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Abstract: Piped drinking water supplies are exposed to a range of threats. Changing hazard situations
arise from climate change, digitisation, and changing conditions in the power supply, among other
things. Risk and crisis management adapted to the hazard situation can increase the resilience of
the piped drinking water supply. Analogous to the risk management system, this article describes a
methodology that ranges from hazard analysis with the prioritisation of 57 individual hazards to
vulnerability assessment with the help of balance sheet structure models (BSM) and the planning and
implementation of measures to increase the resilience of the piped drinking water supply in a targeted
manner. The work steps mentioned build on each other and were tested using the case study of a water
supply company in Saxony (Germany). As a result, priority hazards are identified, the remaining
supply periods and replacement and emergency water requirements are determined as part of the
vulnerability assessment, and finally, planning principles for increasing resilience are documented.
The methodology focuses primarily on practicable application by water supply companies.

Keywords: water supply; resilience; vulnerability; crisis management; hazards; blackout; balance
sheet structure models

1. Introduction

Drinking water infrastructure can be severely impaired by a number of hazards. Water
supply companies are also exposed to a number of potential hazards in their operations
and in the fulfilment of their tasks [1–3]. Climate change is one of the greatest threats
to the water supply. The intensity and frequency of extreme hydrological events such as
floods, flash floods, and droughts are expected to increase worldwide [4–9]. However, other
natural hazards can also affect the water supply. For example, the SARS-CoV-2 pandemic
led to staff shortages and supply difficulties for operating and auxiliary materials for water
treatment [10–12]. Technical faults also pose a major potential risk. For example, a blackout
can lead to long-lasting supply interruptions in the piped water supply [13–15]. Other
threats to the water supply come from sabotage and acts of war. An increase in cyberattacks
on critical infrastructure is currently to be expected [16–18].

But which hazards are relevant for maintaining the piped water supply and should be
prioritised in scenarios?

In order to increase resilience to crises and disasters, the water supply needs a risk and
crisis management system. At the European level, the Water Safety Plan of the World Health
Organisation (WHO) [19] has been implemented in regulations with the standards DIN EN
15975-1 [20] and DIN EN 15975-2 [21]. The work steps for risk and crisis management are
shown in Figure 1.
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Figure 1. Work steps for risk and crisis management, based on [20,21].

However, in the implementation of risk management, there are deficits in the prepara-
tion and practical application of risk analyses [5,22,23]. To determine the resilience of water
distribution systems, Todini [24] already described the basis for assessing the systems using
a heuristic optimisation approach 24 years ago. The mathematical framework described
in [24] has recently been further developed by Caldarola et al. [25–29], among others. The
mathematical principles are used in many hydraulic models, such as EPANET (Version 2.0)
or the WaterNetGen software (EPANET extension–pipe dimensioning) [30–37]. In [25], the
challenges of hydraulic simulation are described, including the need for large amounts
of data for the components of the network (systems, gate valves, valves, pipe materials),
knowledge of the network topology, and water demand (consumption behaviour, peak
demand). In addition to hydraulic models, system dynamic modelling [38–41], society-
oriented, economy-based, and combined methods are known in the literature [42]. Many
methods require expert knowledge in their application and, due to their complexity, offer
only limited application possibilities in crisis management.

The question arises as to whether a simplified modelling approach with semi-dynamic
models can offer greater user-friendliness with the least possible loss of information.

To manage the risks, measures to increase the resilience of the piped water supply
should be derived from the risk analysis and implemented [21]. There is a lack of planning
principles for the dimensioning of systems in emergency and crisis situations compared
to normal operation. In addition, an international comparison shows different volume
approaches for backup and emergency water supply (Table 1).

Table 1. Quantities of backup and emergency water supply.

Literature Source Unit WHO
[43]

Sphere
[44]

Switzerland
[45]

Austria
[46]

Germany
[47]

Emergency water supply
Minimum population requirement L/(P·d) 20 15 15 15 15

Replacement water supply
incl. domestic hygiene L/(P·d) 70 100 * Accord. to water

demand plan * 50 *

Further information on drinking water requirements for healthcare and livestock farming can be found in [43–47],
* Line-bound.

This paper presents a consecutive approach for (i) identifying relevant threats, (ii) analysing
the vulnerability of a water supply system and (iii) developing mitigation measures. The
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proposed approach offers a good balance between the required accuracy and practical appli-
cability. Its application is demonstrated for a water supply system of medium complexity.

2. Materials and Methods
2.1. Hazard Analysis

A tool for semi-quantitative prioritisation was developed to determine the relevance
(R) of each hazard. The aim of the procedure is not an exact quantification of the risk but a
relative prioritisation of the hazards. The first step was to systematically record the hazards
(Table 2, columns A–M) on the basis of known and potential hazards. For this purpose,
various technical guidelines [1,3,48–50] and the water supplier’s incident documentation
from the last 20 years were used. To determine the probability of occurrence (E) and
the respective affectedness (Bi) of the individual hazards, literature research was carried
out, data provided by authorities or insurers was used, information from the technical
regulations was included, operating experience was analysed, experts were interviewed,
and/or local media reports were consulted. The areas of facilities, structures, personnel,
and regional impact were analysed as part of the impact assessment. This procedure results
in an estimated categorisation of the probability (E) (Table 2, column S):

1—low (all > 1000 a),
2—medium (every 101–1000 a) and
3—high (all 0–100 a).

Table 2. Sample table for hazard analysis, adopted from [48].

A B C D E F G H I J K L M N O P Q R S T U
hazard analysis

Hazards Source Reason Responsible Affectedness Relevance
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k

St
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f
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N 1 Hazard
1 X X X X X X 1 1 1 1 1 3 3

T 2 Hazard
2 X X X X X X 3 3 3 3 3 2 6 Derive

scenario

A n Hazard
n X X X X 1 1 2 3 1.8 2 3.6

N = natural hazards, T = technical faults/human error, A= attacks, sabotage, acts of war.
Classification of the impact: 1—not relevant, 2—localized impact, 3—widespread impact
Classification of the probability of occurrence: 1—low, 2—medium, 3—high probability of occurrence

and the respective affectedness Bi (Table 2, columns N–Q) in:

1—not relevant,
2—selectively and
3—area-wide.
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The hazard level (G) was calculated as the mean value of the Bi (Table 2, column R).
The relevance (R) of the hazard under consideration was calculated as the product of G
and E (Equation (1); Table 2, column T). Finally, the relevant hazards were summarised into
as few scenarios as possible in order to limit the number of subsequent simulations.

R = E · G = E · 1
n∑n

i=1 Bi (1)

R—Relevance
E—Probability of occurrence (Range of values 1 to 3)
G—Level of risk
Bi—Affectedness i = 1 . . . n (Range of values: 1 to 3)
i—Index of the respective affectedness
n—Number of affected parties analysed
The results of the hazard analysis using the example of a water supply company are

presented in Section 3.2. a detailed description of the methodology is published in [48].

2.2. Vulnerability Analysis with Balance Sheet Structure Models (BSM)
2.2.1. Calculation Approach

The subsequent vulnerability analysis (resilience assessment) was carried out using
a semi-dynamic model. This is fundamentally based on a quantitative water balance
(Equation (2)).

dS(t)
dt

= ΣQ(t) = ΣQin(t)− ΣQout(t) (2)

The balance is made up of the inflows (ΣQin), such as the inflow from water extraction
plants or feed-in points, and the outflows (ΣQout), such as drinking water consumers, losses
and feed-out points. The difference between inflows and outflows results in the balance
value (ΣQ). The integral of the difference between the inflows and outflows therefore
represents the change in the system status over a certain period of time. To determine
the remaining supply time (t), all available storage capacities (S), such as underground or
elevated tanks, are taken into account (Equation (3)).

t =
S

−(Qin − Qout)
(3)

To map the various operating scenarios, a mathematical case differentiation of Equa-
tion (3) was carried out (Equations (4)–(7)):

Normal operation (case 1: S > 0; Qin ≈ Qout):

lim
(Qin−Qout)→0

t =
S

lim(−(Qin − Qout))
= ∞ (4)

Balance sheet deficit (case 2: S > 0; Qin < Qout):

t =
S

−(Qin − Qout)
> 0 (5)

Cascade effects (case 2 extended, 1 . . . n = index of the memory considered in the
cascade system, n = number of memories in the cascade system):

tn=
S1

−
(
Qin,1 − Qout,1

) +
S2

−
(
Qin,2 − Qout,2

) + . . . +
Sn

−
(
Qin,n − Qout,n

) (6)

without memory (case 3: S = 0; Qin < Qout):

t =
S

−(Qout − Qin)
= 0 (7)
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The theoretical cases of a negative denominator (case 4: Qin > Qout) and a negative
storage volume (case 5: S < 0) are not taken into account in the BSM. This means that no
negative time (−t) can result. Assuming a full storage tank, a surplus feed-in leads to a
storage tank overflow and is therefore mathematically balanced by increased losses on the
consumption side. A negative storage volume at the time the simulation starts is practically
impossible. Further information on the calculation approach is published in [51].

2.2.2. Modelling Implementation

The model structure is explained in this chapter using a sample scenario with a three-
day outage of a waterworks as an example. The publication of the models actually created
is limited to the simulation results (Section 3.3). This procedure was chosen in order to
protect the sensitive data of the water supply companies.

The mathematical approach was implemented in a spreadsheet programme. The BSM
consists of several system components. The existing system components, including the
necessary parameterisation and links, are shown and explained in Table 3.

The model structure is based on the topology and takes flow directions and techno-
logical relationships, such as pressure zones, into account. The data are analysed via the
visual representation in the model and via overall balances. Figure 2 shows the abstracted
model scenario for the failure of a waterworks at the simulation period of three days. The
areas shown in Figure 2 correspond to the following specifications:

• An area module (coloured box) comprises 0–50 inhabitants,
• Red areas—inhabitants without drinking water supply,
• Yellow areas—residents with a temporary drinking water supply and
• Green areas—residents with an unlimited supply of drinking water.
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Figure 2. BSM—sample scenario failure waterworks (abstracted representation).
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Table 3. Parameterisation and linking of the system components.

System Component Parameters Unit Remarks

G
lo

ba
l

Global input field Scenario Description of the scenario

Runtime d Depending on the scenario

Consumption factor
fdx

has a constant effect over the entire scenario period and reflects
increases or decreases in drinking water consumption

Emergency water
factor fd,NW

acts constantly over the entire scenario time and calculates the
required emergency water quantity

Remarks

Connection points All consumption points

D
ri

nk
in

g
w

at
er

su
pp

ly
(i

nfl
ow

s)

Feed-in Designation/No. Abbreviation “I”

Capacity Qcap m³/d Decisive capacity of the feed-in (technical or regulatory)

Feed-in QInput m³/d Actual feed-in in the scenario, with reference Qdm of the feed-in

Connection points Feed-in point grid, water storage, water pumping

Water catchments Designation/No. Abbreviation “WC”

Usability % Utilisation of capacity, consideration of e.g., reduction due to dry
periods

Capacity Qcap m³/d Decisive capacity of the feed-in (technical or regulatory)

Connection points Water treatment

Water treatment Designation/No. Abbreviation “WT”

Operational
switching Selector switch between “ON” and “OFF”

Capacity Qcap m³/d Decisive capacity of the feed-in (technical or regulatory)

Connection points Feed-in point grid, water storage, water pumping

D
ri

nk
in

g
w

at
er

ne
tw

or
k

Water reservoir Designation/No. Abbreviation “S”

Useful volume VUse m³ Available usable volume

Useful volume VIS m³ Minimum volume of normal operation

Connection points Grid feed-ins and feed-outs, consumption points,
water delivery

Water pumping Designation/No. Abbreviation “P”

Capacity Qcap m³/d Decisive capacity of the feed-in (technical or regulatory)

Connection points Grid feed-ins and feed-outs, consumption points,
water storage tanks

D
ri

nk
in

g
w

at
er

co
ns

um
pt

io
n

(d
ra

in
s)

Consumption point Designation/ No. Abbreviation “SA”

Inhabitants P Indication of inhabitants supplied

Storage system Specification of linked memory

Consumption factor
fdx

Selector switch “GLOBAL” or “HAND”, differentiated input
required for “HAND”, e.g. for commercial customers

Manual value fdx

If “Hand” is preselected, it has a constant effect over the entire
scenario time and maps excess or reduced quantities of drinking
water consumption

Drinking water
consumption m³/d Specification of drinking water consumption Qdm, as direct input

or database link

Meter number Specification of existing meter numbers

Connection points Grid feed-ins and feed-outs, downstream consumption points,
water storage tanks, drinking water consumption if applicable

Feed-out Designation/No. Abbreviation “O”

Capacity Qcap m³/d Relevant capacity of the feed-out (technical or regulatory)

Feed-out QFeed-out m³/d Actual feed-in in the scenario, with reference Qdm of the feed-in

Connection points Grid feed-out point, water storage tank, water pumping
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Supply diagrams (Figure 3) and evaluation tables (Table 4) supplement the analysis
of the BSM. Figure 3 shows, as function of failure time, the number of affected residents
with normal supply (green), the time until supply failure (yellow) and the duration of the
supply interruption (red).
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Figure 3. Supply diagram for the example scenario with y-axis showing the affected inhabitants by
supply zones and x-axis showing the selected simulation time.

Table 4. Evaluation table in the sample scenario.

No. Zone People in P Supply Time
in d

Normal Supply
in P

Limited Supply
in P

Supply Interrup.
in P

Qdm
in m³/d

Qd,NW
in m³/d

Sensitive
Consumers

S-2 City 1 Zone 1 1200 0.80 0 0 1200 169.8 23.8 Nursing
home A

S-3 City1 Zone 2-5 1510 1.93 0 0 1510 129.6 18.1
P-2 City 1 Zone 6 30 1.93 0 0 30 2.5 0.3
S-4 City 2 Zone 1 1000 unlimited 0 1000 0 103.9 14.5
S-5 City 3 Zone 1 780 2.52 0 0 780 73.8 10.3
S-6 City 4 Zone 1 1030 3.16 0 1030 0 105.5 14.8 Hospital B
S-6 SA external 120 3.16 0 120 0 11.7 1.6
P-6 City 4 Zone 3 50 3.16 0 50 0 4.9 0.7
S-7 City 4 Zone 2 410 5.67 0 410 0 41.9 5.9

Total 6130 0 2610 3520 643.6 90.1

Table 4 contains information on the affected inhabitants, the affected sensitive con-
sumers, the remaining supply time and an estimate of the emergency water demand not
connected to the mains.

More detailed information on the systematics of the models is contained in the sample
model (Supplementary Material).

2.2.3. Input Parameterisation

In order to assess the actual impact of the relevant hazards (Section 2.1) on the water
supply, the BSMs of the supply system have to be parametrized accordingly. For the stan-
dard operation, the average drinking water consumption quantities (Qdm) were recorded
and linked to the consumption units. The correct calculation was checked for the refer-
ence year by comparing the overall balance of the system with monitored data. For this
validation scenario, the consumption factor (fdx) was set to 1.0 and a runtime of 365 days
was selected.

Scenarios were identified on the basis of the hazard analysis (Section 2.1), and sys-
tem settings were derived from them. The scenarios are defined by the duration of the
regarded event, the affected system components, and the usability of the water catchments
n. Furthermore, the extent to which a change in drinking water demand is to be expected
must be estimated. Changes in drinking water demand are taken into account in the BSM
using the consumption factor (fdx). The consumption factor (fdx) remains constant over the
entire simulation period. If the recovery period after the event is simulated too, this can be
carried out as a “hot-start” after the event by switching back all settings to standard.
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In the model scenario, the failure of a waterworks (selector switch ‘OFF’) was assumed
to last 3 days. A sub-area in the model can continue to be supplied permanently via an
emergency network. Such a scenario could be derived, for example, from the failure of a
technical component and its subsequent repair.

The approaches chosen in this study are shown in Table 5 and are described below:

• Scenarios in which no change in drinking water demand is to be expected, such as the
failure of a waterworks, were calculated with a fdx = 1.0. The use of maximum values
(Qd,max) was deliberately avoided in order to prevent the scenarios from overlapping.

• In the event of a prolonged dry period, a fd,7 > 1.0 was calculated, whereby not the
maximum consumption (Qd,max) but a 7-day maximum was assumed for the increased
drinking water quantities in order not to generate an extreme value over a long period
of time.

• Reduced consumption rates (fdx < 1.0) were assumed in the case of area-affecting
events such as blackouts. The national specifications for risk management [47] in
Germany were selected as the approach for calculating a piped replacement water
quantity (Qd,EW). The total drinking water consumption, including the consumption
of industry and commerce, was calculated as a lump sum using the consumption
factor for the replacement water supply (fd,EW).

• The calculation of the non-piped emergency water demand (Qd,NW) was also based
on [47].

Table 5. Determining water requirements for emergencies and crises.

Scenario Consumption
Factor (fdx)

Water
Requirement (Qdx) Remarks

Failure of system-
relevant-component fdm= 1.0 Qdm No change in consumption behaviour

Pipe burst fdm= 1.0 Qdm No change in consumption behaviour

Hazardous
substance input fdm= 1.0 Qdm No change in consumption behaviour

Dry periods fd,7= Qd,7/Qdm Qd,7= fd,7 · Qdm Increased consumption

Blackout fd,EW =
qEW·E
Qdm,HB

Qd,EW= fd,EW · Qdm

Reduced consumption, Qd,EW = 50 l/(P·d),
flat rate industrial and commercial
consumption, Qdm,HB= consumption of
household and small business

Emergency
water supply fd,NW =

qNW·E
Qdm,HB

Qd,NW= fd,NW · Qdm

Qd,NW = 15 l/(P·d)Determination of
emergency water requirements in the event
of a mains supply failure

The simulation results of the case study are shown in Section 3.3. The consumption
approaches are described in more detail in [51,52].

2.3. Measures to Increase Resilience

The BSMs offer the possibility of supporting the planning process to increase the resilience
of water supply systems. They can also be used for decision-making in crisis management.

The first step is to identify and plan existing and potential interconnection structures.
The planning should take into account possible variants for connection lines, transfer points
and an expansion of technical capacities.

The planning objectives selected in the study can be summarised as follows;

• Maintaining the piped drinking water supply during a blackout with as few systems
as possible;

• Utilisation of normal operation facilities also for emergencies and crises;
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• Creation of redundancies of system-relevant components, e.g., the failure of an entire
waterworks, and;

• Consideration of scenario-dependent drinking water consumption.

Once the planning variants have been defined, the consumption rates must be deter-
mined. The following consumption rates were selected for planning the systems:

For normal operation:

• National technical standards (in Germany: DVGW regulations).

For emergencies and crises:

• Scenario-dependent consumption estimates according to Table 5,
• Waiver of minimum supply pressure and
• Utilisation of the full technical capacity without taking redundancies into account.

The planning variants are to be mapped in the BSM as extended balance areas, whereby
several supply areas are considered in one balance area (Figure 4, Equation (8)).

dS(t)
dt = ΣQ(t) =

ΣQzu,1(t)− ΣQab,1(t) + ΣQzu,2(t)− ΣQab,2(t) + . . . + ΣQzu,n(t)− ΣQab,n(t)
(8)
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The decisive load case for the dimensioning of the systems results from the comparison
of the required capacities in normal operation and the consideration of emergency and
crisis situations. Detailed descriptions of the planning and consumption approaches can be
found in [52].

During a blackout, the necessary diesel supply for emergency power operations can
be determined based on the systems to be operated and the production capacities. Careful
consideration should be given to whether the external supply can be guaranteed under
these conditions or whether self-sufficient supply systems are advisable. A checklist for the
construction of company refuelling stations and a tool for determining fuel requirements
were developed for the planning and construction of the fuel supply [53].

The planning results of the case study are presented in Section 3.4.

3. Results
3.1. Description of the Case Study

The study area is located in the German state of Saxony. The water supply company in
question supplies around 75,000 people with drinking water. There are 21 supply areas with
17 waterworks, 40 pumping stations, 62 drinking water reservoirs, 63 entry and exit points,
and 1035 km of drinking water supply pipes. In total, there are 182 system components to
be analysed.
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3.2. Hazard Analysis

The case study analysed and assessed 57 individual hazards, including 18 natural
hazards, 29 technical faults, and 10 hazards caused by attacks, sabotage, or acts of war. A list
of the hazards analysed and the results of the investigation can be found in supplementary
materials. The detailed hazard analysis is published in [48]. Information on the assessment
is provided below, and the assessment is explained using individual examples.

The 18 natural hazards include floods, flash floods, droughts, earthquakes, and
pandemics. The extent of damage and the probability of the occurrence of the natural
hazards could be determined using existing modelling or statistical evaluations of data
series [3,54–61].

For example, incident documentation from the water supplier and local climate pro-
jections [59,61] are available for the assessment of dry periods and the development of
groundwater recharge. Experience from the dry periods in 2018 and 2019 shows a high
level of impact due to: high water demand, declining water supply from the catchments,
utilisation of the capacity of the technical systems, and an increased number of pipe bursts
with additional personnel requirements. The water supplier suspects that pressure fluc-
tuations due to high consumption and stresses in the dried-out ground are the cause of
the high number of burst pipes. According to climate projections [59,61], an increase in
dry periods is to be expected across the board. Differences in the forecast data exist in the
projection of groundwater recharge. The fluctuations lie between a decrease in ground-
water recharge from the current actual level by up to 80% (basis of the climate projection:
WETTREG2010_A1B_66) [60] and a slight increase in groundwater recharge (basis of the
climate projection: mean annual groundwater recharge (rel. changes)—ensemble median
RCP 8.5) [61] by the year 2100. In all simulations, the precipitation dynamics increase.
Studies on the development of quality parameters are lacking. Based on the available
findings, the impact and the probability of occurrence were assessed as high.

Overall, the results of the natural hazards are site-specific, meaning that their relevance
can vary depending on the catchment area. In the study, area, the highest relevance
was found for expected climatic changes, such as prolonged dry periods and extreme
weather events.

The 29 hazards due to technical malfunctions and human error are made up of,
for example, operational organisational hazards, pipe bursts, discharges into the water
catchments, or dependencies on other sectors. When assessing the hazards caused by
technical faults and human error, different data were found.

The risks of the general company organisation, such as the risk of inadequate substance
maintenance, were easy to assess. Here, the water supplier was able to demonstrate a
rehabilitation strategy and operation in accordance with DVGW regulations (national
regulations). An insufficient reinvestment rate could disrupt the operation of the water
supply facilities in the long term, which leads to an assessment of the higher impact on the
facilities and the network as well as an assessment of a medium probability of occurrence.
Overall, the analysed facilities and the drinking water network are in very good technical
condition (network age 37 a, losses < 0.04 m³/(h·km), and the treatment quality of the
distributed drinking water is very high. Possible side effects of risk management measures
on drinking water quality can thus be ruled out.

The cross-sectoral impacts on water management, as described by [62], were more
difficult to assess. For example, the extent of damage caused by a blackout could be easily
determined based on the technical conditions in the study area, but a reliable determina-
tion of the probability of occurrence was lacking, which was also found in comparable
studies [63,64]. The assessment of special technical incidents sometimes requires expert
knowledge, e.g., in the case of nuclear accidents. The probabilities of occurrence and ex-
pected extent of damage were determined for the risk of nuclear accidents based on [65,66].
However, validation is hardly possible due to the lack of real events.
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In the overall assessment of technical faults, the highest relevance was given to a
blackout, the supply of non-drinking water, major pipe bursts, and substance inputs into
drinking water catchments, e.g., due to hazardous substances or agricultural inputs.

Of the 10 dangers from attacks, sabotage and acts of war, cyberattacks, sabotage, theft,
and attacks of various causes were analysed.

Cyberattacks were identified as a relevant source of risk [16–18], although the risk to
the technical systems in the study area is considered to be low due to the spatial separation
of the systems. In the present case study, the operation of the water supply systems is only
at low risk from cyberattacks. The installed technology sends data and cannot receive data.
The data are sent using a programming language developed by the water supply company.
For this reason, the cyberattack was not analysed further in the case study. As the degree of
digitisation increases, cyberattacks are expected to become more relevant.

A high level of damage is conceivable for the other hazards from attacks, sabotage, or
acts of war; information on the probability of occurrence could not be researched.

A total of 12 priority hazards (score > 4) were identified. The priority hazards were
summarised into 5 scenarios (Table 6) and form the basis for scenario identification as the
next step in the risk analysis.

Table 6. Priority hazards in the supply area under consideration, adopted from [48].

No. Source of Danger Relevance Evaluation of Scenario Selection, Comments

N-5 Flooding water intake 5.25 1st scenario: Hazardous substance entry

N-7 Dryness 9 2nd scenario: Long dry period with potential deficit
in demand coverage

N-10 Storm, tornado, thunderstorm 5.25 3rd scenario: Failure of a system-relevant component

T-1 Company organisation 4.5 Safeguarding via quality, environmental and energy
management systems.

T-20 Pipe burst on long-distance water pipe 5.25 4th scenario: Burst pipe on a main supply line

T-21 Feed-in of non-potable water 6.75 1st scenario: Hazardous substance entry

T-22 Power failure short, selective 5.25 3rd scenario: Failure of a system-relevant component

T-23 Long, widespread power outage 6 5th scenario: Widespread power failure

T-24 Information technology failure 4.5 3rd scenario: Failure of a system-relevant component

T-28 Accidents involving hazardous substances 6 1st scenario: Hazardous substance entry

T-29 Water pollution 4.5 1st scenario: Hazardous substance entry

T-30 Agricultural entries 6 1st scenario: Hazardous substance entry

A-3 Inadequate property protection, burglary,
theft, vandalism 4.5 3rd scenario: Failure of a system-relevant component

3.3. Vulnerability Analysis with Balance Sheet Structure Models

The 21 supply areas of the water supplier in question were modelled in 19 BSMs. The
balance areas of the models vary between 20,470 inhabitants with 52 system components
and 10 inhabitants with 3 system components. The year 2018 was selected as the reference
year with a prolonged dry period. The choice of the reference year 2018 is considered a
realistic load assumption for a low water supply in the coming years. A reference scenario
with normal consumption was created to calibrate the models.

The following scenarios were selected from the relevant hazards (Section 3.2) as input
variables for the simulation:

1. Hazardous substance input into a water intake, duration 30 d, average water consumption;
2. prolonged dry period in the entire supply area, duration 110 d, increased water

consumption;
3. failure of a system-relevant component, runtime 7 d, average water consumption;
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4. pipe burst on a main supply line, duration 2 d average water consumption;
5. power failure across the board, duration 7 d, replacement water consumption.

A total of 90 simulations were carried out to show the existing vulnerability. The
simulation results are shown in Figure 5, clustered according to interconnection possibility
and size.
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The analysis of the case studies documents the existing vulnerability and, as expected,
shows the most critical impact in the scenario of a widespread power outage. However, the
failure of system-relevant components can also lead to massive supply disruptions. In these
scenarios, systems with interconnected lines are less vulnerable. The cause of the failure of
system-relevant components is initially independent of the system impact but influences
the time until normal operation is restored. By intersecting the expected downtime with
the remaining supply time, the scenarios can be further analysed accordingly.

3.4. Measures to Increase Resilience

In the study, measures to increase resilience were analysed in accordance with the
specifications in Section 2.3. A detailed description of the plan is not possible in order to
protect the sensitive data of the supplier. Abstract planning principles for the dimensioning
of an intermediate pumping station are published in [52].

In the study, area, the preferred option is the construction of interconnected pipelines
and the expansion of the technical capacity of two intermediate pumping stations. The
planned measures can almost completely compensate for the failure of individual wa-
terworks (the system-relevant component) and also significantly increase resilience to a
blackout (comparison of Figures 6 and 7). By operating just one waterworks and two
intermediate pumping stations that are connected to the district water supply, 75% of
the population in the study area can continue to be supplied in the event of a blackout
(Figure 7). The fuel supply of the remaining plants was planned and constructed according
to the specifications of [53].
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Figure 6. Vulnerability—area-wide power outage actual status, consideration of an extended balance
area over the entire 21 supply areas, consumption approach of the replacement water quantity with
50 L/(P·d), adopted from [52].

The production capacities required for emergencies and crises were determined by
analysing the extended balance area and the scenarios to be considered. The full system
capacities and no redundancies were taken into account in the event of an emergency or
crisis. In the case study, the scenario of a prolonged dry period and the associated failure of
a near-surface groundwater catchment were relevant to the design.
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4. Discussion

The hazard analysis methodology presented corresponds to the requirements of Euro-
pean risk management [20,21] and identifies potential hazards to the public water supply
with technical justification. The categorisation, with subsequent quantification, achieves
a clearly comprehensible order and reduces the subjective component. However, the as-
sessment of each individual hazard requires extensive research. The results of the research
show that there is not always sufficient data available for an exact assessment, for example,
of the probability of a blackout occurring. The subjective component increases, especially
when there is little data available, which can lead to inaccuracies in the process. In addition,
the assessment of some hazards, such as the effects of a nuclear accident, requires expert
knowledge. As a rule, the expert knowledge required to assess the aforementioned hazards
is only available to a limited extent at the water supply company.

For this reason, it is proposed that a minimum scope (Table 7) of the hazards to be
considered be specified by a higher authority. The hazards contained in Table 4 were
developed from the findings of the literature [63,64] and are based on the database of the
present study.

Table 7. Minimum scope of the hazard analysis, adopted from [48].

Natural Hazards Technical and Human Error Attacks, Sabotage, Acts of War

Flood Failure of individual systems * Cyberattack

Flash flood Pipe burst on composite pipes

Dryness Blackout *

Earthquake Accidents with hazardous substances

Large and wildfires

Epidemic, pandemic
* Priority use for scenario building.
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As part of risk management in accordance with [20,21], the next step is to carry out a
risk assessment. The extent of damage is determined by creating scenarios derived from the
hazard analysis and a vulnerability analysis using the BSM. The BSM represents a useful
addition to existing instruments for determining vulnerability [24–42]. The differences in
the existing literature are summarised below:

• Compared to hydraulic simulations with pipe network models [24–37], the system
structure is depicted in a much simpler way. The exact pipe routing, elevation data,
pipe dimensioning, material data, and consumption curves are only indirectly taken
into account in the BSM by modelling a functioning system in terms of a balance.
The hydromechanical limit values are taken into account via the capacity data of the
system components and are not verified in the simulation of the BSM.

• A comparison of the system dynamics models [38–42] shows that the BSMs map the
causal operating conditions directly on the basis of the real system structure and the
topology of the water supply and not via abstracted chains of effects. The simulation
of the BSM is carried out using selected system settings under constant conditions. In
contrast to the system dynamics models, it is not possible to model dynamic system
conditions in the BSM, which could lead to uncertainties in the calculation results of
the BSM.

The BSM therefore replaces complex hydraulic or system dynamic models with a
graph-based semi-dynamic balance. However, due to the simplified system structure of
the BSM, these are not suitable for an exact determination of water demand or hydraulic
simulation. The simulation result provides a visual representation of the vulnerability in re-
lation to the topology and a time-dependent forecast of the extent of damage, indicating the
affected inhabitants. In addition, the simulation is used to estimate drinking, replacement,
and emergency water requirements.

The consumption calculations were carried out under constant conditions. Excess
or reduced quantities were selected depending on the scenario under consideration and
taken into account as a lump sum in the models via the consumption factor (fdx). The
international data on replacement and emergency water requirements [43–47] contain
different consumption estimates. The validation of the consumption approaches is only
possible to a limited extent due to a lack of data on known emergencies and crises. In
addition, a scenario-dependent consumption analysis has (to our knowledge) not yet
been described. However, the authors believe that a scenario-dependent consumption
analysis is important in order to adapt the measures to increase resilience to the actual
drinking water demand. For example, when considering dry periods, peak values such as
Qd,max should not be used, and moderate increases in consumption such as Qd,7 should
be applied. In the case of widespread events such as a blackout, for example, a reduced
consumption approach appears to be correct, as reduced consumption behaviour can also
be expected here due to the lack of power supply, e.g., lack of hot water supply, non-
operation of washing machines or dishwashers and reduced consumption in the industrial
and commercial sectors. The following consumption approaches based on scenarios are
proposed as part of the initial parameterisation of the BSM;

• fdx > 1.0 Application during dry periods as fd,7;
• fdx = 1.0 Application for scenarios that do not exceed normal consumption; Utilisation

of fdm, e.g., the failure of a waterworks;
• fdx < 1.0 Application for determining replacement of fd,EW and the emergency water

volumes fd,NW in the case of large-scale events such as blackouts.

Due to the existing uncertainties regarding the input parameterisation of the BSM, the
simplified model structure with limited accuracy in the assessment of the replacement and
emergency water demand appears to be sufficient. As expected, the evaluation of the case
studies shows the most critical impact in the scenario of a widespread power outage, with
a very high vulnerability up to a total failure of the piped drinking water supply. However,
the failure of system-relevant components can also lead to massive supply interruptions. In
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systems with interconnected pipelines, a significantly higher resilience of the piped water
supply could be demonstrated.

Measures to increase resilience must be identified for risk control as the final step in
risk management, according to [20,21]. BSM can support the identification and planning
of measures. In particular, with the help of an extended balance area, measures can be
identified that enable a piped drinking water supply with as few systems as possible.
This enables transparent optimisation of the use of resources in risk management. The
following principles are proposed for the future consideration of emergencies and crises
when designing systems;

• Risk analyses of the water supply systems, taking into account the relevant hazards;
• Maintaining operations with a minimum number of systems;
• Waiver of minimum supply pressure;
• Utilisation of the full technical capacity without consideration of redundancies for

emergencies and crises;
• Scenario-dependent consumption estimates according to Table 2.

The implementation of the planning principles was evaluated using a case study. It was
demonstrated that the resilience of the drinking water supply systems can be significantly
increased by taking into account the necessary pumping capacities for emergencies and
crises. Specifically, interconnected pipes and transfer points were created, the pumping
capacity of two intermediate pumping stations was increased, and three emergency power
generators were procured. With the measures described above, 75% of the population can
be supplied in the future with the operation of just three systems in the event of a blackout.

Compared to advanced risk management instruments, the proposed approach is fairly
straightforward and oriented to operators needs and capacities. Each step can be performed
without specific expert knowledge. This applies also to BSMs, which can be developed
and parametrized by operators and coded with standard office software. The lack of detail
appears sufficient in view of the uncertainties when selecting operational parameters for
an assumed crisis/disruption.

5. Conclusions

What findings does the study provide for the application of the developed risk man-
agement instruments in water management?

The hazard analysis step is very extensive and requires expert knowledge in several
fields. It should therefore be considered that a meta-hazard analysis is first carried out by a
higher water authority to prioritise relevant hazards. The limited number of prioritised
hazards should then be made available to the water supplier to reduce the workload not
only in the hazard analysis itself but also in the subsequent risk management steps.

There are many good tools for assessing the resilience of pipework systems [24–42].
The known methods are complex and require sufficient and qualified data for an exact
simulation. Particularly in view of the deficits in the preparation and practical application
of risk analyses [5,22,23], BSMs can lower the application threshold due to their simplicity
and thus make a valuable contribution to the implementation of risk management.

Measures must be identified and planned to increase the resilience of the network-
based drinking water supply. There is a lack of reliable standardised specifications for
planning outside of normal operation. An increase in resilience could be achieved in the
case study through interconnected pipelines and by expanding the capacity of existing
systems. Operation with a minimum number of plants should also be made possible in
order to ensure operation even in the event of large-scale events.

Where is there a need for further research into the implementation of risk management
in water supply companies?

There is a specific need for research in the study area with regard to a more precise
forecast of the quantitative and qualitative development of the usable groundwater supply.

The heterogeneous quantity approaches in international comparison [43–47], espe-
cially for the requirements for a replacement water supply, lead to uncertainties in the
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risk analysis and also in the planning of measures to increase resilience. Cross-national
standards, norms, or legal foundations should be developed on the basis of further in-
vestigations. This requires a systematic evaluation of water consumption in historically
recorded emergency and crisis situations, as well as considerations for controlling water
withdrawal in such situations.

In which other areas could BSM be used?
The use of BSMs in crisis management is also conceivable in the future. BSMs are easy

to use, do not require any special software, and deliver simulation results quickly. The
simulation results can also be used to determine ad hoc effects in the system, such as the
separation of sub-areas and the resulting emergency water requirements.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w16131814/s1, Download sample model incl. all links and
model functions. Hazard list incl. all assessed hazards.
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