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Abstract: Diffusion models have been increasingly utilized in various image-processing tasks, such
as segmentation, denoising, and enhancement. These models also show exceptional performance in
enhancing underwater images. However, conventional models for underwater image enhancement
often face the challenge of simultaneously improving color restoration and super-resolution. This
paper introduces a dual-layer attention mechanism that integrates spatial and channel attention
to enhance color restoration, while preserving critical image features. Additionally, specific scale
factors and interpolation methods are employed during the upsampling process to increase resolu-
tion. The proposed DL-UW method achieves significant enhancements in color, illumination, and
resolution for low-quality underwater images, resulting in high PSNR, SSIM, and UIQM values. The
model demonstrates a robust performance on different datasets, confirming its broad applicability
and effectiveness.

Keywords: underwater image enhancement; diffusion model; dual-layer attention mechanism

1. Introduction

In the realm of computer vision, while extensive exploration of land has been con-
ducted, our understanding of oceans and lakes remains relatively limited due to the
formidable challenges posed by underwater exploration. Scientists strive to fathom the un-
derwater world using various technological methods, such as underwater optical imaging
techniques [1], UAI (underwater acoustic imaging), and Quantum LiDAR technology [2].
The acquisition and imaging of underwater optical images hold significant potential ap-
plications across diverse fields, including oceanographic research, underwater resource
exploration, mapping submarine topography, and underwater archaeology [3]. However,
natural factors like light scattering and absorption in water significantly impact image
visibility and contrast, often leading to captured images falling short of meeting stringent
quality requirements for other application scenarios.

At the beginning of the 21st century, researchers conducted extensive studies on
underwater image restoration focused on physical models. However, the intricate nature
of underwater physical environments posed significant challenges to accurate modeling,
thereby limiting the effectiveness of these physical model-based approaches. Consequently,
researchers have explored image enhancement techniques that do not rely on physical
models. These methodologies have introduced novel perspectives for underwater image
processing and have, to a certain extent, enhanced the quality of underwater images [4].
Nevertheless, as technology continues to advance and applications deepen, there is still a
need to explore more advanced and effective methods for processing underwater images
to meet higher demands for image quality and clarity in practical applications.

In recent years, the field of computer vision, particularly image processing, has wit-
nessed significant breakthroughs attributed to neural networks. In 2020, Ho et al. [5]
introduced the Denoising Diffusion Probabilistic Model (DDPM), which has garnered
widespread attention. The model has demonstrated a remarkable performance in various
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aspects, including the denoising, restoration, super-resolution, generation, and enhance-
ment of images. As a latent variable model, DDPM builds a bridge between the data
distribution and simpler distributions, such as Gaussian distribution, progressively trans-
forming data into pure Gaussian noise. This process follows the principles of the Markov
process and involves reverse data reconstruction and training across a weighted variational
boundary, ultimately enabling the generation of high-quality synthetic images. The success-
ful deployment of DDPM not only pioneers new methodologies in the realm of computer
vision but also provides a potent tool for image-processing tasks, thereby propelling further
advancements in this field.

Building upon prior research, we have observed that conventional underwater image
enhancement tasks frequently encounter challenges, such as unbalanced color distribution,
inadequate super-resolution effects, and constraints in enhancing individual underwater
images [6]. Inspired by these challenges, this paper proposes a novel underwater image
enhancement method based on the Denoising Diffusion Probabilistic Model, aimed at
addressing these issues. Underwater image enhancement has stricter requirements for
color, saturation, contrast, and resolution compared to general image enhancement. The
objectives of this experiment are not only to achieve super-resolution of underwater images
but also to significantly enhance the overall quality of the images while preserving key
features, ultimately producing high-quality images that meet human visual perception
standards. This method is expected to overcome the shortcomings of traditional underwater
image enhancement techniques, offering new perspectives and tools for research and
applications in related fields.

Our main contributions are summarized as follows:

1. We introduced a denoising neural network framework based on the probabilistic dif-
fusion model, which has shown remarkable performance in enhancing the resolution
and color restoration of low-quality underwater images. When compared with other
models performing the same tasks, the model proposed in this paper demonstrated
superior competitive strength.

2. We propose an innovative dual-layer attention mechanism. Specifically, the first layer
of attention focuses on the interrelationships of spatial locations, effectively capturing
spatial correlations in the input data. This helps the model better understand and
utilize feature information from different positions. The second layer implements
inter-channel attention weighting by adaptively learning attention coefficients to
weight the input channel features. This allows the model to more accurately focus on
important channel features, thereby enhancing the effectiveness of feature expression
and optimizing image enhancement results. Compared to the baseline model, the
PSNR index improved by 32.2%, and the SSIM index increased by 7.9%. The UIQM is
improved by 17.4% compared to the input image.

3. We adopted a sub-pixel interpolation upsampling strategy, utilizing a 1.25× scale factor
to augment the number of sub-pixels, in conjunction with bilinear interpolation. This
strategy preserves the details of the image while preventing the generated images from
becoming overly smooth. This approach significantly enhanced the image resolution.
Compared to models not using this strategy, the restored images showed a 23.39%
improvement in the PSNR and a 7.3% increase in the SSIM.

2. Related Work
2.1. Underwater Image Super-Resolution

Contrasted with atmospheric optical imaging, underwater optical imaging is con-
strained by its distinctive imaging environment, frequently resulting in a less-than-optimal
image quality. This is primarily due to various noise interferences present in underwater
environments, such as scattering, absorption, and background light, which collectively
degrade the overall image quality. More complexly, the propagation of visible light in water
is wavelength-dependent, leading to underwater images often displaying bluish-green
hues, significantly reduced contrast, and distorted colors, making it difficult to reveal more
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image details. Hence, accomplishing accurate, swift, and precise restoration of details
and features within such intricate environments continues to pose a pressing challenge for
ensuing underwater tasks.

To address the aforementioned complex issues in underwater imaging, researchers
have proposed numerous underwater image enhancement and restoration methods, which
can be broadly classified into two major categories: physical model-based restoration
methods and non-physical model-based image enhancement methods.

The underwater image restoration methods based on physical models are committed to
simulating the degradation process of underwater images through mathematical modeling
and then estimating model parameters to restore clear underwater images [7]. These
methods must fully consider the physical laws of underwater imaging, including factors
such as light absorption, scattering, and color distortion. For instance, there is the self-
tuning underwater image restoration filter based on the Jaffe–McGlamery model [8], as
well as algorithms that estimate scene depth to eliminate the effects of light scattering in
underwater images [9]. Although these methods have improved the quality of underwater
images to a certain extent, there are still some limitations. This is because existing modeling
methods are unable to fully reproduce the imaging process of underwater images, making
precise modeling difficult.

Non-physical model approaches focus on directly improving the visual quality of
underwater images through image-processing techniques, rather than relying on mathemat-
ical models of underwater optical imaging. These methods usually do not involve complex
calculations of physical parameters but rather adjust the pixel values of the image directly
to enhance image quality. In early research, researchers often directly applied traditional
image enhancement methods to underwater images. Jung et al. [10] proposed an adaptive
joint tri-directional filter (AJTF) that could enhance the clarity of images and depth maps.
Wang S. H. et al. [11] focused on processing images under uneven illumination conditions.
With the increasing demand for innovation in underwater image enhancement techniques,
more and more image enhancement methods that can adapt to underwater conditions
have been proposed. Among underwater image enhancement, color distortion is a partic-
ularly prominent issue. In 2014, Kan et al. [12] utilized the water absorption spectrum to
estimate changes in tristimulus values and proposed a color-restoration method based on
the water absorption spectrum. Additionally, in 2015, Li et al. [13] successfully improved
the contrast, brightness, color, and visibility of underwater images by comprehensively
utilizing methods such as color compensation, histogram equalization, saturation, and
intensity stretching. Although these methods have improved the visual quality of under-
water images to a certain extent, they lack generalizability. However, optimistically, these
methods provide more reliable data support for subsequent underwater image analysis
and applications.

In recent years, learning-based data-driven methods have achieved significant progress
in the field of underwater image enhancement. In 2017, Wang et al. [14] proposed the
UIE-Net end-to-end underwater image enhancement network based on the attenuation
model, which utilized a simple convolutional neural network to estimate the transmission
image and the attenuation coefficients of three channels, achieving the effect of image
color enhancement. In 2017, Li et al. proposed a generative adversarial network named
CycleGAN [15], which generated a model capable of performing multiple types of image-
to-image transformations through adversarial training. Based on this, Li et al. proposed
WaterGAN [16] the following year, a two-stage algorithm using two fully convolutional
networks, which split underwater image enhancement into two sub-tasks: synthesizing
relative depth maps and color restoration. These models effectively improved the quality
of underwater images through generative adversarial methods. However, these methods
did not comprehensively address the practical application needs of underwater images.
Early research focused on restoring image colors, while the most widely used GAN-based
methods in recent years often have issues such as uncontrollable output results and severe
image degradation. Our proposed method can effectively address these issues.
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2.2. Diffusion Model

Since the advent of diffusion models based on non-physical models in 2020, a large
number of research works have emerged in the field of computer vision adopting this novel
modeling method. The distinctiveness of this model lies in its construction of a Markov
chain that links a sample, x0, with a pure Gaussian distribution, xT (a simple distribution),
thereby facilitating a Markov process. Transitions of this chain are learned to reverse a
diffusion process, which is a Markov chain that gradually adds noise to the data in the
opposite direction of sampling until the signal is destroyed [5]. By studying the reverse
process of this chain, the parameterization of a relatively simple neural network can be
achieved. Figure 1 clearly demonstrates the process of adding noise and denoising in the
diffusion model. In this process, the gradual addition of noise to the sample is known as
the forward process, q(xt|xt−1), while the process of progressively denoising from pure
Gaussian noise is termed the unknown reverse process, pθ(xt−1|xt). To approximate this
reverse process, neural networks are employed with the minimization of cross-entropy as
the training objective, specifically defined by Equation (1):

min
θ

Eq(x0:xT)

[
log

q(x0 : xT)

pθ(x0 : xT)

]
→ min

θ

 ∑
(x0:xT)ϵx

log
q(x0 : xT)

pθ(x0 : xT)

 (1)
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Figure 1. Schematic diagram of the forward and reverse processes of the diffusion model.

When the trained model, pθ(x0 : xT |c), closely approximates the true distribution,
q(x0 : xT), it can be inferred that pθ(xt−1|xt) also closely approximates q(xt−1|xt). As pre-
viously mentioned, the forward process can be considered a Markov process; hence, its
conditional probability, q(xt|xt−1), follows a Gaussian distribution, specifically expressed
as N (xt;

√
αtxt−1, βt I), where t ranges from 1 to T. Here, N

(
x; µ, σ2) denotes a Gaus-

sian distribution with mean, µ, and variance, σ2, and its probability density function is
1√

2πσ2 e−(x−µ)2/(2σ2). In diffusion models, βt is typically chosen such that 0 ≤ β1 < β2 <

· · · < βT < 1, with βt I representing the variance of the Gaussian distribution, where I
is the identity matrix. Here, 0 ≤ βt < 1 is a scalar hyperparameter that describes the
magnitude of variance, i.e., the intensity of the “Gaussian noise”. Additionally,

√
αtxt−1 is

the mean of this conditional probability, where αt ≡ 1− βt. Consequently, xt can be viewed
as a linear combination of the random variable, xt−1, and a standard normal distribution,
εt: xt =

√
αtxt−1 +

√
βtεt, εt ∼ N (0, I)t = 1, 2, · · · T.

Given that the objective function is the variational lower bound under Markov con-
ditions, the objective function can be expressed using Bayes’ theorem as Equation (2).
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The terms L0, Lt, and LT are further specified in Equations (2)–(5), respectively, where
t = 1, 2, · · · T − 1. Based on these, Equation (6) is subsequently derived.

L(θ) = Eq

[
log

q(xT , x0)

pθ(xT)
+

T

∑
t=2

log
q(xt−1|xt, x0)

pθ(xt−1|xt)
+ log

1
pθ(x0|x1)

]
(2)

L0 ≡ Eq

[
log

1
pθ(x0|x1)

]
(3)

Lt ≡ Eq

[
log

q(xt|xt+1, x0)

pθ(xt|xt+1)

]
(4)

LT ≡ Eq

[
log

q(xT , x0)

pθ(xT)

]
(5)

L = L0 +
T−1

∑
t=1

Lt + LT (6)

Since the state at time, T, is pure Gaussian noise, and LT does not depend on model
parameters, LT can be ignored in the derivation process. Utilizing Bayes’ theorem, the pos-

terior distribution can be represented through
∼
βt and

∼
µt(xt, x0) as follows: q(xt−1|xt, x0) =

N (xt−1;
∼
µt(xt, x0),

∼
βt I). Here,

∼
βt =

1−αt−1
1−αt

βt and
∼
µt(xt, x0) =

1−αt−1
1−αt

√
αtxt +

βt
1−αt

√
αt−1x0.

3. Methodology

In image enhancement tasks based on diffusion models, the input, x0, typically consists
of the original low-resolution image, ILR, with the corresponding high-quality image,
IHR, serving as the reference output. This design establishes a clear supervised-learning
framework, clearly defining the model’s learning objective—the mapping process from the
low-quality image, ILR, to the high-quality image, IHR.

For the specific task of underwater image enhancement, which this paper focuses on, it
is essential not only to enhance the image details but also to improve the coloration. There-
fore, the low-quality original underwater image, ILR

UW , is used as the model’s input, x0, with
the corresponding high-quality underwater image, IHR

UW , selected as the reference output,
∼
x0.

During the data-preprocessing stage, the Bicubic interpolation method is intentionally used
to process low-quality original underwater images. Compared to the general resize method,
this approach can more effectively maintain the details and clarity of the image, signifi-
cantly reducing distortion and aliasing effects. The implementation of this preprocessing
strategy aims to enhance the model’s ability to perform super-resolution on low-resolution
images, thereby further improving the results of underwater image enhancement.

The approach employed in this study is based on an improved denoising probabilistic
model, which holds more distinct advantages compared to the underwater image enhance-
ment methods based on physical models and deep learning mentioned in Section 2.1.
Physical model methods are prone to being influenced by changes in imaging conditions,
while GAN methods based on deep learning require a delicate balance between the genera-
tor and discriminator during the training process, making their training process less stable.
In contrast, the DDPM boasts a simple loss design that provides sufficient theoretical sup-
port for training. Moreover, the Markov chain process formed during the DDPM training
process means that the current state is only related to the previous moment, making the
training process more stable. However, in practical applications, image degradation issues
also seem to plague traditional denoising probabilistic models. To address this issue, this
study introduces a dual-layer attention mechanism into the model, a strategy that considers
both spatial and channel information, enabling it to better capture local and global image
features. Additionally, the unique sub-pixel interpolation upsampling strategy of this study
can significantly reduce image degradation during the upsampling phase.



Water 2024, 16, 1813 6 of 16

3.1. Dual-Layer Attention Mechanism

Similar to the traditional DDPM [5], the network structure in this experiment employs
a modified U-Net model as a crucial component of the generative network to address the
dual challenges of underwater image enhancement and denoising. Given the outstanding
performance of U-Net in image segmentation and other related tasks, specific modifications
have been made to adapt it to the unique requirements of underwater image enhancement.

Due to the distinctive conditions of underwater environments, such as scattering
and light attenuation, the network input is specially designed to concatenate x0 and

∼
x0

along dimension 1 and embed timestep information to enhance the network’s perception
of the temporal dimension. Initially, the network processes the input data through a
convolutional layer to extract fundamental feature information. This is followed by a series
of residual blocks, each containing multiple convolutional layers, normalization operations,
and residual connections. This structure not only aids in capturing more advanced features
within the images but also mitigates the issue of gradient vanishing to some extent, thereby
improving the training performance of the network. Additionally, the output channel
numbers of each residual block are flexibly adjusted according to the specific parameters of
the network design, meeting the needs of different levels of feature extraction. During the
downsampling phase, a single-layer attention module is introduced, which helps the model
focus more on the key information within the image, enhancing attention to specific regions.
Conversely, the upsampling block employs a structure symmetrical to the downsampling
block, gradually enlarging the feature maps to restore the processed features to the same
dimensions as the original input image, and outputs the enhanced or denoised result.

The middle block, as a crucial component connecting the encoder and decoder in
the U-Net structure, receives feature maps output from the encoder as input. Through a
series of processing operations, it extracts more advanced and abstract feature information.
This provides valuable information for the decoder to reconstruct the original input more
accurately. During the processing of the input feature maps, an initial integration of features
takes place, merging low-level and high-level features, which not only aids in improving
feature representation but also promotes gradient flow during the training process. Due
to the uniqueness of underwater image enhancement, special attention needs to be paid
to the dependencies between image features and multi-channel color spaces. Thus, a
dual-layer attention mechanism is introduced in the middle block. This dual-layer atten-
tion mechanism consists of two key components: the Attention Block and the Attention
Branch. Figure 2a demonstrates the structure of a multi-head attention mechanism. The
input, x, first undergoes normalization and then generates queries, keys, and values. These
generated QKVs are reshaped to fit the multi-head attention computation. After being
processed by the attention layer, the results are passed through the projection output layer
and added to the residual connection, ultimately producing an output feature map with the
same shape as the input. Figure 2b demonstrates a convolutional neural network branch
structure with an attention mechanism. The input, x, first undergoes feature extraction
through a 3 × 3 convolutional layer and then is processed by a Leaky ReLU activation func-
tion for non-linear transformation. Next, it passes through a 1 × 1 convolutional layer to
change the number of channels and is then normalized by the sigmoid function to generate
attention coefficients. The input, x, also passes through another 3 × 3 convolutional layer,
and its output is element-wise multiplied with the attention coefficients. Finally, the result
is further processed by another 3 × 3 convolutional layer, producing an output feature map
with the same shape as the input. The Attention Block focuses on enhancing the model’s
feature-representation capability by performing adaptive spatial attention operations in the
middle layers. The Attention Branch, based on the learned attention weights, selectively en-
hances relevant features in the input data, further boosting the model’s perceptual abilities.
This specialized dual-layer attention structure works collaboratively to capture complex
relationships within the input data, effectively utilizing feature information across different
scales, thereby achieving more accurate and comprehensive performance enhancements in
underwater image enhancement tasks.
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3.2. Improved DDPM

The loss function of the traditional denoising probability model DDPM is based on
the optimization of the negative log probability ELBO, expressed as follows:

L = Eq

[
DKL(q(xT |x0)||p(xT)) +

T

∑
t=2

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))− logpθ(x0|xt)

]
(7)

where Eq denotes the expectation, DKL denotes the KL divergence, q is the probability
density function of the reverse process, p is the probability density function of the forward
process, xt represents the state at time t, and T is the total number of time steps. To simplify
calculations, the loss function is often simplified to Lsimple = Et,x0,ϵ[||ϵ − ϵθ(xt, t)||2]. How-
ever, Nichol et al. [17] pointed out that, in the loss function of DDPM [5], the variance term,
∑θ (xt, t) = σ2 I, is treated as a fixed constant rather than a learnable parameter, which
actually limits the model’s expressive capacity. Therefore, to enhance the model’s flexibility
and performance, a penalty term, Lvlb, is added when computing the loss, optimizing
the variational lower bound, thereby making the variance a learnable term. When t = 0,
the variational lower bound is the negative log likelihood, L0 := −log pθ(x0|x1). When
t ̸= 0, the variational lower bound is the KL divergence between the predicted xt and the
true xt: Lt−1 := DKL(q(xt−1|xt, x0)||pθ(xt−1|xt)). Thus, the variational lower bound can be
represented as Lvlb := L0 + L1 + · · ·+ LT−1 + LT . Through this approach, a composite loss
function is constructed, as shown in Equation (8).

Lhybrid = Lsimple + λLvlb (8)

In this framework, Lsimple is responsible for capturing the main distributional charac-
teristics of the data, while Lvlb serves as a penalty term, aiding the model in learning finer
details and the intrinsic structure of the data. λ is the weight coefficient, and in IDDPM [17],
λ = 0.001 is recommended. Compared to directly optimizing the log-likelihood, this hybrid
learning objective offers significant advantages. It not only retains Lsimple as the primary
source of the loss, ensuring that the model can stably learn the main features of the data, but
also enhances the model’s fine perception of the data distribution through the introduction
of Lvlb, thereby improving the convergence speed and effectiveness during model training.

When training the denoising probability model, the core objective is to find a function,
f , that minimizes the discrepancy between the predicted image, f (xi), and the actual high-
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resolution image, yi, while preventing the model from overfitting. This process can be described
through the following optimization problem formulation: min

f
∑N

i=1 L(yi, f (xi)) + µR( f ). Here,

L represents the loss function, which measures the discrepancy between the model prediction,
yi, and the actual f (xi); R( f ) is a regularization term to prevent overfitting during training;
and µ is a hyperparameter used to adjust the relative weight between the loss function and the
regularization term, aiming to achieve an optimal balance between model performance and
generalization ability.

3.3. Sub-Pixel Interpolation Upsampling Strategy

Historically, researchers often treated super-resolution tasks with different scaling
factors as independent tasks, designing and training separate models for each scaling
factor [18]. However, this strategy was not only inefficient but also limited the versatility
and flexibility of the models. To overcome this limitation, Hu et al. [19] introduced the
Meta-SR method, which enables super-resolution processing for arbitrary scaling factors,
including non-integer values, through a single model. Inspired by this, Lim et al. [6] further
enhanced super-resolution performance by scaling up the model size. Motivated by these
studies, we explored the impact of different scaling factors on super-resolution tasks and
discovered through experiments that models exhibit varying super-resolution effects when
faced with different scaling factors.

Diffusion models fundamentally involve the precise manipulation of individual pixels
in the original input image, aiming to minimize the discrepancy between the predicted
and the real images. The relationship between the original noise size and the expected
output shape is critical in the model’s upsampling process. When the noise size is less
than or equal to the expected output, the limited number of pixels restricts the insertion
of details, making it difficult to display more intricacies. Conversely, when the noise size
exceeds the expected output, the increased number of sub-pixels provides more room for
detail insertion. However, an increase in sub-pixel quantity does not always result in better
outcomes. Experiments show that interpolation at different scaling factors yields varied
results. If an inappropriate interpolation method is chosen, interpolating among a large
number of sub-pixels might prevent effective connectivity between adjacent pixels, leading
to an overly smooth image lacking in edge information between instances. In such cases,
the final generated image does not appear to have undergone effective super-resolution
processing. Therefore, after balancing image details, clarity, and naturalness through
experimental comparisons, we chose a 1.25× scaling factor for the upsampling size. This
scaling factor effectively preserves image details, while avoiding excessive sharpening,
achieving a good balance between clarity and naturalness.

Simultaneously, the interpolation method used in the upsampling process is crucial
for the impact on image edge details. In the traditional U-Net structure handling super-
resolution tasks, the upsampling block often utilizes nearest-neighbor interpolation. This
method is simple and efficient, as it directly assigns the value of each pixel in the target
image to the value of the closest pixel in the source image. However, a significant drawback
of this method is that it can lead to jagged edges, particularly evident when images
are enlarged. To overcome the deficiencies of nearest-neighbor interpolation, this paper
opts for bilinear interpolation. Based on the concept of linear interpolation [20], bilinear
interpolation calculates the weighted average of four neighboring pixels to determine the
value of a new pixel. This method is more refined and better preserves the edge details
of images. As illustrated in Figure 3, which shows a schematic of bilinear interpolation,
assuming the values of four adjacent pixels are known, bilinear interpolation precisely
calculates the value of the sub-pixel, f (x, y).
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Initially, linear interpolation is performed in the x, resulting in the following
two formulas:

f (x, y1) ≈
x − x1

x2 − x1
[ f (Q21)− f (Q11)] + f (Q11) =

x2 − x
x2 − x1

f (Q11) +
x − x1

x2 − x1
f (Q21) (9)

f (x, y2) ≈
x − x1

x2 − x1
[ f (Q22)− f (Q12)] + f (Q12) =

x2 − x
x2 − x1

f (Q12) +
x − x1

x2 − x1
f (Q22) (10)

Subsequently, linear interpolation is carried out in the y, resulting in the following:

f (x, y) ≈ f (x, y1) +
y − y1

y2 − y1
[ f (x, y2)− f (x, y1)] =

y2 − y
y2 − y1

f (x, y1) +
y − y1

y2 − y1
f (x, y2) (11)

The expressions for f (x, y1) and f (x, y2) previously obtained are substituted into the
above formulas to ultimately derive the following:

f (x, y) = w11 f (Q11) + w21 f (Q21) + w12 f (Q12) + w22 f (Q22) (12)

where wxy represents the weight of each integer point, namely, the bilinear
interpolation kernel.

Consequently, for any non-integer point, p, on the feature map, X, its value can
be calculated using bilinear interpolation, expressed as X(p) = ∑q G(q, p)·X(q). Here,
the coordinates of the non-integer point, p, are (x, y), while q represents the four adja-
cent integer values, Q, on the feature map X. The bilinear interpolation kernel function,
G(q, p) = g(qx, px)·g

(
qy, py

)
, measures the correlation between the integer point, q, and

the non-integer point, p. The function g(a, b) = max(0.1−|a − b|) represents the distance
weight between the diagonal integer points and the target point, p, ensuring that the inter-
polation process considers only adjacent integer points and that the weights decrease as
the distance increases.

4. Experiments
4.1. Experimental Settings

• Datasets:

For a long time, obtaining genuine and paired underwater image datasets has been a
major challenge in the field of underwater image research. The imaging process of under-
water images is influenced by multiple factors, such as water absorption and attenuation
of different wavelengths of light, target distance, and spectral distribution, making data
collection particularly complex. Although the use of artificial light sources can increase
the underwater visibility to some extent, it often leads to irregular light spots in images,
further complicating data processing [21]. In light of this, this study selected the EUVP
underwater image dataset released in 2020 [22] as the research foundation. This dataset not
only contains paired image samples of poor and good perceptual quality but also boasts
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a rich source of data, with poor-quality underwater images collected by seven different
cameras during oceanic expeditions. To ensure the quality and validity of the data, this
experiment prepared these paired datasets following the steps recommended in [23]. In this
study, the Underwater Scenes paired dataset from the EUVP dataset was primarily used
as the training set, which includes 2185 training image pairs, 139 validation image pairs,
and 515 test samples. Additionally, to further demonstrate the model’s generalizability,
120 paired test samples from the UFO-120 dataset were also used for validation.

• Evaluation metrics:

In underwater image enhancement tasks, a series of full-reference metrics are com-
monly used to assess the effectiveness of the enhancement, including Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index Measure (SSIM) [24]. PSNR is a metric that
measures the signal-to-noise ratio between the enhanced image and the original image,
primarily used to evaluate the quality of image reconstruction, typically expressed in
decibels (dB). For images IHR and ISR of size m × n, the Mean Squared Error (MSE) is first
calculated, defined as MSE = 1

mn ∑m−1
i=0 ∑n−1

j=0

[
IHR(i, j)− ISR(i, j)

]2. Subsequently, PSNR

can be calculated based on MSE, with the formula PSNR = 10·log10(
MSE2

I
MSE ), where MSE2

I
represents the maximum possible pixel value of the image.

SSIM is a metric that measures the structural similarity between the enhanced image
and the original image, considering the similarity in luminance, l; contrast, c; and structure,
s. Similar to PSNR, SSIM is also calculated based on three comparative dimensions between
images IHR and ISR, with the formula SSIM

(
IHR, ISR) = [

l
(

IHR, ISR)·α]·[c
(

IHR, ISR)·β]·[
s
(

IHR, ISR)·γ].
When using these evaluation metrics, the processed images must be compared with

their ground truth.
Since the high-quality images in the currently used dataset were synthesized through a

series of image-processing techniques, in addition to calculating the difference between the
generated images and the high-quality images using the above metrics, we also calculated
the Underwater Image Quality Metric (UIQM) for each generated image. The UIQM is a
no-reference metric designed based on the principles of human visual system excitation.
This metric aims to comprehensively evaluate the color, clarity, and contrast of the image.
Specifically, UIQM combines the Color Measurement Index (UICM), the Sharpness Mea-
surement Index (UISM), and the Contrast Measurement Index (UIConM) through a linear
combination of these sub-metrics to arrive at the final quality evaluation. The formula used
is UIQM = c1·UICM + c2·UISM + c3·UIConM. This study employed the same UIQM
calculation method and sub-metric weights as [22] to ensure the accuracy and consistency
of the evaluation results.

• Implementation details:

This experiment was conducted using the Pytorch 1.8 [25] framework to build and im-
plement the underwater image enhancement model. During the model training phase, the
input image size was set to 128 × 128 pixels. For low-resolution images, they were first re-
sized to 64 × 64 pixels using the resize function and then enlarged back to 128 × 128 pixels
to meet the model’s input requirements. Additionally, the batch size was set to 16, with an
initial learning rate of 0.0001, and the plan was to conduct training over 100,000 epochs.
The AdamW optimizer [26] was chosen for optimizing the neural network parameters. In
the settings for the diffusion model, the diffusion steps were set at 100, and a linear noise
schedule type was chosen to ensure that the model could learn the intrinsic structure of
the image data. Within the U-Net structure, a time embedding module was introduced
to enhance the model’s ability to process temporal information. SiLu was selected as the
activation function to improve the model’s non-linear expressive capability and feature
learning capacity. The experimental setup utilized a computer equipped with a 16 vCPU
Intel(R) Xeon(R) Gold 6430 CPU and an RTX 4090 (24GB) GPU for training and testing.
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4.2. Comparison with the State of the Art

This experiment considered three commonly used evaluation metrics in the field of
underwater image processing: PSNR, SSIM, and UIQM. To verify the performance of
the proposed method, we compared various underwater image enhancement approaches
on the EUVP test set, including adversarial-based UGAN-P [23], CycleGAN [15], FunIE-
GAN [22], TACL [27], physics-based Uw-HL [28], transformer-based U-shape [29], and
another diffusion model-based DM_uw [30], totaling seven different methods. The experi-
mental results, as shown in Table 1, clearly demonstrate that the method proposed in this
paper achieved improvements in both PSNR and UIQM, especially showing significant
enhancement in the SSIM metric. Notably, this method does not only excel in a single
metric but provides balanced and outstanding performance across all three metrics.

Table 1. Quantitative comparison of EUVP datasets.

Method PSNR SSIM UIQM (Input: 2.57)

UGAN-P (2018) [23] 19.59 0.6685 2.72
CycleGAN (2017) [15] 17.14 0.6400 2.44

FunIE-GAN (2020) [22] 21.92 0.8876 2.78
Uw-HL (2020) [28] 18.85 0.7722 2.62
TACL (2022) [27] 18.92 0.8699 3.01

U-shape (2023) [29] 25.03 0.9045 3.01
DM_uw (2023) [30] 19.97 0.8852 2.97

DL-UW (ours) 25.48 0.9431 3.03

Additionally, to further validate the generalizability and adaptability of the proposed
method, we conducted comprehensive comparative experiments on the UFO-120 test
set, involving multiple methods, such as FunIE-GAN [22], TACL [27], U-shape [29], and
DM_uw [30]. The experimental results, presented in Table 2, show that the method not
only excelled in the key metrics of PSNR, SSIM, and UIQM but also demonstrated superior
generalization capabilities in comparison with other methods.

Table 2. Quantitative comparison of UFO-120 datasets.

Method PSNR SSIM UIQM (Input: 2.64)

FunIE-GAN (2020) [22] 24.09 0.9314 3.05
TACL (2022) [27] 18.81 0.8687 3.01

U-shape (2023) [29] 22.83 0.9231 3.06
DM_uw (2023) [30] 25.08 0.9436 2.93

DL-UW (ours) 25.26 0.9468 3.01

4.3. Qualitative Analysis

During the testing phase, low-quality images were used as the sole input to the model
to evaluate its ability to enhance image details and correct colors. As shown in Figure 4a,b,
the model proposed in this paper demonstrated an outstanding performance, effectively
removing the whitening, graying, and bluing phenomena common in underwater images,
while significantly improving color restoration. Notably, the model was also capable of
restoring the glossiness of objects. Additionally, our model excelled in detail restoration.
As illustrated in Figure 4c,d, for the complex and varied linear and arcuate textures in
underwater images, the model accurately captured and restored these details, achieving a
visually perceptible super-resolution effect.

The experiment further compared the performance of other underwater image en-
hancement methods in practical applications, including those based on diffusion models
such as IDDPM [17] and DM_uw [30], as well as FunIE-GAN [22] and TACL [27]. To
ensure a fair comparison, a representative set of underwater images was selected as a
uniform input. As shown in Figure 5, we found that some models had deficiencies in color
restoration, specifically manifesting as color oversaturation or insufficient image brightness.
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Moreover, in the critical sub-task of image super-resolution, the performance of some
methods was less than satisfactory, struggling to simultaneously address the important
goals of image super-resolution and color restoration. Among them, the DM_uw method
based on skip sampling did not include super-resolution within the scope of improvement,
and the TACL method based on GAN showed significant deficiencies in color-restoration
capabilities. In contrast, although the method proposed in this paper still has some gaps in
achieving high-definition super-resolution effects, overall, its performance in underwater
image enhancement tasks remains competitive.
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4.4. Quantitative Analysis

To comprehensively assess the performance of the proposed dual-layer attention
mechanism model, we conducted quantitative analyses on the test sets of the EUVP and
UFO-120 datasets. Comparative experiments revealed that the dual-layer attention mecha-
nism model demonstrated significant advantages in the key metrics of PSNR and SSIM,
showing marked improvements over the baseline model, which uses a single-layer atten-
tion mechanism. This result fully substantiates the effectiveness of the dual-layer attention
mechanism in enhancing the quality of underwater images. In terms of the UIQM metric,
our model also showed improvements on the UFO-120 dataset, but the differences were not
significant on the EUVP dataset. This may be due to variations in image characteristics and
quality assessment standards between the two datasets. Specific numerical comparison
results are detailed in Table 3, where the best results are highlighted in red.

Table 3. Comparison experiment with baseline model using double-layer attention mechanism.

Dataset Method PSNR SSIM UIQM (Input: 2.58)

EUVP
Baseline model 19.28 0.8744 3.04
DL-UW (ours) 25.48 0.9431 3.03

UFO-120
Baseline model 18.61 0.8526 2.92
DL-UW (ours) 25.26 0.9468 3.01

Furthermore, to delve deeper into the effects of interpolation methods and scaling
factors on underwater image enhancement, we specifically selected 20 random images
from the EUVP test set to create a dedicated test set for quantitative experiments on
interpolation methods and scaling factors. When the scaling factor was set to 1.00× and
the nearest neighbor interpolation method was used, the generated images achieved a
PSNR value of 22.81 and an SSIM value of 0.9008. In this experiment, a scaling factor of
1.25× was set as the target divisor scaling factor, and the performance of three different
interpolation methods—nearest neighbor, bicubic, and bilinear interpolation—during the
upsampling phase was investigated. As shown in Table 4, compared to the other two
interpolation methods, bilinear interpolation exhibited significant improvements across
the key evaluation metrics of PSNR, SSIM, and UIQM. This finding not only validates the
effectiveness of bilinear interpolation in underwater image enhancement tasks but also
provides valuable insights for subsequent research.

Table 4. Comparison results of different interpolation methods.

Method PSNR SSIM UIQM (Input: 2.58)

Nearest 27.44 0.9612 2.84
Bicubic 27.76 0.9641 2.86
Bilinear 28.15 0.9663 2.89

Therefore, to determine the optimal upsampling interpolation method and scaling
factor, we conducted a series of experiments. After the comparative analysis, we selected
bilinear interpolation as the interpolation method for the upsampling process and studied
different scaling factors as the sole variable. As illustrated in Figure 6, we observed that
both PSNR and SSIM metrics reached their highest values when the scaling factor was set
to 1.25×, while the UIQM metric performed best at a scaling factor of 1.375×. However,
in comparison, the improvement in UIQM values is not significant, as the UIQM metric
takes into account three aspects of an image: color, sharpness, and contrast. While blurring
reduces the sharpness of an image, the overall image quality is still influenced by other
factors. Nevertheless, as the scale factor increases, the trend of UIQM value changes is
roughly the same as that of PSNR and SSIM. Further observation in Figure 7 revealed that
when the scaling factor was set to 1.00×, the generated images exhibited severe sharpening
effects, leading to lower levels in three evaluation metrics. However, when the scaling
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factor was increased to 1.25, the overall quality of the images achieved a balanced state,
with better handling of detail retention and color restoration. Nevertheless, as the scaling
factor was further increased, the images began to show signs of excessive smoothness. This
occurs because, as the number of sub-pixels between features increases, the interpolation
method starts adopting a “conservative” approach to feature restoration, trying to evenly
fill the sub-pixels between adjacent features, often resulting in the loss of image details.
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In summary, the following conclusion can be drawn: choosing an appropriate scaling
factor is crucial for enhancing the effectiveness of underwater image enhancement when
using bilinear interpolation for upsampling. In this experiment, we found that scaling
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factors of 1.25× and 1.375× showed better performance in terms of PSNR, SSIM, and
UIQM metrics.

5. Conclusions

This paper introduces an innovative underwater image enhancement model based on
a denoising neural network using probabilistic diffusion, combined with a composite loss
diffusion model for underwater image enhancement applications. The proposed model ef-
fectively generates enhanced images from low-quality underwater inputs, supporting both
single and batch image processing. The experimental results demonstrate that the model
excels in the core sub-tasks of underwater image super-resolution and color correction.
The dual-layer attention mechanism introduced in this study plays a crucial role in color
correction, outperforming traditional single-layer attention mechanisms in handling com-
plex color variations in underwater images, significantly enhancing color restoration and
detail retention. Furthermore, we explored the impact of sub-pixel completion strategies
during the upsampling process on super-resolution outcomes. Our experiments confirm
that combining bilinear interpolation with a 1.25 scaling factor significantly mitigates the
overly “conservative” issue of sub-pixel completion strategies, enabling our model to
achieve super-resolution effects more rapidly and thereby enhancing the visual quality of
underwater images.

Looking forward, we aim to explore the possibility of jointly processing multiple
scales of super-resolution tasks within a single network, based on the research presented
in this paper. This would contribute to the development of a more efficient and flexible
underwater image enhancement system, providing stronger technical support for practical
applications. We believe that through continuous research and innovation, we can advance
underwater image enhancement technologies, contributing further to the research and
applications in related fields.
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