivity in AHP for RWH Site Selection
2.7. Validation
3. Results
3.1. Rainfall
3.2. Slope
3.3. Soil Texture
3.4. LULC
3.5. Drainage Density
3.6. Final Potential RWH Suitability
4. Discussion
5. Conclusions
6. Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agricultural Organization (FAO). Strengthening Agricultural Water Efficiency and Productivity on the African and Global Level: Status, Performance, and Scope Assessment of Water Harvesting in Uganda, Burkina Faso, and Morocco; FAO: Rome, Italy, 2016. [Google Scholar]
- Al-Quraishi, A.M.; Gaznayee, H.A.; Crespi, M. Drought trend analysis in a semi-arid area of Iraq based on normalized difference vegetation index, normalized difference water index, and standardized precipitation index. J. Arid. Land 2021, 13, 413–430. [Google Scholar] [CrossRef]
- Cassardo, C.; Jones, J.A.A. Managing water in a changing world. Water 2011, 3, 618–628. [Google Scholar] [CrossRef]
- Sayl, K.N.; Mohammed, A.S.; Ahmed, A.D. GIS-based approach for rainwater harvesting site selection. IOP Conf. Ser. Mater. Sci. Eng. 2020, 737, 012246. [Google Scholar] [CrossRef]
- Tiwari, K.; Goyal, R.; Sarkar, A. GIS-based methodology for identification of suitable locations for rainwater harvesting structures. Water Resour. Manag. 2018, 32, 1811–1825. [Google Scholar] [CrossRef]
- Salem, H.S.; Pudza, M.Y.; Yihdego, Y. Water strategies and water–food Nexus: Challenges and opportunities towards sustainable development in various regions of the World. Sustain. Water Resour. Manag. 2022, 8, 114. [Google Scholar] [CrossRef] [PubMed]
- Matomela, N.; Li, T.; Ikhumhen, H.O. Siting of rainwater harvesting potential sites in arid or semi-arid watersheds using GIS-based techniques. Environ. Process. 2020, 7, 631–652. [Google Scholar] [CrossRef]
- Waghaye, A.M.; Singh, D.K.; Sarangi, A.; Sena, D.R.; Sahoo, R.N.; Sarkar, S.K. Identification of suitable zones and sites for rainwater harvesting using GIS and multicriteria decision analysis. Environ. Monit. Assess. 2023, 195, 279. [Google Scholar] [CrossRef] [PubMed]
- Gaznayee, H.A.A.; Al-Quraishi, A.M.F.; Mahdi, K.; Ritsema, C. A geospatial approach for analysis of drought impacts on vegetation cover and land surface temperature in the Kurdistan Region of Iraq. Water 2022, 14, 927. [Google Scholar] [CrossRef]
- Almamalachy, Y.S.; Al-Quraishi, A.M.F.; Moradkhani, H. Agricultural drought monitoring over Iraq utilizing MODIS products. In Environmental Remote Sensing and GIS in Iraq; Springer: Berlin/Heidelberg, Germany, 2020; pp. 253–278. [Google Scholar] [CrossRef]
- Kumar, M.G.; Agarwal, A.K.; Bali, R. Delineation of potential sites for water harvesting structures using remote sensing and GIS. J. Indian Soc. Remote Sens. 2008, 36, 323–334. [Google Scholar] [CrossRef]
- Santosh, N.; Vinay, G. Rainwater harvesting for domestic use: A systematic review and outlook from the utility policy and management perspectives. Util. Policy 2022, 77, 101383. [Google Scholar] [CrossRef]
- Gwenzi, W.; Nyamadzawo, G. Hydrological impacts of urbanization and urban roof water harvesting in water-limited catchments: A review. Environ. Process. 2014, 1, 573–593. [Google Scholar] [CrossRef]
- World Bank Group. Climate Change Knowledge Portal. For Development Practitioners and Policymakers. Available online: https://climateknowledgeportal.worldbank.org/ (accessed on 11 March 2021).
- Kebede, S.; Hailu, A.; Crane, E.; Ó Dochartaigh, B.É.; Bellwood-Howard, I. Africa Groundwater Atlas: Hydrogeology of Ethiopia. Br. Geol. Surv. 2018, 8, 36. [Google Scholar] [CrossRef]
- Alemayehu, Z.Y.; Minale, A.S.; Legesse, S.A. Spatiotemporal rainfall and temperature variability in Suha Watershed, Upper Blue Nile Basin, Northwest Ethiopia. Environ. Monit. Assess. 2022, 194, 538. [Google Scholar] [CrossRef] [PubMed]
- Alene, A.; Yibeltal, M.; Abera, A.; Andualem, T.G.; Lee, S.S. Identifying rainwater harvesting sites using integrated GIS and a multi-criteria evaluation approach in semi-arid areas of Ethiopia. Appl. Water Sci. 2022, 12, 238. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Weather. Climate. Water. Available online: https://public.wmo.int/en/our-Mandate/climate/wmo-statement-state-of-global-climate (accessed on 21 April 2023).
- Food and Agricultural Organization (FAO). Rapid Drought Assessment Report for Borena and Dawa Zones 2021; FAO: Rome, Italy, 2021. [Google Scholar]
- Ding, W.; Wang, F.; Dong, Y.; Jin, K.; Cong, C.; Han, J.; Ge, W. Effects of rainwater harvesting system on soil moisture in rain-fed orchards on the Chinese Loess Plateau. Agric. Water Manag. 2021, 243, 106496. [Google Scholar] [CrossRef]
- Oweis, T.; Hachum, A. Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agric. Water Manag. 2006, 80, 57–73. [Google Scholar] [CrossRef]
- Gebremichael, S.G.; Yismaw, E.; Tsegaw, B.D.; Shibeshi, A.D. Determinants of water source use, quality of water, sanitation and hygiene perceptions among urban households in North-West Ethiopia: A cross-sectional study. PLoS ONE 2021, 16, e0239502. [Google Scholar] [CrossRef] [PubMed]
- Worku, M.A.; Feyisa, G.L.; Beketie, K.T.; Garbolino, E. Rainfall variability and trends in the Borana Zone of Southern Ethiopia. J. Water Clim. Chang. 2022, 13, 3132–3151. [Google Scholar] [CrossRef]
- Hatibu, N.; Mutabazi, K.; Senkondo, E.M.; Msangi, A.S.K. Economics of rainwater harvesting for crop enterprises in semi-arid areas of East Africa. Agric. Water Manag. 2006, 80, 74–86. [Google Scholar] [CrossRef]
- Zhao, L.; Hou, R.; Wu, F. Rainwater harvesting capacity of soils subjected to reservoir tillage during rainfall on the Loess Plateau of China. Agric. Water Manag. 2019, 217, 193–200. [Google Scholar] [CrossRef]
- Tolossa, T.T.; Abebe, F.B.; Girma, A.A. Rainwater harvesting technology practices and implication of climate change characteristics in Eastern Ethiopia. Cogent Food Agric. 2020, 6, 1724354. [Google Scholar] [CrossRef]
- Liersch, S.; Fournet, S.; Koch, H.; Djibo, A.G.; Reinhardt, J.; Kortlandt, J.; Van Weert, F.; Seidou, O.; Klop, E.; Baker, C.; et al. Water resources planning in the Upper Niger River basin: Are there gaps between water demand and supply? J. Hydrol. Reg. Stud. 2019, 21, 176–194. [Google Scholar] [CrossRef]
- Ahmed, S.; Jesson, M.; Sharifi, S. Selection frameworks for potential rainwater harvesting sites in arid and semi-arid regions: A systematic literature review. Water 2023, 15, 2782. [Google Scholar] [CrossRef]
- Bera, A.; Mukhopadhyay, B.P. Identification of suitable sites for surface rainwater harvesting in the drought-prone Kumari River Basin, India in the context of irrigation water management. J. Hydrol. 2023, 621, 129655. [Google Scholar] [CrossRef]
- Owusu, S.; Asante, R. Rainwater harvesting and primary uses among rural communities in Ghana. J. Water Sanit. Hyg. Dev. 2020, 10, 502–511. [Google Scholar] [CrossRef]
- Raimondi, A.; Quinn, R.; Abhijith, G.R.; Becciu, G.; Ostfeld, A. Rainwater harvesting and treatment: State of the art and perspectives. Water 2023, 15, 1518. [Google Scholar] [CrossRef]
- Ramakrishnan, D.; Durga Rao, K.H.V.; Tiwari, K.C. Delineation of potential sites for water harvesting structures through remote sensing and GIS techniques: A case study of Kali watershed, Gujarat, India. Geocarto Int. 2008, 23, 95–108. [Google Scholar] [CrossRef]
- Araya, A.; Stroosnijder, L. Assessing drought risk and irrigation need in northern Ethiopia. Agric. For. Meteorol. 2011, 151, 425–436. [Google Scholar] [CrossRef]
- Nyamwanza, A.M.; Kujinga, K.K. Climate change, sustainable water management and institutional adaptation in rural sub-Saharan Africa. Environ. Dev. Sustain. 2017, 19, 693–706. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Alazba, A.A.; Adamowski, J.; El-Gindy, A.M. GIS methods for sustainable stormwater harvesting and storage using remote sensing for land cover data-location assessment. Environ. Monit. Assess. 2015, 187, 598. [Google Scholar] [CrossRef]
- Jha, M.K.; Chowdary, V.M.; Kulkarni, Y.; Mal, B.C. Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis. Resour. Conserv. Recycl. 2014, 83, 96–111. [Google Scholar] [CrossRef]
- Desta, S.; Block, P. Application of multi-criteria analysis in prioritizing rainwater harvesting technologies for development interventions: A case study in the Upper Blue Nile Basin, Ethiopia. Agric. Water Manag. 2013, 123, 45–54. [Google Scholar] [CrossRef]
- Modak, S.; Das, D. Delineation of Suitable Zone for Rainwater Harvesting in Upper Catchment of Kumari River Basin, West Bengal and Jharkhand, India: Using AHP and Geospatial Techniques. Paideuma 2022, 14, 20–43. [Google Scholar]
- O’Donovan, J.; Thompson, A.; Stiles, C.; Opintan, J.A.; Kabali, K.; Willis, I.; Mutreja, A. Participatory approaches, local stakeholders, and cultural relevance facilitate an impactful community-based project in Uganda. Health Promot. Int. 2020, 35, 1353–1368. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, S.M.; Anbazhagan, S. Criteria and techniques of detecting site-specific mechanisms for artificial recharge case study from Ayyar basin, India. J.-Geol. Soc. India 1997, 50, 449–456. [Google Scholar]
- Ngangom, B.; Das, A.; Lal, R.; Idapuganti, R.G.; Layek, J.; Basavaraj, S.; Babu, S.; Yadav, G.S.; Ghosh, P.K. Double mulching improves soil properties and productivity of maize-based cropping systems in the eastern Indian Himalayas. Int. Soil Water Conserv. Res. 2020, 8, 308–320. [Google Scholar] [CrossRef]
- Shadeed, S. Developing a GIS-based suitability map for rainwater harvesting in the West Bank, Palestine. In Proceedings of the International Conference on Environmental Education for Sustainable Development: Plugging the Hole, Birzeit, Palestine, 16–17 November 2011; Birzeit University: Birzeit, Palestine, 2011; p. 13. [Google Scholar]
- Rejani, R.; Rao, K.V.; Srinivasa Rao, C.H.; Osman, M.; Sammi Reddy, K.; George, B.; Pratyusha Kranthi, G.S.; Chary, G.R.; Swamy, M.V.; Rao, P.J. Identification of potential rainwater-harvesting sites for the sustainable management of a semi-arid watershed. Irrig. Drain. 2017, 66, 227–237. [Google Scholar] [CrossRef]
- Pauw, E.; Oweis, T.; Youssef, J. Integrating Expert Knowledge in GIS to Locate Biophysical Potential for Water Harvesting: Methodology and a Case Study for Syria. Aleppo, Syrian Arab Republic: International Center for Agricultural Research in the Dry Areas (ICARDA). 2008. Available online: https://hdl.handle.net/20.500.11766/8855 (accessed on 10 May 2024).
- Adham, A.; Riksen, M.; Ouessar, M.; Ritsema, C.J. A Methodology to assess and evaluate rainwater harvesting techniques in (Semi-) arid regions. Water 2016, 8, 198. [Google Scholar] [CrossRef]
- Ministry of Agriculture (MoA). Agro-Ecological Zone of Ethiopia, Natural Resources Management, and Regulatory Department with the support of the German Agency for Technical Cooperation (GTZ); Ministry of Agriculture: Addis Ababa, Ethiopia, 1998.
- Bogale, G.A.; Erena, Z.B. Drought vulnerability and impacts of climate change on livestock production and productivity in Different Agro-Ecological Zones of Ethiopia. J. Appl. Anim. Res. 2022, 50, 471–489. [Google Scholar] [CrossRef]
- NASA. ASTER Digital Elevation Model AST14DEM Relative. Available online: https://asterweb.jpl.nasa.gov/content/03_data/01_Data_Products/release_DEM_relative.htm (accessed on 10 May 2024).
- Das, S.; Patel, P.P.; Sengupta, S. Evaluation of different digital elevation models for analyzing drainage morphometric parameters in mountainous terrain: A case study of the Supin–Upper Tons Basin, Indian Himalayas. SpringerPlus 2016, 5, 1544. [Google Scholar] [CrossRef]
- RCMRD Geo-Portal. Ethiopia Sentinel2 Land Use Land Cover 2016-GeoNode. Available online: https://opendata.rcmrd.org/datasets/rcmrd::ethiopia-sentinel2-lulc2016/about (accessed on 10 May 2024).
- Belete, E.; Ayalew, A.; Ahmed, S. Associations of biophysical factors with Faba Bean Root Rot (Fusarium solani) epidemics in the Northeastern Highlands of Ethiopia. Crop Prot. 2013, 52, 39–46. [Google Scholar] [CrossRef]
- Assefa, W.W.; Abebe, W.B. GIS modeling of potentially suitable sites for aquaculture development in the Lake Tana Basin, Northwest Ethiopia. Agric. Food Secur. 2018, 7, 72. [Google Scholar] [CrossRef]
- Wable, P.S.; Jha, M.K.; Chowdary, V.M.; Mahapatra, S. GIS-based multi-criteria decision analysis for identifying rainwater harvesting structures sites in a semiarid river basin. In Impacts of Urbanization on Hydrological Systems in India; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–23. [Google Scholar] [CrossRef]
- Islam, M.R.; Aziz, M.T.; Alauddin, M.; Kader, Z.; Islam, M.R. Site suitability assessment for solar power plants in Bangladesh: A GIS-based Analytical Hierarchy Process (AHP) and Multi-Criteria Decision Analysis (MCDA) approach. Renew. Energy 2024, 220, 119595. [Google Scholar] [CrossRef]
- Hameed, H. Water Harvesting in Erbil Governorate, Kurdistan Region, Iraq: Detection of Suitable Sites Using Geographic Information System and Remote Sensing. Master’s Thesis, Lund University, Lund, Sweden, 2013. Student Thesis Series INES. [Google Scholar]
- Islam, M.R.; Ahmad, M.R.; Alam, M.N.; Marma, M.S.; Gafur, A. Micro-watershed delineation and potential site selection for runoff water harvesting using remote sensing and GIS in a Hilly Area of Bangladesh. Am. J. Water Resour. 2020, 8, 134–144. [Google Scholar]
- Mahmoud, S.H.; Alazba, A.A. Integrated Remote sensing and GIS-based approach for deciphering groundwater potential zones in the Central Region of Saudi Arabia. Environ. Earth Sci. 2016, 75, 344. [Google Scholar] [CrossRef]
- Food and Agricultural Organization (FAO). Water Harvesting. In A Manual for the Design and Construction of Water Harvesting Schemes for Plant Production; FAO: Rome, Italy, 1991. [Google Scholar]
- Mugo, G.M.; Odera, P.A. Site selection for rainwater harvesting structures in Kiambu County-Kenya. Egypt. J. Remote Sens. Space Sci. 2019, 22, 155–164. [Google Scholar] [CrossRef]
- Rajasekhar, M.; Gadhiraju, S.R.; Kadam, A.; Bhagat, V. Identification of groundwater recharge-based potential rainwater harvesting sites for sustainable development of a semiarid region of Southern India using geospatial, AHP, and SCS-CN approaches. Arab. J. Geosci. 2020, 13, 24. [Google Scholar] [CrossRef]
- Endalkachew, Y.S.; Ejegu, M.A.; Tolossa, A.T.; Teka, A.H.; Andualem, T.G.; Tegegne, M.A.; Walle, W.M.; Shibeshie, S.E.; Dirar, T.M. Geospatial and AHP approach rainwater harvesting site identification in drought-prone areas, South Gonder Zone, Northwest Ethiopia. J. Indian Soc. Remote Sens. 2022, 50, 1321–1331. [Google Scholar] [CrossRef]
- Yang, R.; Xing, B. A comparison of the performance of different interpolation methods in replicating rainfall magnitudes under different climatic conditions in Chongqing Province (China). Atmosphere 2021, 12, 1318. [Google Scholar] [CrossRef]
- Adham, A.; Sayl, K.N.; Abed, R.; Abdeladhim, M.A.; Wesseling, J.G.; Riksen, M.; Fleskens, L.; Karim, U.; Ritsema, C.J. A GIS-based approach for identifying potential sites for harvesting rainwater in the western desert of Iraq. Int. Soil Water Conserv. Res. 2018, 6, 297–304. [Google Scholar] [CrossRef]
- Chowdhury, M.; Paul, P.K. Identification of suitable sites for rainwater harvesting using fuzzy AHP and fuzzy gamma operator: A case study. Arab. J. Geosci. 2021, 14, 585. [Google Scholar] [CrossRef]
- Soil Grids 250m v2.0 API. Available online: https://gee-community-catalog.org/projects/isric/ (accessed on 9 March 2023).
- Al-Ali, M. Soil Water Conservation and Water Balance Model for Micro-Catchment Water Harvesting System. Doctoral Thesis, Loughborough University, Loughborough, UK, 2012. Available online: https://hdl.handle.net/2134/10941 (accessed on 16 November 2012).
- Ibrahim Faqe, G.R.; Rasul, A.; Hamid, A.A.; Ali, Z.F.; Dewana, A.A. Suitable site selection for rainwater harvesting and storage case Study Using Dohuk Governorate. Water 2019, 11, 864. [Google Scholar] [CrossRef]
- Rana, V.K.; Suryanarayana, T.M.V. GIS-Based multi-criteria decision-making method to identify potential runoff storage zones within the watershed. Ann. GIS 2020, 26, 149–168. [Google Scholar] [CrossRef]
- Camera, C.B.; Zomeni, Z.; Noller, J.S.; Zissimos, A.M.; Christoforou, I.C.; Bruggeman, A. A high-resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization. Geoderma 2017, 285, 35–49. [Google Scholar] [CrossRef]
- Al Marsumi, K.J.; Al Shamma, A.M. Selection of suitable sites for water harvesting structures in a flood-prone area using remote sensing and GIS–case study. J. Environ. Earth Sci. 2017, 7, 91–100. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Y.; Liu, H.; Gao, H. In-Situ water level measurement using a NIR-imaging video camera. Flow Meas. Instrum. 2019, 67, 95–106. [Google Scholar] [CrossRef]
- US Department of Agriculture, Soil Conservation Service (USDA-SCS). National Engineering Handbook; USDA: Washington, DC, USA, 1975; Section 4.
- Syarifuddin, M.; Oktaviantoro, D. A GIS-based approach to determine the priority area for rainwater harvest in Kupang. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: 2024; Volume 1311, Issue 1, p. 012032. Available online: https://iopscience.iop.org/article/10.1088/1755-1315/1311/1/012032/meta (accessed on 20 April 2024).
- Ashraf, M.U.; Masood, M.; Iqbal, M.; Ahsan, M.F.; Mustafa, A.U. Ascertainment of the most suitable water harvesting sites in a data-scarce region via an integrated PROMETHEE-II–AHP method in GIS environment. Water Pract. Technol. 2024, 19, 796–811. [Google Scholar] [CrossRef]
- Shadmehri, A.; Ghasemi, E.; Ghassemi, A.; Cheshomi, A.; Alaghmand, S. A multi-criteria decision analysis approach towards efficient rainwater harvesting. J. Hydrol. 2020, 582, 124501. [Google Scholar] [CrossRef]
- Alaghmand, S.; Beecham, S.; Hassanli, A. Impacts of vegetation cover on surface-groundwater flows and solute interactions in a semi-arid saline floodplain: A case study of the Lower Murray River, Australia. Environ. Process. 2014, 1, 59–71. [Google Scholar] [CrossRef]
- Al-Ghobari, H.; Dewidar, A.Z. Integrating GIS-Based MCDA Techniques and the SCS-CN method for identifying potential zones for rainwater harvesting in a semi-arid area. Water 2021, 13, 704. [Google Scholar] [CrossRef]
- Gebremedhin, A.Y.; Getahun, Y.S.; Moges, A.S.; Tesfay, F. Identification of suitable rainwater harvesting sites using geospatial techniques with AHP in Chacha Watershed, Jemma Sub-Basin Upper Blue Nile, Ethiopia. Air Soil Water Res. 2023, 16. [Google Scholar] [CrossRef]
- Aziz, S.F.; Abdulrahman, K.Z.; Ali, S.S.; Karakouzian, M. Water harvesting in the Garmian region (Kurdistan, Iraq) Using GIS and remote sensing. Water 2023, 15, 507. [Google Scholar] [CrossRef]
- Gavhane, K.P.; Mishra, A.K.; Sarangi, A.; Singh, D.K.; Sudhishri, S. Targeting of rainwater harvesting structures using geospatial tools and Analytical Hierarchy Process (AHP) in the semi-arid region of Rajasthan (India). Environ. Sci. Pollut. Res. 2023, 30, 61682–61709. [Google Scholar] [CrossRef]
- Wijesinghe, D.C.; Mishra, P.K.; Withanage, N.C.; Abdelrahman, K.; Mishra, V.; Tripathi, S.; Fnais, M.S. Application of GIS, Multi-Criteria Decision-Making Techniques for Mapping Groundwater Potential Zones: A Case Study of Thalawa Division, Sri Lanka. Water 2023, 15, 3462. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process-what it is and how it is used. Math Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Fagbohun, B.J. Integrating GIS and multi-influencing factor technique for delineation of potential groundwater recharge zones in parts of Ilesha Schist Belt, Southwestern Nigeria. Environ. Earth Sci. 2018, 77, 69. [Google Scholar] [CrossRef]
- Saha, A.; Patil, M.; Karwariya, S.; Pingale, S.M.; Azmi, S.; Goyal, V.C.; Rathore, D.S. Identification of potential sites for water harvesting structures using geospatial techniques and multi-criteria decision analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 329–334. [Google Scholar] [CrossRef]
- Bojer, A.K.; Woldesilassie, F.F.; Debelee, T.G.; Kebede, S.R.; Esubalew, S.Z. AHP and machine learning-based military strategic site selection: A case study of Adea District East Shewa Zone, Ethiopia. J. Sens. 2023, 2023, 6651486. [Google Scholar] [CrossRef]
- Preeti, P.; Shendryk, Y.; Rahman, A. Identification of suitable sites using gis for rainwater harvesting structures to meet irrigation demand. Water 2022, 14, 3480. [Google Scholar] [CrossRef]
- Golub, G.H.; Van Loan, C.F. Matrix Computations; JHU Press: St, Baltimore, MD, USA, 2013. [Google Scholar]
- Belton, V.; Stewart, T. Multiple Criteria Decision Analysis: An Integrated Approach; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Ramanathan, R. Data envelopment analysis for weight derivation and aggregation in the analytic hierarchy process. Comput. Oper. Res. 2006, 33, 1289–1307. [Google Scholar] [CrossRef]
- Jozaghi, A.; Alizadeh, B.; Hatami, M.; Flood, I.; Khorrami, M.; Khodaei, N.; Ghasemi Tousi, E. A comparative study of the AHP and TOPSIS techniques for dam site selection using GIS: A case study of Sistan and Baluchestan Province, Iran. Geosciences 2018, 8, 494. [Google Scholar] [CrossRef]
- Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Montibeller, G.; Patel, P.; del Rio Vilas, V.J. A critical analysis of multi-criteria models for the prioritization of health threats. Eur. J. Oper. Res. 2020, 281, 87–99. [Google Scholar] [CrossRef]
- Drobne, S.; Lisec, A. Multi-attribute decision analysis in GIS: Weighted linear combination and ordered weighted averaging. Informatica 2009, 33, 4. [Google Scholar]
- Singh, V.; Kumar, V.; Singh, V.B. A hybrid novel fuzzy AHP-Topsis technique for selecting parameter-influencing testing in software development. Decis. Anal. J. 2023, 6, 100159. [Google Scholar] [CrossRef]
- Taye, M.; Simane, B.; Zaitchik, B.F.; Selassie, Y.G.; Setegn, S. Rainfall variability across the agro-climatic zones of a tropical highland: The case of the Jema watershed, northwestern Ethiopia. Environments 2019, 6, 118. [Google Scholar] [CrossRef]
- Yona, Y.; Matewos, T.; Sime, G. Analysis of rainfall and temperature variabilities in Sidama regional state, Ethiopia. Heliyon 2024, 10, e28184. [Google Scholar] [CrossRef]
- Karakuş, C.B.; Yıldız, S. GIS-multi criteria decision analysis-based land suitability assessment for dam site selection. Int. J. Environ. Sci. Technol. 2022, 19, 12561–12580. [Google Scholar] [CrossRef]
- Gashaw, D.Y.; Suryabhagavan, K.V.; Nedaw, D.; Gummadi, S. Rainwater harvesting in Modjo Watershed, Upper Awash River Basin, Ethiopia through remote sensing and Fuzzy AHP. Geocarto Int. 2022, 37, 14785–14810. [Google Scholar] [CrossRef]
- Sarkar, S.; Biswas, S. Application of integrated AHP-Entropy model in suitable site selection for rainwater harvesting structures: A case study of Upper Kangsabati Basin, India. Arab. J. Geosci. 2022, 15, 1684. [Google Scholar] [CrossRef]
- De Winnaar, G.; Jewitt, G.P.W.; Horan, M. A GIS-Based approach for identifying potential runoff harvesting sites in the Thukela River Basin, South Africa. Phys. Chem. Earth Parts A/B/C 2007, 32, 1058–1067. [Google Scholar] [CrossRef]
- Hashim, H.Q.; Sayl, K.N. Detection of Suitable Sites for Rainwater Harvesting Planning in an Arid Region Using Geographic Information System. Appl. Geomat. 2021, 13, 235–248. [Google Scholar] [CrossRef]
- Kapli, F.W.A.; Azis, F.A.; Suhaimi, H.; Shamsuddin, N.; Abas, P.E. Feasibility studies of rainwater harvesting system for ablution purposes. Water 2023, 15, 1686. [Google Scholar] [CrossRef]
- Rahman, A.; Keane, J.; Imteaz, M.A. Rainwater harvesting in Greater Sydney: Water savings, reliability and economic benefits. Resour. Conserv. Recycl. 2012, 61, 16–21. [Google Scholar] [CrossRef]
- Abas, P.E.; Mahlia, T.M.I. Techno-economic and sensitivity analysis of rainwater harvesting system as alternative water source. Sustainability 2019, 11, 2365. [Google Scholar] [CrossRef]
- Staddon, C.; Rogers, J.; Warriner, C.; Ward, S.; Powell, W. Why Doesn’t every family practice rainwater harvest? Factors that affect the decision to adopt rainwater harvesting as a household water security strategy in Central Uganda. Water Int. 2018, 43, 1114–1135. [Google Scholar] [CrossRef]
- Al-Batsh, N.; Al-Khatib, I.A.; Ghannam, S.; Anayah, F.; Jodeh, S.; Hanbali, G.; van der Valk, M. Assessment of rainwater harvesting systems in poor rural communities: A case study from Yatta Area, Palestine. Water 2019, 11, 585. [Google Scholar] [CrossRef]
- Tekalign, S. Rainfall trends and variability in selected areas of Ethiopian Somali Regional State, Southeastern Ethiopia. Ethiop. J. Environ. Stud. Manag. 2011, 10, 162–175. [Google Scholar] [CrossRef]
- Aklan, M.; Al-Komaim, M.; de Fraiture, C. Site suitability analysis of indigenous rainwater harvesting systems in arid and data-poor environments: A case study of Sana’a Basin, Yemen. Environ. Dev. Sustain. 2023, 25, 8319–8342. [Google Scholar] [CrossRef]
- Ahmad, B.A.; Salar, S.G.; Shareef, A.J. An integrated new approach for optimizing rainwater harvesting system with dams site selection in the Dewana Watershed, Kurdistan Region, Iraq. Heliyon 2024, 10, e27273. [Google Scholar] [CrossRef]
- Al-Hasani, B.; Abdellatif, M.; Carnacina, I.; Harris, C.; Al-Quraishi, A.; Maaroof, B.F.; Zubaidi, S.L. Integrated geospatial approach for adaptive rainwater harvesting site selection under the impact of climate change. Stoch. Environ. Res. Risk Assess. 2024, 38, 1009–1033. [Google Scholar] [CrossRef]
- Bahrani, S.; Ebadi, T.; Ehsani, H.; Yousefi, H.; Maknoon, R. Modeling landfill site selection by multi-criteria decision making and fuzzy functions in GIS, Case Study: Shabestar, Iran. Environ. Earth Sci. 2016, 75, 337. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Multi-Criteria Decision-Making (MCDM) methods and concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
- Tahvili, Z.; Khosravi, H.; Malekian, A.; Khalighi Sigaroodi, S.; Pishyar, S.; Singh, V.P.; Ghodsi, M. Locating Suitable Sites for Rainwater Harvesting (RWH) in the Central Arid Region of Iran. Sustain. Water Resour. Manag. 2021, 7, 1–11. [Google Scholar] [CrossRef]
- Maina, C.W.; Raude, J.M. Assessing land suitability for rainwater harvesting using geospatial techniques: A case study of Njoro Catchment, Kenya. Appl. Environ. Soil Sci. 2016, 2016, 4676435. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, Q.; Wang, Y.; Jv, X.; Dzakpasu, M.; Wang, X.C. Evolution of water quality in rainwater harvesting systems during long-term storage in non-rainy seasons. Sci. Total Environ. 2024, 912, 168784. [Google Scholar] [CrossRef]
Soil Group | Description | Texture Class |
---|---|---|
A | Lowest overflow possibilities because of high penetration rate | Sand and loamy sand |
B | Moderately low overflow possibilities and moderate penetration rate | Sandy loam and loam |
C | Moderately high overflow possibilities due to slow infiltration rate | Silt loam, silt, and sandy clay loam |
D | Highest overflow possibilities with very low infiltration rate | Clay loam, silt clay, sandy clay, and clay |
Relative Importance | Intensities | Description |
---|---|---|
1 | Equally important | Both activities contribute equally to the objective. |
3 | Moderately important | One activity is slightly preferred over another. |
5 | Strongly important | One activity is significantly preferred over another. |
7 | Very strongly important | One activity is exceptionally preferred, dominating in practice. |
9 | Extremely important | The evidence supporting one activity surpasses all others with the highest level of confirmation. |
2, 4, 6, 8 | Values between adjacent judgments | Additional subdivision or compromise when required. |
Order | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.52 | 0.89 | 1.11 | 1.25 | 1.35 | 1.4 | 1.45 | 1.49 |
Drainage Density | Land Use/Land Cover | Soil Texture | Slope | MAAR | |
---|---|---|---|---|---|
Drainage density | 1 | 7 | 5 | 3 | 1 |
Land use/land cover | 1/7 | 1 | 1/3 | 1/5 | 1/7 |
Soil texture | 1/5 | 3 | 1 | 1/2 | 1/5 |
Slope | 1/3 | 5 | 3 | 1 | 1/3 |
Monthly average annual rainfall (MAAR) | 1 | 7 | 5 | 3 | 1 |
Criteria | Drainage Density | Land Use/Land Cover | Soil Texture | Slope | MAAR | Average (Weight) |
---|---|---|---|---|---|---|
Drainage Density | 0.3737 | 0.7778 | 0.625 | 0.6429 | 0.3737 | 0.5586 |
Land Use/Land Cover | 0.0054 | 0.1111 | 0.0417 | 0.1071 | 0.0054 | 0.0541 |
Soil Texture | 0.0747 | 0.3333 | 0.125 | 0.2143 | 0.0747 | 0.1644 |
Slope | 0.1246 | 0.5556 | 0.375 | 0.4286 | 0.1246 | 0.3217 |
MAAR | 0.3737 | 0.7778 | 0.625 | 0.6429 | 0.3737 | 0.5586 |
No. | Criteria | Weight | % of Influences |
---|---|---|---|
1 | Drainage density | 0.3442 | 34.42 |
2 | Land use/land cover | 0.0368 | 3.68 |
3 | Soil texture | 0.0992 | 9.92 |
4 | Slope | 0.1755 | 17.55 |
5 | MAAR | 0.3442 | 34.42 |
SUM | 1 | 100 |
Factor | Slope Range | Suitability Level | Coverage (%) | Area (Km2) |
---|---|---|---|---|
Slope | >15 | Not suitable | 0.41 | 1328.22 |
10−15 | Low suitability | 1.06 | 3433.92 | |
5−10 | Medium suitability | 4.75 | 15,387.86 | |
<5 | High suitability | 93.78 | 303,805 | |
Total | 100 | 323,955 |
Factor | Type | Suitability Class | Coverage (%) | Coverage (Km2) |
---|---|---|---|---|
Soil type | Clay | High suitability | 10.8 | 34,987 |
Clay loam | Medium suitability | 0.97 | 3142 | |
Loam and loamy sand | Low suitability | 29.65 | 96,053 | |
Sandy loam and sand | Not suitable | 58.58 | 189,773 | |
Total | 100 | 323,955 |
Factor | Type | Suitability Class | Coverage (%) | Coverage (Km2) |
---|---|---|---|---|
Land use/cover | Shrubland | High suitability | 44.12 | 142,929 |
Bare land | Medium suitability | 2.1 | 6803 | |
Grassland and woodland | Low suitability | 37.36 | 121,030 | |
Cropland, forest, and water body | Not suitable | 16.42 | 53,193 | |
Total | 100 | 323,955 |
Factor | Interval | Suitability Class | Coverage (%) | Coverage (km2) |
---|---|---|---|---|
Drainage density | 0–2 | Not suitable | 46.21 | 149,700 |
3–5 | Low suitability | 39 | 126,342 | |
5–7 | Medium suitability | 12.97 | 42,017 | |
8–13 | High suitability | 1.81 | 5864 | |
Total | 100 | 323,923 |
Importance Scale | 7 | 5 | 3 | 1 |
---|---|---|---|---|
Rainfall | 501–619 | 451–500 | 401–450 | 294–400 |
Slope | <5 | 5–10 | 10–15 | >15 |
Soil texture | Clay | Clay loam | Loam and loamy sand | Sandy loamy and sand |
Land use/cover | Shrub land | Bare land | Grassland and woodland | Cropland, forest, and water body |
Drainage density | 8–13 | 5–7 | 3–4 | 0–2 |
Suitability Level | Coverage (%) | Coverage (km2) |
---|---|---|
Not suitable | 12.66 | 41,000 |
Low suitability | 74.75 | 242,170 |
Medium suitability | 11.58 | 37,498 |
High suitability | 1% | 3288 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojer, A.K.; Bekalo, D.J.; Debelee, T.G.; Nadarajah, S.; Al-Quraishi, A.M.F. Rainwater Harvesting Site Selection for Drought-Prone Areas in Somali and Borena Zones, Oromia Regional State, Ethiopia: A Geospatial and Multi-Criteria Decision Analysis. Water 2024, 16, 1789. https://doi.org/10.3390/w16131789
Bojer AK, Bekalo DJ, Debelee TG, Nadarajah S, Al-Quraishi AMF. Rainwater Harvesting Site Selection for Drought-Prone Areas in Somali and Borena Zones, Oromia Regional State, Ethiopia: A Geospatial and Multi-Criteria Decision Analysis. Water. 2024; 16(13):1789. https://doi.org/10.3390/w16131789
Chicago/Turabian StyleBojer, Amanuel Kumsa, Desta Jula Bekalo, Taye Girma Debelee, Saralees Nadarajah, and Ayad M. Fadhil Al-Quraishi. 2024. "Rainwater Harvesting Site Selection for Drought-Prone Areas in Somali and Borena Zones, Oromia Regional State, Ethiopia: A Geospatial and Multi-Criteria Decision Analysis" Water 16, no. 13: 1789. https://doi.org/10.3390/w16131789
APA StyleBojer, A. K., Bekalo, D. J., Debelee, T. G., Nadarajah, S., & Al-Quraishi, A. M. F. (2024). Rainwater Harvesting Site Selection for Drought-Prone Areas in Somali and Borena Zones, Oromia Regional State, Ethiopia: A Geospatial and Multi-Criteria Decision Analysis. Water, 16(13), 1789. https://doi.org/10.3390/w16131789