Innovative Adaptive Multiscale 3D Simulation Platform for the Yellow River Using Sphere Geodesic Octree Grid Techniques
Abstract
:1. Introduction
2. Technical Foundations of True 3D Yellow River Simulation Platform Construction
2.1. SGOG Subdivision Theory
2.2. Study Area and Source Data
2.3. Technical Approach for Simulation Platform Construction
3. Construction Process of Adaptive Multiscale True 3D Simulation Platform
3.1. Establishment of Single Fine-Scale Grid Simulation Platform
3.2. Establishment of Adaptive Multiscale Simulation Platform Based on Geomorphic Zoning
3.3. Establishment of Top-Down Adaptive Multiscale Simulation Platform
3.4. Establishment of Bottom-Up Adaptive Multiscale Simulation Platform
4. Comprehensive Evaluation of Hybrid Multiscale Grid Models in the Yellow River Basin
4.1. Selection of Evaluation Indicators
4.2. Definition of Quality Indices
4.3. Computational Results and Evaluation Analysis
4.3.1. Terrain Feature Representation
4.3.2. Computational Efficiency
4.3.3. Quality Indices
5. Conclusions
- (1)
- The establishment of a single-scale fine-grid model can reflect terrain details more accurately, approximate actual surface conditions, and provide rich terrain information. However, it requires large amounts of data and high computational power, making it suitable for the precise simulation of surface processes and supercomputing environments.
- (2)
- Adaptive multiscale modeling based on characteristic thresholds achieves an organic balance between terrain feature representation and computational efficiency while maintaining the natural continuity of the terrain. Under the same elevation difference threshold, the bottom-up (finer-to-coarser) approach has certain advantages in terms of terrain feature representation, whereas the top-down (coarser-to-finer) approach excels in computational efficiency. Both approaches can achieve desirable results. These methods provide a certain level of terrain accuracy with relatively relaxed requirements for computational environments, making them widely applicable.
- (3)
- Geomorphic zoning-based multiscale modeling incorporates prior knowledge of landforms into the modeling process, resulting in stronger targeting. It achieves maximum terrain fidelity in key areas at minimum spatiotemporal cost and exhibits the highest computational efficiency. However, it needs hard boundaries in prior landform zoning, which disrupts the natural continuity of terrain distribution to some extent. Fine-grained landform zoning is required to achieve highly desirable results, which inevitably reduces computational efficiency. This approach integrates human intelligence and incorporates an “attention” mechanism for key areas and issues. This is a crucial technical means of overcoming the bottlenecks in Earth system modeling and geographic process simulation, satisfying the special requirements of complex geographic computations.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zuo, Q.T.; Qiu, X.; Ma, J.X.; Zhang, Z.Z. Evolution of flood control thought and modern flood control strategy in the Yellow-River Basin. J. Water Resour. Water Eng. 2023, 34, 1–9. [Google Scholar]
- Xu, X.Y.; Yang, Z.F. General Discussion on Ecological Environment Water Demand. China Water Resour. 2003, 3, 20–23+5. [Google Scholar]
- Zuo, Q.T.; Qin, X.; Ma, J.X. Framework Design and Development Layout of Yellow River Simulator Construction. Yellow River 2023, 45, 18–23. [Google Scholar]
- Zhang, W. Correctly understand and fully engage with the “River Strategy”. Water Resour. Dev. Res. 2023, 23, 1–3. [Google Scholar]
- Xia, J.; Zhan, C.S.; Zeng, S.D.; Zou, L.; She, D.X.; Zuo, Q.T. Theoretical method and practical exploration of Yangtze River Simulator construction. J. Hydraul. Eng. 2022, 53, 505–514. [Google Scholar]
- Zhu, A.X.; Zhu, L.J.; Shi, Y.X.; Qin, C.Z.; Liu, J.Z. Integrated watershed modeling and scenario analysis: A new paradigm for integrated study of physical geography? Prog. Geogr. 2019, 38, 1111–1122. [Google Scholar] [CrossRef]
- Wang, H.J.; Zhu, J.; Pu, Y.F. The earth system simulation. SCIENTIA SINICA Phys. Mech. Astron. 2014, 44, 1116–1126. [Google Scholar]
- Lu, C.K. Earth system simulation large scientific device to diagnose the Earth. Invent. Innov. 2021, 3, 57. [Google Scholar]
- Zheng, X.Q. On the Geographic System Simulation Basic Model. Chin. J. Nat. 2012, 34, 143–149. [Google Scholar]
- Zhao, X.S.; Ben, J.; Sun, W.B.; Tong, X.C. Overview of the Research Progress in the Earth Tessellation Grid. Acta Geod. Cartogr. Sin. 2016, 45, 1–14. [Google Scholar]
- Zhang, Y.S.; Ben, J.; Tong, X.C. Theory, Algorithm and Application of Spherical Discrete Grid of Earth Spatial Information, 1st ed.; Science Press: Beijing, China, 2007; pp. 15–20. [Google Scholar]
- Wu, L.X.; Yu, J.Q. Global 3D-Grid based on sphere degenerated octree and its distortion features. Geogr. Geo-Inf. Sci. 2009, 25, 1–4. [Google Scholar]
- Wang, J.X.; Lu, F.N.; Chen, J. Comparison of surface and solid discrete global grids. Sci. Surv. Map 2012, 37, 34–36. [Google Scholar]
- Wang, J.X.; Zheng, Y.S.; Li, Y.H.; Lu, F.N.; Liu, J.N. Building the Platform of Digital Earth with Sphere Split Bricks. Acta Geod. Cartogr. Sin. 2015, 44, 694. [Google Scholar]
- Cao, X.F. Research on Earth Sphere Shell Space Grid Theory and Algorithms. Ph.D. Thesis, Information Engineering University, Zhengzhou, China, 2012. [Google Scholar]
- Zhao, Z.P. Research on Model-oriented Spherical Rhombus Discrete Grids. Master’s Thesis, Nanjing Normal University, Nanjing, China, 2015. [Google Scholar]
- Liu, K. A Universal Data Model of Discrete Global Grid System Based on Fiber Bundle Theory. Master’s Thesis, Nanjing Normal University, Nanjing, China, 2019. [Google Scholar]
- Lin, B.X.; Zhou, L.C.; Xu, D.P.; Zhu, A.X.; Lu, G.N. A discrete global grid system for earth system modeling. Int. J. Geogr. Inf. Sci. 2018, 32, 711–737. [Google Scholar] [CrossRef]
- Hojati, M.; Robertson, C.; Roberts, S.; Chaudhuri, C. GIScience research challenges for realizing discrete global grid systems as a Digital Earth. Big Earth Data 2022, 6, 358–379. [Google Scholar] [CrossRef]
- Ben, J.; Li, Y.L.; Wang, R.; Du, L.Y. Algebraic encoding scheme for aperture 3 hexagonal discrete global grid system. Sci. Earth Sci. 2018, 48, 340–352. [Google Scholar] [CrossRef]
- Zhou, J.B.; Ben, J.; Wang, R.; Zheng, M.Y. Encoding and Operation for the Aperture-4 Hexagonal Discrete Global Grids on Uniform Tiles. J. Wuhan Univ. Inf. Sci. Ed. 2023, 48, 639–646. [Google Scholar]
- Benjamin, U.; Faramarz, S. Toward volume preserving spheroid degenerated-octree grid. Geoinformatica 2020, 24, 505–529. [Google Scholar]
- Liang, X.Y.; Ben, J.; Wang, R.; Liang, Q.S.; Huang, X.H.; Ding, J.J. Construction of rhombic triacontahedron discrete global grid systems. Int. J. Digit. Earth 2022, 15, 1760–1783. [Google Scholar] [CrossRef]
- Zhao, L.; Li, G.; Yao, X.; Ma, Y.; Cao, Q. An optimized hexagonal quadtree encoding and operation scheme for icosahedral hexagonal discrete global grid systems. Int. J. Digit. Earth 2022, 15, 975–1000. [Google Scholar] [CrossRef]
- Zhou, J.B.; Ding, J.J.; Ben, J.; Chen, Y.H.; Liang, Q.S. Multi-mode 3D extension methods for equal-area discrete global grid systems for geospatial data representation. J. Geod. Geoinf. Sci. 2024, 53, 173–188. [Google Scholar]
- Liang, Q.S.; Chen, Y.H.; Ben, J.; Zhou, J.B.; Ding, J.J.; Dai, J.C. Modelling and Storage Method for Hexagonal Remote Sensing Images in Rhombic Triacontahedron Discrete Global Grid System. J. Geo-Inf. Sci. 2023, 25, 2361–2373. [Google Scholar]
- Zhao, L.; Li, G.Q.; Yao, X.C.; Ma, X. Code Operation Scheme for the Icosahedral Hexagonal Discrete Global Grid System. J. Geoinf. Sci. 2023, 25, 239–251. [Google Scholar]
- Wang, Z.; Zhao, X.; Sun, W.; Luo, F.; Li, Y.; Duan, Y. Correlation Analysis and Reconstruction of the Geometric Evaluation Indicator System of the Discrete Global Grid. ISPRS Int. J. Geo-Inf. 2021, 10, 115. [Google Scholar] [CrossRef]
- Alexander, K.; Ivan, V.; Holger, V.; Evelyn, U. Area and shape distortions in open-source discrete global grid systems. Big Earth Data 2022, 6, 256–275. [Google Scholar]
- Wu, Y.T.; Wan, G.; Liu, L.; Mu, Y.; Wei, Z.J.; Wang, S. A Review of the Researth on Discrete Global Grid Systems in Digital Earth. In Proceedings of the IEEE International Information Technology and Artificial Intelligence (ITAC), Chongqing, China, 19 June 2022. [Google Scholar]
- Kazemi, M.; Wecker, L.; Samavati, F. Efficient Calculation of Distance Transform on Discrete Global Grid Systems. ISPRS Int. J. Geo-Inf. 2022, 11, 322. [Google Scholar] [CrossRef]
- Wang, J.X.; Shi, Y.; Qin, Z.L.; Cao, Z.N. A Three-Dimensional Buffer Analysis Method Based on the 3D Discrete Global Grid System. ISPRS Int. J. Geo-Inf. 2021, 10, 520. [Google Scholar] [CrossRef]
- Bousquin, J. Discrete Global Grid Systems as scalable geospatial frameworks for characterizing coastal environments. Environ. Model. Softw. 2021, 146, 105210. [Google Scholar] [CrossRef] [PubMed]
- Andrew, R.; Zoheir, S.; Mario, B. Geospatial Data Analysis for Global Maritime Risk Assessment Using the Discrete Global Grid System. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 16 July 2021. [Google Scholar]
- Mingke, L.; Heather, M.; Emmanuel, S. Multi-resolution topographic analysis in hexagonal Discrete Global Grid Systems. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 102985. [Google Scholar]
- Wang, J.X.; Qin, Z.L.; Zhao, G.C.; Li, B.X.; Gao, C.R. Scale Effect Analysis of Basin Topographic Features Based on Spherical Grid and DEM:Taking the Yangtze River as An Example. J. Basic Sci. Eng. 2022, 30, 1109–1120. [Google Scholar]
- Alborzi, H.; Samaet, H. Augmenting SAND with a spherical data model. In Proceedings of the First International Conference on Discrete Global Grids, Santa Barbara, CA, USA, 28 March 2000. [Google Scholar]
- Bartholdi, J.J.; Goldsman, P. Continuous indexing of hierarchical subdivisions of the globe. Int. J. Geogr. Inf. Sci. 2001, 15, 489–522. [Google Scholar] [CrossRef]
- Baumgarder, J.R.; Frederickson, P.O. Icosahedral discretization of the two- sphere. SIMA J. Numer. Anal. 1985, 22, 1107–1115. [Google Scholar] [CrossRef]
- Dutton, G. Geodesic Modelling of Planetary Relief. Cartographica 1984, 21, 188–207. [Google Scholar] [CrossRef]
- Dutton, G. A Hierarchical Coordinate System for Geoprocessing and Cartography; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Fekete, G. Rendering and Managing Spherical Data with Sphere Quadtrees. In Proceedings of the IEEE Conference on Visualization, San Francisco, CA, USA, 26 October 1990. [Google Scholar]
- Goodchild, M.F.; Yang, S. A Hierarchical Spatial Data Structure for Global Geographic Information Systems. Comput. Vis. Graph. Image Process. 1992, 54, 31–34. [Google Scholar] [CrossRef]
- Song, L.; Kimerling, A.J.; Sahr, K. Developing an equal area global grid by small circle subdivision. In Discrete Global Grids: A Web Book; Goodchild, M.F., Kimerling, A.J., Eds.; The National Center for Geographic Information and Analysis: Santa Barbara, CA, USA, 2002. [Google Scholar]
- White, D.; Kimerling, A.J.; Sahr, K.; Song, L. Comparing Area and Shape Distortion on Polyhedral-Based Recursive Partitions of the Sphere. Int. J. Geogr. Inf. Sci. 1998, 12, 805–827. [Google Scholar] [CrossRef]
- Sahr, K.; White, D.; Kimerling, A.J. Geodesic Discrete Global Grid Systems. Cartogr. Geogr. Inf. Sci. 2003, 30, 121–134. [Google Scholar] [CrossRef]
- White, D. Global Grids from Recursive Diamond Subdivisions of the Surface of an Octahedron or Icosahedron. Environ. Monit. Assess. 2000, 64, 93–103. [Google Scholar] [CrossRef]
- Bjørke, J.T.; Kindlmann, J.K.; Holt, M. A Global Grid Model Based on “Constant Area” Quadrilaterals. In Proceedings of the 9th Scandinavian Research Conference on Geographical Information Science, Espoo, Finland, 4–6 June 2003; pp. 239–250. [Google Scholar]
- Gibb, R.; Raichev, A.; Speth, M. The rHEALPix Discrete Global Grid System. 2016. Available online: https://datastore.landcareresearch.co.nz/dataset/rhealpix-discrete-global-grid-system (accessed on 17 July 2018).
- Heikes, R.; Randall, D.A. Numerical Integration of the Shallow-Water Equations on a Twisted Icosahedral Grid. Part II: A Detailed Description of the Grid and an Analysis of Numerical Accuracy. Mon. Weather Rev. 1995, 123, 1881–1887. [Google Scholar]
- Sadourny, R.; Arakawa, A.; Mintz, Y. Integration of the Nondivergent Barotropic Vorticity Equation with an Icosahedral-Hexagonal Grid for the Sphere. Mon. Weather Rev. 1968, 96, 392–399. [Google Scholar] [CrossRef]
- Thuburn, J. A PV-Based Shallow-Water Model on a Hexagonal Icosahedral Grid. Mon. Weather Rev. 1997, 125, 2328–2347. [Google Scholar] [CrossRef]
- Peterson, P. Close-Packed Uniformly Adjacent, Multi-resolution Overlapping Spatial Data Ordering. U.S. Patent US8018458B2, 13 September 2011. [Google Scholar]
- Vince, A.; Zheng, X. Arithmetic and Fourier Transform for the PYXIS Multi-Resolution Digital Earth Model. Int. J. Digit. Earth. 2009, 2, 59–79. [Google Scholar] [CrossRef]
- Murray, A.B.; Lazarus, E.; Ashton, A.; Baas, A.; Coco, G.; Coulthard, T.; Fonstad, M.; Haff, P.; McNamara, D.; Paola, C. Geomorphology, complexity, and the emerging science of the Earth’s surface. Geomorphology 2009, 103, 496–505. [Google Scholar] [CrossRef]
- Dech, S. The Earth surface. In Utilization of Space, 1st ed.; Feuerbacher, B., Stoewer, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 1, pp. 53–90. [Google Scholar]
- Tarolli, P.; Arrowsmith, J.R.; Vivoni, E.R. Understanding earth surface processes from remotely sensed digital terrain models. Geomorphology 2009, 113, 1–3. [Google Scholar] [CrossRef]
- Yue, T.X. Progress in earth surface modeling. J. Remote Sens. 2011, 15, 1105–1124. [Google Scholar]
Grid Type | Representative References | Advantages | Disadvantages | Application |
---|---|---|---|---|
Triangle | Alborzi and Semmet, 2000 [37]; Bartholdi, 2001 [38]; Baumgarder, 1985 [39]; Dutton, 1984 [40], 1999 [41]; Fekete and Treinish, 1990 [42]; Goodchild and Yang, 1992 [43]; Song, 2002 [44]; White, 1998 [45] | Can be combined into arbitrary polygons; completely cover spherical surfaces; easy for texture mapping; effectively fits curved surfaces; addresses convergence issues at poles; preservation of similarity, edge length, and area equality. | Non-uniformly adjacent units; not unique directions; do not align with traditional square conventions and output devices. | Modeling and visualization of large-scale geographic spatial data |
Quadrilateral | Sahr, 2003 [46]; White 2000 [47]; Bjǿrke, 2003 [48]; Gibb, 2016 [49] | Simpler geometric structures; consistent directional, radial symmetry, and translational congruence properties; can directly leverage many algorithms based on plane quadtrees; well-matched with traditional output devices. | Non-uniform adjacency; inability to cover the entire globe; inability to directly generate spherical grids; significant distortion or degeneration of units in high-latitude regions. | Storage and management of spatiotemporal big data |
Hexagon | Heikes, 1995 [50]; Sadourny, 1968 [51]; Sahr, 2003 [46]; Thuburn, 1997 [52]; Peterson, 2006 [53]; Vince, 2006 [54]; Jin Ben, 2018 [20] | The most regular structure, highest plane coverage and angular resolution; consistent topology; topological distance closely matches Euclidean linear distance; highest spatial sampling rate; | Cannot fully cover the spherical surface; faces challenges in encoding efficiency of grid cells and compatibility with constructing multi-resolution data models. | Certain advantages in dynamic modeling and Earth system model computations |
Labeling | A | B | C | D | E | F |
---|---|---|---|---|---|---|
Experiment | Single-scale 12th Layer | Terrain-based Partitioning Method | Top-down Threshold 50 m | Top-down Threshold 100 m | Top-down Threshold 150 m | Top-down Threshold 50–100–150 m |
Labeling | G | H | I | J | K | L |
Experiment | Top-down Threshold 150–100–50 m | Bottom-up Threshold 50 m | Bottom-up Threshold 100 m | Bottom-up Threshold 150 m | Bottom-up Threshold 50–100–150 m | Bottom-up Threshold 150–100–50 m |
Methods | Labeling | Terrain Roughness | Elevation Standard Deviation (m) | Average Elevation (m) | Elevation Variability Coefficient (%) | Terrain Relief (m) |
---|---|---|---|---|---|---|
Single-scale | A | 1.87 | 1309.86 | 2151.55 | 60.88 | 5758.05 |
Geomorphic Zoning | B | 1.71 | 1359.38 | 2114.33 | 64.29 | 5737.01 |
Top-down (from coarse to fine) | C | 1.72 | 1312.81 | 2174.71 | 60.37 | 5742.11 |
D | 1.79 | 1320.10 | 2228.97 | 59.22 | 5742.11 | |
E | 1.65 | 1332.22 | 2267.01 | 58.77 | 5742.11 | |
F | 1.74 | 1332.50 | 2259.69 | 58.97 | 5742.11 | |
G | 1.78 | 1311.71 | 2201.86 | 59.57 | 5742.11 | |
Bottom-up (from fine to coarse) | H | 1.85 | 1324.20 | 2255.05 | 58.72 | 5759.07 |
I | 1.81 | 1326.67 | 2337.15 | 56.76 | 5759.07 | |
J | 1.72 | 1332.44 | 2402.66 | 55.46 | 5759.07 | |
K | 1.84 | 1323.98 | 2273.36 | 58.24 | 5759.07 | |
L | 1.74 | 1333.11 | 2376.00 | 56.11 | 5759.07 |
Methods | Labeling | Number of Grid Vertices | Time Consumption (s) | File Storage Space Consumption (MB) | Runtime Memory Space Consumption (MB) |
---|---|---|---|---|---|
Single-scale | A | 91,327 | 2.95 | 50.5 | 1024.0 |
Geomorphic Zoning | B | 51,692 | 1.73 | 28.1 | 626.1 |
Top-down (from coarse to fine) | C | 79,930 | 2.72 | 45.3 | 1009.3 |
D | 67,521 | 2.47 | 41.2 | 917.9 | |
E | 53,581 | 2.21 | 36.8 | 819.9 | |
F | 65,068 | 2.46 | 41.0 | 913.5 | |
G | 63,496 | 2.45 | 40.8 | 909.0 | |
Bottom-up (from fine to coarse) | H | 86,021 | 2.93 | 48.9 | 1016.0 |
I | 73,544 | 2.56 | 42.7 | 951.4 | |
J | 61,917 | 2.39 | 39.9 | 889.0 | |
K | 85,451 | 2.87 | 47.9 | 1015.2 | |
L | 63,453 | 2.43 | 40.5 | 902.3 |
Methods | Labeling | WTerrainRoughness (%) | WElevationVariabilityCoefficient (%) | WTerrainRelief (%) | Q1 (%) | Ranking |
---|---|---|---|---|---|---|
Geomorphic Zoning | B | 8.56 | 5.60 | 0.37 | 14.53 | 8 |
Top-down (from coarse to fine) | C | 8.02 | 0.84 | 0.28 | 9.14 | 5 |
D | 4.28 | 2.73 | 0.28 | 7.29 | 4 | |
E | 11.76 | 3.47 | 0.28 | 15.51 | 10 | |
F | 6.95 | 3.14 | 0.28 | 10.37 | 7 | |
G | 4.81 | 2.15 | 0.28 | 7.24 | 3 | |
Bottom-up (from fine to coarse) | H | 1.07 | 3.55 | 0.02 | 4.64 | 1 |
I | 3.21 | 6.77 | 0.02 | 10.00 | 6 | |
J | 8.02 | 8.90 | 0.02 | 16.94 | 11 | |
K | 1.60 | 4.34 | 0.02 | 5.96 | 2 | |
L | 6.95 | 7.84 | 0.02 | 14.81 | 9 |
Methods | Labeling | WNumberOfGridVertices (%) | WTimeConsumption (%) | WFileStorageSpace (%) | WRuntimeMemorySpace (%) | Q2(%) | Ranking |
---|---|---|---|---|---|---|---|
Geomorphic Zoning | B | 43.40 | 41.36 | 44.36 | 38.86 | 167.98 | 1 |
Top-down (from coarse to fine) | C | 12.48 | 7.80 | 10.30 | 1.43 | 32.01 | 9 |
D | 26.07 | 16.27 | 18.42 | 10.36 | 71.12 | 7 | |
E | 41.33 | 25.08 | 27.13 | 19.93 | 113.47 | 2 | |
F | 28.75 | 16.61 | 18.81 | 10.79 | 74.96 | 6 | |
G | 30.47 | 16.95 | 19.21 | 11.23 | 77.86 | 5 | |
Bottom-up (from fine to coarse) | H | 5.81 | 0.68 | 3.17 | 0.78 | 10.44 | 11 |
I | 19.47 | 13.22 | 15.45 | 7.09 | 55.23 | 8 | |
J | 32.20 | 18.98 | 20.99 | 13.18 | 85.35 | 3 | |
K | 6.43 | 2.71 | 5.15 | 0.86 | 15.15 | 10 | |
L | 30.52 | 17.63 | 19.80 | 11.88 | 79.83 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Wang, J.; Zhang, Y.; Sun, Y. Innovative Adaptive Multiscale 3D Simulation Platform for the Yellow River Using Sphere Geodesic Octree Grid Techniques. Water 2024, 16, 1791. https://doi.org/10.3390/w16131791
Li B, Wang J, Zhang Y, Sun Y. Innovative Adaptive Multiscale 3D Simulation Platform for the Yellow River Using Sphere Geodesic Octree Grid Techniques. Water. 2024; 16(13):1791. https://doi.org/10.3390/w16131791
Chicago/Turabian StyleLi, Bingxuan, Jinxin Wang, Yan Zhang, and Yongkang Sun. 2024. "Innovative Adaptive Multiscale 3D Simulation Platform for the Yellow River Using Sphere Geodesic Octree Grid Techniques" Water 16, no. 13: 1791. https://doi.org/10.3390/w16131791
APA StyleLi, B., Wang, J., Zhang, Y., & Sun, Y. (2024). Innovative Adaptive Multiscale 3D Simulation Platform for the Yellow River Using Sphere Geodesic Octree Grid Techniques. Water, 16(13), 1791. https://doi.org/10.3390/w16131791