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Abstract: Humic acid (HA) is an organic compound naturally present in aquatic environments. It
has been found to have detrimental effects on water color, the transport of heavy metals, and the
elimination of disinfection by-products (DBPs), thereby exerting an impact on human health. This
study introduced four synergistic ultraviolet/advanced oxidation processes (UV/AOPs) systems
aimed at eliminating HA from water. The research explored the effect of solution pH, duration of
illumination, initial reactant concentration, and oxidant concentration on the degradation of HA.
The results indicated that the mineralization rate achieved by individual UV or oxidant systems was
less than 15%, which is significantly lower compared to UV/AOPs systems. Among these methods,
the UV/peroxymonosulfate (UV/PMS) process demonstrated the highest effectiveness, achieving
a mineralization rate of 94.15%. UV/peroxydisulfate (UV/PDS) and UV/sodium percarbonate (SPC)
were subsequently implemented, with UV/sulfite (S(IV)) demonstrating the lowest effectiveness
at 19.8%. Optimal degradation efficiency was achieved when the initial concentration of HA was
10 mg/L, the concentration of PMS was 3 mmol/L, and the initial pH was set at 5, with an illumination
time of 180 min. This experimental setup resulted in high degradation efficiencies for chemical oxygen
demand (COD), UV254, and HA, reaching 96.32%, 97.34%, and 92.09%, respectively. The energy
efficiency of this process (EE/O) was measured at 0.0149 (kWh)/m3, indicating the capability of the
UV/PMS system to efficiently degrade and mineralize HA in water. This offers theoretical guidance
for the engineered implementation of a UV/PAM process in the treatment of HA.

Keywords: humic acid; ultraviolet/advanced oxidation processes; techniques; influencing factors

1. Introduction

In China, water resources are significantly contaminated, primarily by organic pol-
lutants, with natural organic matter (NOM) serving as a major pollution source. NOM
constitutes a crucial element of aquatic ecosystems and is commonly present in natural
water sources, with levels typically varying between 0.1 mg/L and 20 mg/L, demonstrat-
ing a progressive escalation [1,2]. Elevated concentrations of NOM impose significant
challenges on nearby water treatment plants and ecosystems. In an aqueous environment,
the constituents of NOM, specifically humic acid (HA), exhibit a significant ability to
chelate heavy metals, leading to the formation of organic–metal complexes. This affects the
transportation, bioavailability, and toxicity of heavy metals [3,4]. Although the presence of
HA in drinking water does not pose a direct threat to human health, it is responsible for
water discoloration and the emission of a strong, unpleasant odor. Common disinfectants
utilized in water treatment facilities, such as chlorine or chloramines, undergo a reaction
with HA to produce halogenated compounds (trihalomethanes (THMs), haloacetic acids
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(HAAs), and halogenated furanones (HFs) [5]), consequently elevating the potential risk of
cancer [6].

In recent years, elevated concentrations of aromatic halogenated disinfection by-
products (DBPs) have been identified in chlorinated drinking water. These compounds
have shown developmental toxicity and growth inhibitory effects that are more pronounced
compared to aliphatic halogenated DBPs [7]. Epidemiological studies in humans and
toxicological research in animals have established correlations between the consumption of
chlorinated drinking water and adverse effects on cancer, reproduction, and development.
United States Environmental Protection Agency (EPA) currently establishes the maximum
contaminant levels for total THMs and HAAs at 80 ppb and 60 ppb, respectively. In
contrast, the United Kingdom adheres to a THM standard of 100 ppb [8]. During the
process of water treatment, the interaction of organic substances with metal ions and
minerals leads to an increase in the solubility of heavy metals. This phenomenon also
necessitates higher chemical dosages, which in turn diminishes treatment effectiveness
and results in the production of larger quantities of sludge and DBPs [9]. Furthermore,
the existence of humic substances in the water treatment facilities has implications on
the efficacy of treatment processes (e.g., coagulation-settling efficiency, coagulant and
oxidant dosages, and operational equipment), and fosters the growth of bacteria and the
development of biofilms in the water distribution network, thereby giving rise to public
health concerns regarding sanitation. Consequently, the management of HA in untreated
water has garnered significant interest from the potable water sector [10,11].

The main strategies for eliminating HA encompass a variety of approaches. These
include physical methods such as adsorption [12] and filtration [13], chemical techniques
such as coagulation [14], electrolysis [15], and oxidation [16,17], as well as biological
processes [18]. The advantages and disadvantages of these methods are outlined in Table 1.
Advanced oxidation processes (AOPs) have attracted considerable interest in recent years
because of their operational simplicity, high efficiency, lack of secondary pollution, and
efficacy in decreasing THM formation [19]. AOPs operate through the production of highly
oxidative radicals, such as hydroxyl (•OH) and sulfate (SO4

−•) [20], which facilitate the
oxidation and decomposition of organic pollutants present in water. However, relying only
on AOPs for the degradation of HA frequently proves ineffective in attaining optimal results.
Therefore, they are commonly integrated with other technologies, such as ultraviolet/AOPs
(UV/AOPs). This integrated method not only efficiently eliminates HA but also minimizes
the generation of DBPs, thereby exerting a beneficial effect on the management of organic
fouling in water treatment procedures [21].

Table 1. Advantages and disadvantages of different methods for NOM degradation.

Method Advantages Disadvantages

Adsorption 1⃝ High NOM degradation efficiency
2⃝ Simple design and easy operation

1⃝ Frequent replacement and regeneration of
adsorbents increase costs

2⃝ Saturated adsorbents require disposal, causing
secondary pollution

Coagulation Strong adaptability with high NOM degradation efficiency Causes secondary pollution

Biological 1⃝ Can remove biodegradable components of NOM
2⃝ Relatively environmentally friendly, no extra chemicals

1⃝ Requires additional nutrients
2⃝ Poor environmental adaptability

Electrochemical 1⃝ No secondary pollution, environmentally friendly
2⃝ No need for additional chemicals High energy consumption

Membrane Filtration 1⃝ Simple process, easy to automate, reliable operation
2⃝ Low energy consumption

1⃝ Severe membrane fouling
2⃝ High membrane cost

Advanced Oxidation 1⃝ Efficient degradation of organic matter
2⃝ Applicable to various water bodies, widely adaptable

1⃝ Complex operation, requires monitoring and control
of reaction conditions

2⃝ Residual oxidants may be toxic

UV-activated AOPs are currently utilized for the elimination of organic compounds
from water. However, there is a limited availability of studies assessing their efficacy, par-
ticularly for removing HA. Furthermore, there is a scarcity of research on determining the
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most effective oxidant for the treatment of HA using UV/AOPs. This study examines the
efficacy of four oxidants—peroxymonosulfate (PMS), peroxodisulfate (PDS), sodium percar-
bonate (SPC), and sulfite (S(IV))—when activated by UV light to identify the most efficient
AOP for removing HA. This research aims to investigate the effect of initial concentration
of HA, oxidant concentration, initial pH, and reaction time on the decontamination of HA.
The results of this study are expected to offer insights for the practical implementation of
UV/AOP technologies in the treatment of HA.

2. Methods
2.1. Reagents and Equipment
2.1.1. Reagents

HA (fulvic acid, FA ≥ 90%) was obtained from Shanghai Macklin Biochemical Co.,
Ltd. (Shanghai, China); Sodium persulfate (Na2S2O8) and anhydrous sodium S(IV) were
procured from Shanghai Macklin Biochemical Co., Ltd.; potassium PMS and SPC were
acquired from Shanghai Titan Technology Co., Ltd. (Shanghai, China); sulfuric acid (H2SO4)
and hydrochloric acid (HCl) were obtained from Shanghai National Medicines Reagents
Co., Ltd. (Shanghai, China); sodium hydroxide (NaOH) was provided by Sigma-Aldrich
Co., Ltd. (Shanghai, China). All chemicals utilized in the study were of analytical grade
and did not necessitate additional purification.

2.1.2. Experimental Equipment

To facilitate the development of experiments in this study, a specialized experimental
apparatus utilizing UV oxidation was created (Shandong University of Architecture, Jinan,
China). The schematic and actual representations of this device are depicted in Figures 1
and 2, respectively. The device is primarily composed of an upper sealing flange, dual-layer
acrylic glass tubes, and an innermost glass sleeve. The flange is the location where an inlet
for water addition (reagent addition) is situated. The gap between the inner and outer glass
tubes functions as a condensation cycling water system, where the water inlet and outlet
are strategically positioned at the bottom and top of the outer tube, respectively. The inner
glass tube is designed to be removable and includes a drainage outlet at the bottom as well
as two sampling ports located at the mid-upper section. This equipment has the capacity to
treat a maximum of 4 L of water in a single session.
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Figure 2. Diagram of the experimental setup: (a) advanced oxidation reaction setup; (b) UV lamp.

The design of this experimental apparatus is simple and intuitive for users. The glass
tube of the UV lamp can be removed, facilitating the simple substitution with lamps of
different specifications and types. Sampling ports are strategically positioned at various
heights on the device to facilitate convenient sampling. A supplementary port is situated
at the upper part of the device to facilitate the convenient introduction of reagents. The
external glass layer is equipped with a condensing water circulation system that helps
reduce temperature elevation caused by radiation when the UV lamp is in operation. The
full submersible UV lamp used in the test was OSRAM, model HNS 4P SE, with a power
of 20 W, a rated operating voltage of 220 V, and an average UV radiation intensity of
3.28 mW/cm2 as measured by a radiometer. The outer diameter of the UV lamp casing was
25 mm, the diameter at the head was 18 mm, the diameter of the glass tube was 15.5 mm,
and the wavelength was 254 nm.

2.2. Experimental Indicators and Testing Methods
2.2.1. Routine Indicator Measurement

(1) Physical Indicators

Temperature variations and pH levels in the water samples were observed through
the utilization of a thermometer and a pH meter, respectively. During the experiments,
the pH range was controlled by utilizing 0.05 mol/L NaOH and 0.05 mol/L H2SO4 buffer
solutions. Prior to conducting the experiments, the pH meter underwent calibration using
standard solutions with pH values of 4.0, 6.86, and 9.18.

(2) Chemical Oxygen Demand (COD)

COD was quantified utilizing the acidic potassium permanganate method, following
the guidelines outlined in the standard GB 11892-89 [22]. This approach is applicable
for water samples with chloride ion concentrations not exceeding 30 mg/L. When the
permanganate index surpasses 10 mg/L, it is advisable to collect smaller volumes of the
water sample and dilute it before conducting the test.

2.2.2. Dissolved Organic Carbon (DOC) Measurement

DOC was quantified utilizing a total organic carbon (TOC) analyzer (MULTI N/C
2100, Analytik Jena, Germany, purchased in Beijing, China). Water samples underwent
filtration using a 0.45 µm filter membrane prior to analysis to quantify the concentration of
dissolved organic carbon. This section of the analysis employed a differential subtraction
method to reduce errors associated with the measurement of organic carbon.
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2.2.3. UV254 Measurement

Temperature variations and pH levels in the water samples were observed through
the utilization of a thermometer and a pH meter, respectively. During the experiments,
the pH range was controlled by utilizing 0.05 mol/L NaOH and 0.05 mol/L H2SO4 buffer
solutions. Prior to conducting the experiments, the pH meter underwent calibration using
standard solutions with pH values of 4.0, 6.86, and 9.18.

2.2.4. Other Relevant Indicators

(1) Organic Matter Degradation Rate

η =
C0 − Ct

C0
× 100% (1)

where η represents the degradation rate of organic matter (%); C0 represents the initial
concentration of organic matter (mg/L); and Ct represents the concentration of organic
matter at time t (mg/L).

(2) Specific Electrical Energy per Order (EE/O)

EE/O =
P × T

60 × V × log(C0/C)× 1000
(2)

where EE/O represents the specific electrical energy per order ((kWh)/m3); P represents
the power of illumination (W); t represents the reaction time (min); V represents the volume
of treated water (m3); and C0 and C represent the initial and final concentrations of HA
(mg/L), respectively.

2.3. Experimental Operation and Procedures

Before initiating the experiment, it is necessary to allow a 20-minute preheating
period for the UV lamp. Before initiating the device, it is placed on a magnetic stirrer
to guarantee homogeneous mixing and uphold a consistent temperature throughout the
reaction. The preheated UV lamp is subsequently inserted into the internal sleeve, and the
circulating water system is then attached at the inlet. The reaction solution and associated
chemicals are introduced into the glass tube to guarantee uniform exposure of the water
sample to UV radiation. The apparatus is enveloped in opaque aluminum foil to reduce
external light interference and shield the experimenter’s eyes from potential harm caused
by UV radiation. Once the UV lamp is activated, in conjunction with the condensation
circulation system and the magnetic stirrer, the chemical reaction can commence. The
reaction temperature is consistently maintained at 25 ± 3 ◦C throughout the duration of the
experiment. Each experimental group carries out 3 parallel tests. An oxidant with a specific
concentration is introduced into the reactor, followed by the activation of the magnetic
stirrer at a consistent speed of 630 rpm. Tap water is utilized for condensation purposes to
maintain a stable reaction temperature. After the completion of the reaction under different
conditions, a specific volume of the reaction solution is gathered, and the reaction is halted
for subsequent analysis and measurement. In order to ensure the authenticity and reliability
of the data, all the data in this experiment were obtained by taking the mean value from
three parallel experiments, and the error bars were added in the plotting process to indicate
the range of error.

3. Results and Discussion
3.1. Degradation Efficiency of HA by UV/PMS in Aqueous Solutions

Under the experimental conditions of UV radiation intensity at 3.28 mW/cm2, initial
solution pH at 7, initial concentration of HA at 10 mg/L, and the addition of 3 mmol/L
PMS, the solution temperature was controlled at 25 ± 3 ◦C with a stirring rate of 630 rpm.
The reaction was carried out for a duration of 180 min. The degradation effects of HA were
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examined using three experimental configurations: isolated UV irradiation, isolated PMS
treatment, and the combined UV/PMS process.

Figure 3 illustrates the degradation rates when subjected to isolated conditions of UV
irradiation and PMS oxidation. For the isolated UV treatment, the degradation rates for
COD, TOC, and UV254 were 11.01%, 9.84%, and 23.33%, respectively. For the oxidation of
isolated PMS, the degradation rates for COD, TOC, and UV254 were 10.8%, 19.91%, and
27.7%, respectively. In the isolated UV system, the introduction of UV energy facilitated the
cleavage of specific chemical bonds in the pollutants [23], leading to the partial degradation
of organic compounds even in the absence of an oxidizing agent. UV photolysis of H2O,
however, produces a minimal quantity of •OH radicals with restricted oxidative potential,
leading to decreased degradation rates for HA. In the isolated PMS system, the stability
of PMS is relatively high, and its lower redox potential (E0 = 1.82 V) limits the oxidation
and degradation of organic compounds, resulting in incomplete removal of organics [24].
Consequently, both isolated UV and isolated PMS processes demonstrated low degrada-
tion efficiencies for COD, TOC, and UV254, indicating their suboptimal performance in
removing HA.
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Under the same experimental conditions, the UV/PMS process exhibited significantly
higher degradation rates for COD, TOC, and UV254 compared to the individual UV or PMS
processes, achieving rates of 94.12%, 91.65%, and 92.51%, respectively. In Figure 4, the
energy input from UV radiation causes O-O bond in PMS to split. This activation process
involves external energy exceeding the bond energy (140~213.3 kJ/mol) [25], leading to the
cleavage of the peroxide bond in PMS and the generation of SO4

−• radicals and •OH. These
radicals are potent oxidizing agents that can rapidly degrade various pollutants [26–28].
Therefore, the UV/PMS process is more advantageous for HA degradation compared
to the use of UV or PMS alone. Additionally, the UV/PMS process can oxidize organic
compounds that are not effectively degraded by PMS alone.
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3.2. Degradation Efficiency of HA by UV/PDS in Aqueous Solutions

Under experimental conditions, a UV radiation intensity of 3.28 mW/cm2, a solution
temperature of 25 ± 3 ◦C, an initial solution pH of 7, and an initial concentration of 10 mg/L
of HA, 3 mmol/L of PDS was introduced. The reaction lasted for 180 min with a stirring
rate of 630 rpm. The degradation effects of HA were examined using 3 experimental
configurations: isolated UV, isolated PDS, and a combined UV/PDS process. The study
aimed to evaluate the effectiveness of UV/PDS AOP in degrading HA.

In Figure 5, when subjected to isolated UV irradiation, the degradation rates for COD,
TOC, and UV254 were 11.01%, 9.84%, and 23.33% respectively. Conversely, under isolated
PDS oxidation, the degradation rates were 24.14% for COD, 16.28% for TOC, and 13.27%
for UV254. However, when subjected to identical experimental conditions, the UV/PDS
process increased the degradation rates to 89.81% for UV254, 93.60% for COD, and 89.53%
for TOC. In comparison to the individual processes of UV and PDS, the combined UV/PDS
process significantly enhanced the mineralization rate of HA. In the UV/PDS system,
the PDS compound is activated under UV radiation, leading to the generation of SO4

−•
radicals possessing a high oxidative potential (Figure 6). These radicals participate in
electron transfer, addition, and hydrogen abstraction reactions with organic pollutants.
This process breaks down the organic matter into smaller, more degradable molecules,
leading to increased degradation rates of organic compounds [30].
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3.3. Degradation Efficiency of HA by UV/SPC in Aqueous Solutions

The experiment was carried out under conditions with a UV radiation intensity of
3.28 mW/cm2, an initial solution pH of 7, and an initial concentration of HA at 10 mg/L.
SPC was introduced into the solution at a concentration of 3 mmol/L. The solution temper-
ature was controlled at 25 ± 3 ◦C, while the stirring speed was adjusted to 630 rpm. The
duration of the reaction was 180 min. Figure 7 depicts the degradation efficiencies of HA
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through three processes: isolated UV treatment, isolated SPC treatment, and the combined
UV/SPC process.
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In Figure 7, during isolated SPC oxidation, the degradation rates for COD, TOC, and
UV254 were 17.21%, 15.79%, and 12.48% respectively. Conversely, under isolated UV irradi-
ation, the degradation rates were 11.01% for COD, 9.84% for TOC, and 23.33% for UV254.
However, when subjected to identical experimental conditions, the integrated UV/SPC
process demonstrated degradation efficiencies of 89.81% for UV254, 81.47% for COD, and
56.00% for TOC. This suggests that the UV/SPC process offers superior degradation effi-
ciencies for organic compounds in comparison to the separate processes of SPC and UV.
However, its efficacy is not as pronounced as that of the UV/PMS and UV/PDS systems.
The relatively low rate of TOC degradation indicates the breakdown of large molecular
organic compounds into smaller molecules, suggesting that HA was not fully mineralized.
The decomposition of organic compounds takes place as SPC dissolves in water, leading
to the production of hydrogen peroxide (H2O2). Upon exposure to UV radiation, H2O2
becomes activated and generates highly reactive •OH radicals.

Yuan et al. [31] illustrated in their research on the elimination of HA from water
through UV/SPC that H2O2 generated from the breakdown of SPC is probably the main
supplier of oxidative capability in UV/SPC system. Additionally, the gradual degradation
of SPC in water results in the continuous production of H2O2, thereby inhibiting the self-
decomposition of H2O2 and augmenting the oxidative efficiency of UV/SPC system. With
an increase in the concentration of SPC, there is a corresponding increase in the generation
of highly reactive species such as •OH radicals, thereby enhancing the degradation of
HA. However, an overabundance of SPC could potentially scavenge •OH, leading to the
formation of hydroperoxy radicals (HO2

−•) (Equation (3)) [32,33]. Considering that HO2
−•

exhibits lower oxidative potency, an excess of SPC may reduce the effectiveness of the
system in eliminating HA.

•OH + H2O2 → HO2
−•+ H2O (3)

3.4. Degradation Efficiency of HA by UV/S(IV) in Aqueous Solutions

The experiment was carried out under specific conditions, including a UV radiation
intensity of 3.28 mW/cm2, an initial solution pH of 7, and an initial concentration of HA
at 10 mg/L. S(IV) was introduced into the solution at a concentration of 3 mmol/L, while
the solution temperature was controlled at 25 ± 3 ◦C, and the stirring speed was adjusted
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to 630 rpm. The reaction persisted for a duration of 180 min. The efficiency of organic
matter decomposition was examined using three experimental configurations: isolated UV
irradiation, isolated S(IV) treatment, and a combined UV/S(IV) process. Sampling and
analytical results demonstrating the degradation effects of HA by these three processes are
depicted in Figure 8.
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In Figure 8, during isolated S(IV) oxidation, the degradation rates for COD, UV254,
and TOC were 11.22%, 18.76%, and 9.44%, respectively. Conversely, under isolated UV
irradiation, the degradation rates were 11.01% for COD, 23.33% for UV254, and 9.84% for
TOC. Under identical experimental conditions, the UV/S(IV) process resulted in degra-
dation rates of 32.14% for UV254, 35.06% for COD, and 36.88% for TOC. A comparative
analysis indicates that UV/S(IV) process does not substantially improve the degradation
efficiencies in comparison to the individual treatments, suggesting suboptimal efficiency in
organic degradation. The results indicate that there is minimal degradation of HA within
UV/S(IV) system. This is attributed to the low generation of radicals and the intricate, high
molecular weight structure of HA, which encompasses numerous functional groups that
pose challenges for decomposition. In UV/S(IV) system, the main reactive species are S(IV)
radicals (SO3

−•) and hydrated electrons (e−aq) as denoted in Equation (4). In the presence
of oxygen, SO3

−• species can undergo further transformation into PMS (SO5
−•). The

e−aq is rapidly captured as a result of its high reaction rate constant (≥1010 M−1·s−1) [34],
leading to the formation of superoxide radicals (O2

−•). The oxidative potential of O2
−•

is lower than that of •OH and SO4
−•. Consequently, the UV/S(IV) collaborative system

exhibits a significantly reduced capacity for organic degradation in comparison to the other
collaborative systems previously examined. Furthermore, as demonstrated in Equations (5)
to (7), in aerobic environments, the UV/S(IV) system has the potential to produce SO4

−•.
Therefore, the reactive species SO3

−•/SO5
−•, O2

−•, and SO4
−• have the potential to

enhance the degradation of HA [35].

SO2−
3 (hv) → SO−

3 •+ e−aq (4)

SO−
3 •+ O2 → SO−

5 • (5)

SO−
5 •+ SO3

2− → SO−
4 •+ SO2−

4 (6)

2SO−
5 • → 2SO−

4 •+ O2 (7)
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3.5. Comparison of Oxidant Efficacy in HA Degradation

A comparative study was conducted under identical experimental conditions to assess
the degradation effectiveness of PMS, PDS, sodium SPC, and S(IV) in oxidative synergy
systems for HA. The degradation effects of each synergistic system were examined, and
the results are illustrated in Figure 9. In UV/oxidant processes, the degradation of HA
by varying concentrations of oxidants exhibited pseudo-first-order kinetics. The specific
first-order kinetic constants (kobs) are shown in Table 2.
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Table 2. Comparison of rate constants and economic efficiency for different processes.

System First-Order Kinetic Equation kobs
(min−1) R2 EE/O ((kWh)/m−3)

UV/PMS Ln(C0/C) = 0.01034t + 0.1516 0.01034 0.928 0.0157
UV/PDS Ln(C0/C) = 0.0094t + 0.1355 0.00940 0.919 0.0204
UV/SPC Ln(C0/C) = 0.00342t + 0.0147 0.00342 0.975 0.0561
UV/S(IV) Ln(C0/C) = 0.00051t + 0.0077 0.00051 0.978 0.3750

Under experimental conditions, a UV radiation intensity of 3.28 mW/cm2, an initial
solution pH of 7, an initial HA concentration of 10 mg/L, and the addition of 3 mmol/L
AOPs were employed. The reaction was carried out at a solution temperature of 25 ± 3 ◦C
with a stirring speed of 630 rpm for 240 min. In Figure 9, the individual processes (e.g.,
UV, PMS, PDS, SPC, and S(IV)) employed for HA degradation resulted in minimal miner-
alization. C/C0 values for HA were 92.16%, 81.17%, 83.72%, 83.33%, and 88.43% for UV,
PMS, PDS, SPC, and S(IV) processes, respectively. Consequently, the mineralization rates
were below 15%. In contrast, UV/AOPs synergistic systems such as UV/PMS, UV/PDS,
and UV/SPC exhibited enhanced mineralization efficiency, as evidenced by C/C0 values of
5.85%, 10.47%, and 44.00%, resulting in mineralization rates of 94.15%, 89.53%, and 56%,
respectively. Among the synergistic processes, UV/S(IV) exhibited the lowest performance,
achieving a C/C0 value of 80.20% and a mineralization rate of merely 19.8%. A comparative
analysis reveals that depending exclusively on UV irradiation or oxidants is inadequate for
producing a significant quantity of radicals essential for the efficient mineralization of HA.
The activation of oxidants via external energy input is crucial for the generation of highly
oxidative radicals. These radicals play a key role in breaking down large organic molecules
into inorganic substances. This underscores the synergistic effect of integrating UV/AOPs,
which enhances the breakdown of organic substances.
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In Figure 10, following a 240-minute reaction period in the oxidation systems, UV254
degradation efficiencies for the UV/PMS, UV/PDS, UV/SPC, and UV/S(IV) processes
were 95.07%, 89.81%, 87.64%, and 32.14%, respectively. The degradation efficiencies of
COD were 96.26%, 93.16%, 81.47%, and 35.06%, respectively. The comparison indicates that
the highest UV254 and COD degradation efficiencies were observed in the UV/PMS and
UV/PDS processes, while the UV/S(IV) process exhibited the lowest efficiency, followed by
the UV/SPC process. Analysis of the first-order kinetic equations fitted in Table 1 reveals
that kobs for UV/PMS treatment was determined to be 0.01034 min−1, signifying the
highest degradation efficiency. The rate constant for the UV/PDS system was determined
to be 0.00940 min−1, which was marginally lower compared to the rate constant of the
UV/PMS system. The kobs values for the UV/SPC and UV/S(IV) synergistic processes
were 0.00342 min−1 and 0.00051 min−1, respectively. These values suggest lower rates of
organic matter degradation in comparison to the UV/PMS and UV/PDS processes.
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The comparative analysis indicated that UV/PMS process demonstrated superior min-
eralization and degradation efficiency for HA. PMS exhibits superior oxidizing properties
due to its dipole-asymmetric structure and high oxidation potential. Its low molecular
orbital energy enhances its electron acceptance capabilities [36], thereby promoting easier
activation and the generation of crucial reactive radicals. These radicals efficiently elim-
inate organic substances from water. While PDS also demonstrates favorable oxidative
characteristics, its symmetrical molecular configuration enhances its stability and makes
it more challenging to trigger the release of SO4

−•. Consequently, a higher amount of
UV radiation energy is necessary to produce radicals, as evidenced in Table 1. This elu-
cidates the reason behind the higher EE/O for PDS (0.0204 (kWh)/m3) compared to PMS
(0.0157 (kWh)/m3). Subsequent to PMS and PDS, SPC and S(IV) demonstrate elevated
EE/O values of 0.0561 (kWh)/m3 and 0.3750 (kWh)/m3, respectively.

Upon evaluation of the degradation efficiency of organic matter, mineralization rates,
and the economic analysis of specific electrical energy consumption, it can be concluded
that the UV/PMS synergistic system represents the optimal option for the elimination of
HA. Subsequent to UV/PMS, the UV/PDS synergistic system and UV/SPC synergistic
system have demonstrated effectiveness, while the UV/S(IV) synergistic system has shown
to be the least effective.
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3.6. Effect of External Conditions on the UV/PMS Process for HA Degradation

This study examines the effect of the initial solution pH, duration of illumination,
concentration of oxidant, and concentration of HA on the efficiency of the UV/PMS process
for removing HA. The particular effect mechanisms were examined to ascertain the most
favorable operational parameters.

3.6.1. Effect of Initial Solution pH on HA Degradation

The initial pH value of the solution affects the molecular form, solubility of HA, radical
generation, and activation of PMS [37,38]. This experiment investigated the degradation of
HA under various initial pH conditions (3, 5, 7, 9, 11). Under the specified experimental
parameters, including a UV radiation intensity of 3.28 mW/cm2, an initial concentration of
10 mg/L of HA, the addition of 3 mmol/L of PMS, a solution temperature held at 25 ± 3 ◦C,
and a stirring speed of 630 rpm, the reaction was carried out for 180 min while varying the
initial pH values. The results of the sampling and detection are depicted in Figure 11.
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In Figure 11, the pH level exerts an impact on the elimination of HA. At a pH of 5, the
degradation efficiency of organic matter was maximized, with UV254 and COD degradation
efficiencies reaching 96.15% and 98.92%, respectively. This resulted in nearly complete
mineralization of HA in the solution. The subsequent most significant achievement was
observed at a pH of 3, with UV254 and COD degradation efficiencies reaching 95.58% and
95.88%, respectively. For pH values within the range of 7 to 11, the rates of UV254 and
COD degradation were marginally lower compared to those observed in acidic solutions.
However, with an increase in pH, the degradation efficiencies exhibited a gradual upward
trajectory, peaking at 92.53% and 93.12% at pH 11. The correlation coefficients (R2) pre-
sented in Table 3 demonstrate that the degradation efficiency of HA under various pH
conditions adheres to pseudo-first-order reaction kinetics. The first-order kinetic constants
indicate that the rate of organic matter degradation was highest at pH = 5, followed by
pH = 3, pH = 11, pH = 9, and pH = 7. The calculated results align with the data depicted in
Figure 11.

Under conditions of high acidity, molecules of HA remain neutral, thereby augmenting
their photochemical activity in comparison to conditions that are neutral or alkaline [39].
An initial acidic pH level enhances light absorption and photochemical reactions, conse-
quently facilitating the efficient decomposition of HA when exposed to UV irradiation.
During the alkaline activation of PMS, the main reactive species produced include •OH
radicals, singlet oxygen (1O2), and O2

−•, which exhibit lower oxidative potentials in com-
parison to SO4

−•. Furthermore, in alkaline environments, the reaction between SO4
−• and
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•OH diminishes the oxidation potential of UV-activated persulfates (Equation (8)) [40,41].
This leads to a decrease in the oxidative capacity of UV/PMS at elevated pH values (7~11)
in contrast to lower pH values (3~5) [42]. Consequently, slightly acidic conditions are more
conducive to the degradation of HA in UV/PMS reaction system, resulting in the highest
degradation efficiency for organic matter.

SO4•− + •OH → HSO5
− k = 1.1 × 1010 M−1S−1 (8)

There was a decrease in pH levels towards the conclusion of this study. This phe-
nomenon may be ascribed to the conversion of OH− to •OH throughout the reaction and
the potential generation of acidic compounds within the system, resulting in a decline
in pH.

Table 3. Kinetic fitting of HA degradation at different pH levels.

HA First-Order Kinetic Equation kobs
(min−1) R2

3 Ln(C0/C) = 0.01467t + 0.0414 0.01467 0.9868
5 Ln(C0/C) = 0.01763t + 0.0585 0.01763 0.9850
7 Ln(C0/C) = 0.00912t + 0.0573 0.00912 0.9856
9 Ln(C0/C) = 0.01249t + 0.0483 0.01249 0.9907
11 Ln(C0/C) = 0.0139t + 0.05940 0.01390 0.9808

3.6.2. Effect of Illumination Time on HA Degradation

Under the specified experimental parameters, including a UV radiation intensity of
3.28 mW/cm2, an initial concentration of 10 mg/L of HA, the presence of 3 mmol/L of
PMS, a solution temperature held at 25 ± 3 ◦C, and a stirring speed of 630 rpm, the reaction
proceeded for 180 min at the pre-established optimal initial pH. This study aimed to
investigate the effect of varying illumination durations on the degradation of HA through
the UV/PMS process. The results are illustrated in Figure 12.
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In Figure 12, the degradation efficiencies of UV254 and COD exhibited a gradual
increase with extended illumination time. After 90 min, there was a deceleration in the rate
of increase, suggesting a positive correlation between the degradation efficiency of HA in
the UV/PMS synergistic process and the duration of illumination. At the conclusion of the
experiment, the elimination percentages for UV254 and COD stood at 96.02% and 97.12%,
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respectively, while the presence of HA in the solution led to near-complete mineralization.
Figure 13 demonstrates that an extended exposure to light resulted in a transition of
the solution’s color from dark brown to light yellow. After a duration of 90 min, it was
significant that the solution exhibited a nearly transparent appearance. This indicates that
prolonged exposure to light results in the generation of additional reactive radicals, thereby
augmenting the mineralization rate of HA [43].
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3.6.3. Effect of Oxidant Concentration on HA Degradation

The concentration of the oxidant (i.e., PMS) exerts an impact on the degradation
efficacy of HA. Higher concentrations of oxidants can lead to an increased generation of
oxidative radicals, consequently augmenting the degradation process. This study seeks to
examine the true effect of PMS concentration on the degradation of HA. The experimental
conditions were established as follows: UV radiation intensity (I0) was set at 3.28 mW/cm2,
the initial concentration of HA was 10 mg/L, the solution temperature was maintained
at 25 ± 3 ◦C, the stirring speed was set at 630 rpm, and the initial pH was adjusted to 5.
The PMS oxidant was introduced at concentrations of 1 mmol/L, 2 mmol/L, 3 mmol/L,
4 mmol/L, 5 mmol/L, and 6 mmol/L. The experiment was carried out for a duration of
180 min to investigate the effect of varying PMS concentrations on the degradation of HA
in UV/PMS system. The experimental results are depicted in Figure 14.
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In Figure 14, the degradation efficiencies of UV254, COD, and TOC exhibited a con-
tinuous increase with the rise in oxidant concentration at low levels of PMS (1 mM/L,
2 mM/L, 3 mM/L, 4 mM/L), eventually reaching peak values of 96.47%, 96.29%, and
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94.16%, respectively. The efficiency of UV254 degradation exceeded that of TOC, suggesting
that selective oxidants exhibit a higher reactivity towards UV254 or fluorescent additives
(e.g., aromatic groups). Higher concentrations of oxidants typically result in increased
degradation efficiencies of organic matter [44]. However, upon surpassing a PMS concentra-
tion of 4 mM/L, a masking phenomenon was observed [45]. Consequently, the degradation
efficiencies of UV254, COD, and TOC decreased to 88.58%, 89.52%, and 86.31%, respec-
tively. This decrease suggests an inhibitory effect of elevated oxidant concentrations on the
degradation of HA. The analysis indicated that at elevated concentrations of PMS, there
is an increased likelihood of quenching reactions occurring between radicals (Equations
(9) and (10)) [46], as well as between excess persulfate and SO4

−• and •OH (Equations
(11) and (12)) [47]. This leads to a reduction in the reaction rate between radicals and HA,
consequently affecting the degradation efficiency negatively.

SO−
4 •+ H2O → HSO−

5 + •OH (9)

HSO5
− + •OH → SO5

−•+ H2O (10)

SO4
−•+ H2O → HSO5

− + •OH (11)

•OH + •OH → H2O2 (12)

Additionally, the efficiency of degradation is also affected by the technique of oxidant
addition. The gradual and continuous addition of the oxidant to the reaction system can
help to sustain the radical concentration within an optimal range, thereby enabling the
continuous and efficient degradation of HA. This approach proves to be more effective
compared to a single-dose addition.

3.6.4. Effect of HA Concentration

Under the specified experimental parameters, including I0 of 3.28 mW/cm2, a solution
temperature of 25 ± 3 ◦C, a stirring speed of 630 rpm, an initial pH of 5, and a PMS
concentration of 3 mmol/L, HA was synthesized at varying initial concentrations of 5 mg/L,
10 mg/L, 15 mg/L, 20 mg/L, and 25 mg/L. The experiment was carried out over a duration
of 180 min to examine the effect of the concentration of HA on the efficacy of degradation
in UV/PMS system. The experimental results are depicted in Figure 15.
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In Figure 15, larger initial concentrations of HA led to decreased degradation efficien-
cies, without any discernible optimal concentration. When the initial concentration of HA
was raised from 5 mg/L to 25 mg/L, the degradation efficiencies of UV254, COD, and TOC
decreased from 96.02%, 97.12%, and 95.05% to 86.44%, 85.98%, and 82.91%, respectively. In
comparison to UV254, the degradation efficiency of HA’s TOC was found to be lower. This
suggests that certain UV-absorbing units or fluorophores underwent partial oxidation to
form low molecular weight compounds instead of complete mineralization [48]. Table 4
illustrates that elevated initial concentrations of HA lead to decreased degradation rates of
organic matter.

Table 4. Kinetic fitting of HA degradation at different initial substrate concentrations.

HA First-Order Kinetic Equation kobs
(min−1) R2

5 Ln(C0/C) = 0.0167t + 0.7213 0.0167 0.9841
10 Ln(C0/C) = 0.0149t + 0.6789 0.0149 0.9812
15 Ln(C0/C) = 0.0121t + 0.6591 0.0121 0.9936
20 Ln(C0/C) = 0.011t + 0.6139 0.0110 0.9868
25 Ln(C0/C) = 0.0098t + 0.5631 0.0098 0.9886

The sluggish elimination of HA can be attributed to several potential factors, including
the following: 1⃝ A reduction in the quantity of oxidative radicals at a specific persulfate
dosage and UV intensity level. As the concentration of organic matter increases, HA and its
degradation byproducts compete for SO4

−• and •OH radicals [49]. 2⃝ The augmentation
of HA concentration results in a visual darkening of the solution, thereby diminishing its
transparency. UV radiation is subsequently obstructed and assimilated by HA molecules
and their decomposition intermediates, thereby impeding the activation of PMS [50]. 3⃝ HA
functions as a scavenger of SO4

−• and •OH, effectively consuming elevated quantities of
reactive radicals [51]. Therefore, in scenarios with ample oxidants, increased concentrations
of HA necessitate extended durations to attain equivalent degradation efficiencies.

In summary, within the specified parameters of UV radiation intensity I0 = 3.28 mW/cm2,
solution temperature of 25 ± 3◦C, stirring speed of 630 rpm, and initial HA concentration of
10 mg/L, a reaction duration of 180 min, the optimal conditions were identified as an initial
reaction pH of 5 and PMS concentration of 3 mmol/L. Under the optimal conditions described,
the highest removal efficiencies recorded were a COD degradation efficiency of 96.32%,
UV254 degradation efficiency of 97.34%, HA mineralization rate of 92.09%, and an EE/O of
0.0149 (kWh)/m3. Table 5 shows the comparison with previous studies.

Table 5. Degradation performance of HA by different UV/AOPs processes.

Processing Concentration pH AOPs Time Degradation Rate Reference

UV/PMS (H2SO5) 2 mg·L−1 7 PDS: 0.5 mmol·L−1 180 min 100% [10]

UV/SPC (Na2CO3) 5 mg·L−1 9.9 SPC: 0.5 mmol·L−1 90 min 92.1% [31]

UV/SPB (NaBO3) 10 mg·L−1 3 SPB: 1 mmol·L−1 60 min 88.8% [39]
UV/H2O2 15 mg·L−1 4 H2O2: 3 mmol·L−1 180 min 21.9% [45]

UV/PDS (H2S2O8) 6 PDS: 3 mmol·L−1 120 min 92.9% [45]
UV/PMS (H2SO5) 10 mg·L−1 3 PMS: 3 mmol·L−1 180 min 92.09% This work

4. Conclusions

This study explored the degradation efficiency of HA through the utilization of UV254,
COD, TOC degradation efficiencies, and EE/O as economic metrics to evaluate and contrast
the effectiveness of different UV/AOPs synergistic processes in comparison to individual
processes. The results suggested that both the individual oxidant and UV processes
exhibited significantly lower efficacy in treating HA in comparison to the synergistic
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processes. Among the synergistic processes, UV/PMS exhibited the highest performance,
achieving a mineralization rate of up to 94.15%, followed by UV/PDS and UV/SPC.
The UV/S(IV) process exhibited the lowest effectiveness, achieving a mineralization rate
of only 19.8%. Further exploration of the variables influencing the UV/PMS treatment
of HA indicated that acidic environments were more favorable for the degradation of
HA, with an optimum pH level of 3. The rate of HA degradation was determined to be
directly proportional to the duration of illumination and inversely proportional to the
initial concentration of the reactants. The optimal concentration of the oxidant was found to
be 3 mmol/L. Under the experimental conditions with an initial concentration of 10 mg/L
for HA, 3 mmol/L for PMS, and a starting pH of 5, the reaction was carried out for 180 min.
The results showed significant degradation efficiencies: a COD degradation efficiency of
96.32%, a UV254 degradation efficiency of 97.34%, HA mineralization rate of 92.09%, and
an EE/O ratio of 0.0149 (kWh)/m3. The results illustrate the high efficacy of the UV/PMS
synergistic system in the degradation and mineralization of HA in water.
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