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Abstract: The use of pumps as turbines has been gaining more and more attention in recent years. The
present work mainly investigates the influence of blade wrap angle on the internal flow and pressure
fluctuation characteristics of centrifugal pumps as turbines. Five different wrap angles (35◦,45◦, 55◦,
65◦, and 75◦) for a forward-curved impeller were numerically analyzed under multiple operating
conditions. The accuracy of numerical simulation was validated by experimental results. The results
show that maximum efficiency is achieved with a blade wrap angle of 35◦, and the highest efficiency
flow point gradually decreases as the blade wrap angle increases. It is found by conducting entropy
production theory analysis that the high-entropy production rate regions in PATs are concentrated
in the volute tongue and impeller blade inlet regions, and that the entropy production rate at the
impeller inlet region increases and then decreases as the blade wrap angle decreases. In addition,
pressure pulsation was affected not only by dynamic and static interference but also by an irregular
vortex around the impeller; its magnitude under Qt is higher than 0.8Qt for blade wrap angles of
55◦ and 75◦. The primary frequency of pressure pulsation within the impeller is the axial frequency
fn and its multiples, and the frequency with the largest amplitude is 3fn. The periodicity of vortices
is closely related to the periodicity of pressure pulsation. And it is suggested that a PAT with a 35◦

blade wrap angle is advantageous for improving the stability of a turbine.

Keywords: pump as turbine; forward-curved blades; blade wrap angle; pressure pulsation

1. Introduction

The perpetual increase in energy demand is the foremost issue facing various aspects
of today’s society, economy, and technology. The capacity to fully utilize renewable energy
resources is a crucial factor in achieving sustainable development. A significant amount of
high-pressure liquid energy is unnecessarily wasted in various industrial processes, such
as those in petrochemicals, the coal chemical industry, sea water desalination, and steel
metallurgy. With the development of liquid residual pressure energy recovery technology,
surplus energy can be recuperated and effectively employed through the deployment of
pumps as turbines (PATs) [1–3]. Turbines offer benefits such as compact dimensions, uncom-
plicated architecture, and cost efficacy, and facilitate manufacturing and maintenance [4].
In particular, a forward-curved blade impeller for a PAT was developed to improve the
hydraulic performance of PATs.

The hydraulic efficiency of PATs is 2%, which is ~ 8.5% lower than pump operating
conditions, and the high efficiency region is narrow, and the operation is unstable in PATs.
Numerous scholars have begun to research PATs, focusing on improving the hydraulic
performance of PATs. Yang et al. [5] carried out a study on the influence of impeller diameter
on efficiency in the operating range, and found that a PAT theoretical head increased and
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its required pressure head decreased in accordance with increasing impeller diameter.
Afterwards, they also [6] studied overall performance and unsteady pressure fields under
different radial gaps between impeller tips and a volute tongue, and an optimal radial gap
was found for a PAT to achieve its highest efficiency. Shahram and colleagues [7] discovered
the most effective efficiency point for industrial centrifugal pumps as turbines through
theoretical analysis. Ji et al. [8] performed multi-objective optimization of an impeller
for improving the efficiency of PATs, and they found that blade wrap angle, blade inlet
width, and number of blades have a significant impact on turbine efficiency. Punit et al. [9]
developed an optimization program for the operation of radial flow centrifugal pumps
as turbines, which has undergone experimental validation. Shi et al. [10] analyzed the
influence of guide vane numbers on the performance of PATs. Zhang et al. [11] optimized
a hydraulic model of a turbine impeller to enhance the recovery efficiency of energy
recuperation turbines in seawater desalination systems, leading to amendments in both
efficiency and the head. Sanjay et al. [12] investigated the influence of geometric and
operational parameters on the performance of PATs, and they found that impeller trimming
led to an improvement in efficiency at part-load operating conditions, and that blade
rounding can lead to a 3–4% rise in efficiency at rated speed with the original impeller.
Maxime et al. [13] investigated the effect of runner blade design on PAT pressure field
characteristics, and found that the Rh20 model had the highest level of pressure pulsation
amplitudes, while the Rh15 model had the lowest level.

However, these studies retained the pristine pump form of the turbine impeller, namely,
the back-curved blade impeller, without considering the operating conditions of the pump
as turbine, and thus having some circumscriptions. This type of turbine demonstrated that
it has low efficiency with a narrow high-efficiency range, which obstructs its application and
promotion. Therefore, more attention was paid to study PATs with a forward-curved blade,
and their performance was compared with a back-curved blade. Bai et al. [1] superseded
the backward-curved blade impeller with a forward-curved one, and investigated the effect
of different blade wrap angles on the performance and flow characteristics of a turbine
utilizing numerical simulation. Wang et al. [14] designed a special impeller with forward-
curved blades to improve the performance of PATs, and it was found by comparison with
the original backward-curved impellers that the experimental maximum efficiencies of
special forward-curved impellers of three various specific speeds were more significantly
increased, and the flow efficiency curve was flatter. In addition, they [15] also investigated
one kind of special impeller with forward-curved blades, and found that the flow rate of the
best efficiency point increased with extension of the blade inlet angles. Additionally, energy
loss within the impeller reached the minimum if a suitable blade inlet angle was selected.
Qi et al. [16] investigated a numerical comparison of the flow loss of back-curved and
forward-curved blade energy instauration turbines predicated on the entropy generation
theory. There is very little research mainly investigating geometric parameters on the
performance of PATs with forward-curved blades. Wang et al. [17] studied the effect of
blade inlet angle on the external characteristics of a forward-curved blade centrifugal pump
as turbine, and found that an incrementation in the blade inlet angle caused a shift of the
turbine efficiency peak to a higher flow rate.

The above research shows that more scholars were focusing on studying the influence
of geometric parameters on the performance of backward-curved PATs, and also paid
attention to comparing PATs with forward-curved and back-curved blades. However,
in-depth research and analysis on the performance and pressure pulsation characteristics
of PATs with forward-curved blades are scarce. Therefore, in this study, with all other
geometric parameters kept constant, we designed six geometric models of forward-curved
blades for pumps as turbines. This design involved modifications in the blade wrap angle,
as shown in Figure 1. In this paper, the effects of blade wrap angle on the internal flow
pattern, entropy production loss, and pressure pulsation in the blade and volute regions
of PATs are investigated. This analysis provides theoretical guidance for the design of an
optimal blade wrap angle.
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2. Entropy Production Theory

The concept of entropy production originates from the Second Law of Thermody-
namics. By quantifying the entropy production associated with flow components in a
pump as turbine (PAT), unstable regions within the flow can be effectively identified, and
energy losses in the flow field can be accurately delineated. Entropy production within the
pump can be categorized into four distinct types: direct dissipation, turbulent dissipation,
average temperature gradient, and pulsating temperature gradient [3]. Given that pumps
typically use pure water as the operational medium, entropy production resulting from
temperature fluctuations is relatively minor, rendering internal heat exchange negligible.
Consequently, this study focuses primarily on direct dissipation and turbulent dissipation
when examining flow entropy production during PAT operation.

The entropy production rate generated by the average velocity (direct dissipative
entropy production rate) is calculated as follows:

Spro,D =
µ

T
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where µ is the dynamic viscosity; and u, v, and w are the three components of local velocity
in the cartesian coordinate system. T is the local temperature of the fluid particle.

The entropy production rate generated by pulsation, which can be calculated according
to the method proposed by FABIAN et al. [18], is calculated using the following formula:

Spro,D′ = β
ρωk

T
(2)

where β = 0.09; ω is the frequency of turbulent vortex viscosity; ρ is fluid density; and k is
the turbulent kinetic energy.

A strong wall effect exists in all entropy yields and the calculation formula of entropy
yields near the wall [19] is as follows:

Spro,W =
τυ

T
(3)

where τ is wall shear force and v is the local velocity magnitude of the first grid near
the wall.

The total entropy of the global computing domain is the sum of direct dissipation
entropy production ∆Spro,D, turbulent dissipation entropy production Spro,D′ , and entropy
production near the wall surface Spro,W . The entropy production of each part can be
obtained by integrating the local entropy production rate as follows:

∆Spro,D = ∆Spro,D + ∆Spro,D′ + ∆Spro,W (4)

∆Spro,D =
∫

V
Spro,DdV (5)

∆Spro,D′ =
∫

V
Spro,D′dV (6)
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∆Spro,W =
∫

A
Spro,WdA (7)

where V is the volume of the computing domain; and A is the wall area of the comput-
ing domain.

3. Geometric Model and Numerical Schemes
3.1. Pump-Turbine Model and Parameters

A single-stage forward-curved blade pump used as a turbine was studied. The main
parameters of the impeller and volute are shown in Table 1. The hydraulic components
encompass a suction chamber, shroud chamber, impeller, volute, hub chamber, and draft
tube, as illustrated in Figure 2. Its basic design parameters are as follows: the design flow
rate Qdes is 21.79 m3/s; the head H is 19 m; and the rated speed n is 1450 r/min.

Table 1. Design parameters of the turbine.

Component Parameters Value

Blade of PAT

impeller input diameter D1 (mm) 160
inlet width b1 (mm) 8

blade leading-edge angle βb2 (◦) 90
blade trailing-edge angle βb1 (◦) 30

blade wrap angle φ (◦) 35
number of blades Z 11

impeller outlet diameter D2 67.2

Volute
volute base circle D3 176

volute outlet width b3 20
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3.2. Mesh Generation and Independence Verification

Mesh generation is a crucial step that significantly influences the accuracy of numerical
calculations. In ANSYS ICEM, a hexahedral mesh structure was established to discretize
the entire computational domain. Hexahedral structural meshing was performed for six
calculation domains, including the inlet pipe, draft tube, shroud chamber, hub chamber,
impeller, and volute. Hexahedral structured meshes can significantly reduce the number
of mesh nodes and are useful for improving the accuracy of numerical simulations. Local
refinement was applied to the mesh near the blade surfaces and the tongue region of the
volute casing to ensure that the y+ value on the blade surface was below 50. Mesh density
significantly affects the accuracy of computational results. Thus, a mesh independence
study was conducted, as shown in Figure 3. It can be seen in the figure that the PAT
efficiency predicted by different mesh numbers shows a convergence trend especially
when the total number of mesh exceeds 5.8 million. Therefore, the error in the simulation
results caused by the number of mesh variations can be ignored. Finally, considering the
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trade-off between computational cost and accuracy requirements, the final mesh quantity
was determined to be 5.8 million, and the details of final mesh for the volute and impeller
are shown in Figure 4.
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3.3. Numerical Setting

Commercial CFD software, ANSYS CFX, was used to solve the steady and unsteady
3D Reynolds-averaged Navier–Stokes (RANS) equations. The SST k-ω turbulence model
was utilized to calculate eddy viscosity. The boundary condition was set as follows: the
total pressure was applied at the inlet of inlet pipe extension and the value was set to
1 atm; the mass flow rate was set on the outlet of the draft tube according to the operating
condition; and the reference pressure was set to 0 Pa. The turbulence level on the inlet
was set to medium (intensity = 5%). Additionally, the advection scheme and turbulence
numeric were setting to a high-resolution scheme, which can improve the precision of the
simulation. The rotating speed was set to 1450 rpm, and the rotating and stationary parts
were connected using the Frozen Rotor technique for steady simulation and using transient
interface for unsteady simulation. The simulation was considered to be converged when
the root mean square (root mean square, RMS) of the continuity and momentum equations
reached 10−5. For unsteady simulation, the time-step for transient numerical calculation
was the time required for the impeller to rotate 3 degrees, which is ∆t = 3.448 × 10−4 s,
and correspondingly, the impeller rotation requires 120 time-steps for one revolution. To
investigate the transient characteristics of the internal flow field under different turbine
operating conditions, considering the significant instability in the initial calculation, the
calculation data of the 7th to 10th rotation of the impeller were selected for further analysis.

This research not only focuses on the operational stability of PATs under the design
condition but also under part-load conditions. This is because complex flow patterns and
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a sudden drop in efficiency are more likely to happen under part-load conditions. Thus,
flow rates of 0.8Qt and Qt were selected for further research. To explore the influence of
blade wrap angle variation on the operational stability of PATs, the pressure pulsation
characteristics of PATs with blade wrap angles of 35◦, 55◦, and 75◦ were investigated
in detail in this research. Figure 5 shows the monitoring points P1–P8 on the impeller
and volute, and the static pressure at each monitoring point was obtained by unsteady
calculations. To facilitate the comparison of pressure pulsation amplitude and frequency,
the pressure coefficient was defined as follows:

Cp = (p − p)/0.5ρU2 (8)

where p is instantaneous pressure, Pa; and p is the time-average pressure, Pa. ρ is fluid
density, kg/m3; and U is the impeller outlet circumferential velocity, m/s. Impeller rotation
frequency f n = n/60 = 24.17 Hz; and blade frequency f is the rotation frequency of the
runner, f = f n × Z = 265.83 Hz, where Z is the number of blades.
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3.4. Verification of Computational Results through Experimental Studies

To verify the accuracy of the numerical calculations, a forward-curved impeller with
a wrap angle of 35 degrees was manufactured as shown in Figure 6, and the parameters
are listed in Table 1. The turbine was measured in the Fluid Machinery Engineering and
Technology Research Center laboratory of Jiangsu University [20]. The experimental set-up
is shown in Figure 7, and the testing equipment used during the data collection is shown
in Table 2. The simulation results were compared with experimental data, as shown in
Figure 8.
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in Figure 10. The comparison indicates that the numerical simulation results are smaller 
than the experimental results, which is due to the complexity of fluid flow in the pump, 
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Table 2. Range and precision of measuring instruments.

Instrument Type Measured Parameters Range Accuracy

Battery-powered flowmeter MEX-LDE volume flow Q (m3/h) 0–120 ±0.5%

Pressure transmitter MEX-3051TG inlet and outlet
pressure P (MPa) 0–1.6 ±0.05%

Eddy current dynamometer CWF11D torque M (N·m) 0–35 ±0.4%
Speed sensor rotate speed n (r/min) 0–10,000 ±1 r/min

Micro-dynamic pressure
sensor SCYG314 pressure pulsation P (Pa) 0–0.8 MPa ±0.5%
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The head H of the turbine refers to the energy reduction per unit weight of fluid
passing through the turbine, which can be calculated using the following formula:

H =
Pin − Pout

ρg
(9)

where Pin is the total pressure at the turbine inlet; Pout is the total pressure of the turbine
outlet; and ρ is the density of water.

Turbine efficiency η refers to the ratio of shaft power obtained by the turbine to input
power and is expressed as follows:

η =
Mω

ρgQH
(10)

where, M is the torque of the turbine; ω denotes turbine speed; and Q represents the turbine
flow rate.

In Figure 8, the largest relative errors between numerical calculations and experimental
results for efficiency and head are found at Q = 30.3 m3/h, which are less than 5%, and are
within an acceptable range. Therefore, the numerical calculation method proposed in this
paper is suitable for predicting the performance of the turbine.

In order to ascertain the accuracy of numerical simulation in predicting pulsation
characteristics, high-frequency pressure sensors were used to measure pressure pulsation
characteristics by creating threaded holes on the volute wall. The pressure sensor sampling
frequency was set at 2900 Hz (120 sampling points per cycle), with a sampling time of 60 s
for each operating condition. The pressure pulsation sensor was installed at monitoring
point V4 on the volute wall, as illustrated in Figure 9; this location corresponds to the
pressure pulsation monitoring point P4. The numerical simulation results for the impeller
under the Qt condition were compared with the experimental results, as depicted in
Figure 10. The comparison indicates that the numerical simulation results are smaller
than the experimental results, which is due to the complexity of fluid flow in the pump,
and numerical simulation cannot completely capture some complex flow characteristics.
However, the trends of the two curves in the figure are fundamentally consistent, with a
dominant frequency of 11f n. This means that the prediction of pulsation characteristics by
numerical simulation is accurate.
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4. Results and Discussion
4.1. Analysis of Performance Curves

According to the numerical simulation results, performance curves of the impulse tur-
bine with different forward-curved blade wrap angles were drawn, as shown in Figure 11.
When the blade wrap angle increased from 35◦ to 45◦, the maximum efficiency of the
turbine decreased from 74.85% to 74.29%. This could be attributed to a poor match between
the volute, impeller, and draft tube. Conversely, when the blade wrap angle increased
from 45◦ to 55◦, the maximum efficiency of the turbine increased from 74.29% to 74.81%.
However, when the blade wrap angle increased from 55◦ to 75◦, the maximum efficiency of
the turbine decreased from 74.81% to 74.01%. In the low flow rate region, the blade wrap
angle has little noticeable effect on efficiency. When the flow rate exceeds 30 m3/h, the
efficiency of all design points decreases rapidly as the blade wrap angle increases. This
phenomenon arises due to the blade wrap angle exceeding a particular value, causing
excessive friction torque due to overly long blades, resulting in substantial impact and
friction losses that negatively affect turbine efficiency.
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The flow rate ranges of the high-efficiency region with various turbine wrap angles
are listed in Table 3. The range of flow rates where efficiency is greater than or equal to
97% of the highest efficiency is known as the high-efficiency region. Combined with the
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performance curve, it can be seen that when the wrap angle increases from 35◦ to 55◦,
the high-efficiency point of the turbine shifts from 28.327 m3/h to 27.238 m3/h; however,
the range of the high-efficiency region increases from 9.39 m3/h to 10.78 m3/h and then
decreases to 8.1 m3/h. When the wrap angle increases from 55◦ to 65◦, the high-efficiency
point of the turbine moves from 27.238 m3/h to 26.148 m3/h, and the range of the high-
efficiency region increases from 8.1 m3/h to 9.69 m3/h. As the wrap angle is raised from
65◦ to 75◦, the high-efficiency point of the turbine moves from 26.148 m3/h to 25.059 m3/h,
and the range of the high-efficiency region reduces from 9.69 m3/h to 8.89 m3/h. It is worth
noting that the most substantial impact on turbine efficiency occurs when the blade wrap
angle is adjusted from 45◦ to 55◦.

Figure 12 displays the velocity streamline distribution at different mid-sections of
impellers with various wrap angles when the flow rates are 0.8Qt and 1.0Qt, respectively.
It can be seen from Figure 12 that the velocity streamlines distribution at different blade
wrap angles and is relatively chaotic at the blade leading edge. Significant flow separation
appears at the blade leading edge and causes low-velocity separation vortices. Moreover,
the outlet streamline distribution is non-uniform, and the flow is relatively turbulent. By
comparison, the vortex at the impeller inlet is significantly increased when the flow rate
is 0.8Qt as opposed to 1.0Qt, leading to a much smoother flow. Furthermore, when the
wrap angle is small, the vortex at the blade inlet is relatively stable and the flow inside the
passage is also relatively smooth.

Table 3. Traffic range in the high-performance region.

Blade Wrap Angle (◦) ηmax (%) 0.97ηmax (%) Qmin (m3/h) Qmax (m3/h) Best Efficiency Range (m3/h)

35 74.85 72.6 23.7 33.09 9.39
45 74.29 72.06 22.43 33.21 10.78
55 74.81 72.57 24.48 32.58 8.1
65 74.1 71.88 22.69 32.38 9.69
75 74.01 71.79 22.67 31.56 8.89
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Figure 13 illustrates the pressure distribution on the axial section of different blades
with varying wrap angles for flow rates of 0.8Qt and 1.0Qt. It is evident that the lowest
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pressure occurs at the blade outlet and working surface. As the wrap angle increases, the
flow passage becomes more complex and the pressure variation stabilizes, resulting in a
more uniform distribution of the low-pressure area at the blade outlet. Comparatively,
the low-pressure area at the blade outlet and suction surface are significantly larger when
the flow rate is 1.0 Qt in contrast to 0.8 Qt. Furthermore, as the wrap angle increases, the
low-pressure area at the blade outlet shows a trend of first increasing initially and then
decreasing.
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4.2. Entropy Production Analysis

Based on the entropy production theory introduced in Section 2, the entropy pro-
duction distribution in the PAT volute and impeller at different blade wrap angles was
investigated in detail. The influence of different blade wrap angles on the Spro,D in a PAT
is shown in Figure 14. The energy loss mechanism in a PAT is thoroughly investigated
under 0.8Qd and 1.0Qd. Overall, the distribution of the total entropy production rate inside
the turbine is similar, and the entropy production rate rises with an increase in flow rate.
Regions with high entropy production rates within the volute are mainly concentrated in
the areas with a small cross-sectional area and near the volute tongue area. This observation
indicates that the losses inside the volute are mainly focused at the volute tongue, with
severe dissipation near the volute tongue. This is associated with increased turbulence
loss mainly due to rotor–stator interaction effects between the volute and impeller, as well
as flow separation phenomena at the volute tongue. The maximum entropy production
rate occurs at the impeller inlet, and as the blade wrap angle reduces, the entropy produc-
tion rate there rises initially before falling. Regions with high entropy production rates
are mainly concentrated on the blade leading edge, and the turbulent entropy produc-
tion rate linked to the volute tongue is more concentrated, signifying that energy loss in
the impeller is mainly concentrated on the blade leading edge due to flow impact and
separation phenomena.
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4.3. Transient Characteristics of Pressure Pulsation
4.3.1. Circumferential Pressure Pulsation Characteristics of the Volute

In Figure 15, the temporal distribution of pressure fluctuations at circumferential posi-
tions P1–P4 along the inner boundary of the volute casing is displayed for three blade wrap
angles. The analysis covers both the 0.8Qt and 1.0Qt operational conditions as the impeller
rotates from the seventh to the tenth circumferential stages. Pressure inside the volute
casing exhibits a periodic variation over time for each operating condition, and pressure
peaks and depressions appear 44 times in the first four impeller rotations for all three wrap
angles, aligning with the number of blades on the impeller. This observation highlights
the considerable influence of the impeller–volute casing interaction on circumferential
pressure pulsations in the volute. The pressure pulsation amplitude at P4 is significantly
reduced, mainly due to its distance from the impeller, which makes it less impacted by
the interaction. The amplitude of pressure pulsations increases and stability decreases
adjacent to the impeller–volute compression junction. In addition, Figure 15 reveals that
the impeller with a 75◦ wrap angle displays a relatively smaller amplitude of pressure
pulsations over four rotations. For the impeller with a 35◦ wrap angle, the amplitude of
pressure pulsations remains nearly unchanged between the 1.0Qt and 0.8Qt operational
conditions, demonstrating the stability of the volute casing with a 35◦ wrap angle.
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The frequency–domain distribution of pressure pulsations at the circumferential posi-
tion inside the volute is shown in Figure 16. It is notable that the predominant frequency of
pressure pulsations in the volute is the blade passing frequency (BPF), occurring 11 times
per rotational frequency (f n), and the amplitude of the volutes oscillation generally reaches
its maximum value at 11BPF. Under the 0.8Qt operating condition, the amplitudes at 1.5 f n
and 2 f n increase significantly when employing a 35◦ blade wrap angle. This increase can
be attributed to the influence of a significant backflow vortex on the pressure surface of
the impeller inlet on the flow state inside the volute, as shown in Figure 10. In addition
to the blade–volute interaction, the backflow vortex, which has the ability to produce
low-frequency pressure pulsations with large amplitudes, also influences the pressure pul-
sations inside the volute. Under the Qt operating condition, the volute pressure pulsation
amplitude is highest for the impeller with a 75◦ blade wrap angle followed by the 55◦-blade-
wrap-angle impeller, and is lowest for the 35◦-blade-wrap-angle impeller. Conversely, this
pattern reverses under the 0.8Qt operating condition. As a result, it is reasonable to con-
clude that the 35◦-blade-wrap-angle impeller has the most stable pressure pulsations inside
the volute under rated operating conditions, while the 75◦-blade-wrap-angle impeller has
the most stable pressure pulsations under low flow rate conditions.
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4.3.2. Radial Pressure Pulsation Characteristics of the Impeller

Figure 17 presents the time domain distribution of pressure pulsations on the working
surface of the impeller at radial locations P6, P7, and P8 in the middle section of the impeller
flow channel. It can be obviously observed that the pressure pulsation amplitude decreases
gradually from the inlet to the outlet of the impeller. Notably, the pressure pulsation
amplitude is higher during the 1.0Qt operating condition compared to the 0.8Qt condition.
When operating at 0.8Qt, the vibration amplitude of the impeller with a 55◦ wrap angle
is inconsistent, and the pulsation situation gradually changes from the inlet to the outlet.
Analysis of the internal flow characteristics of the impeller reveals that this behavior is a
result of instability of the vortices from the impeller inlet to the outlet, where the negative
pressure at the center of the vortex affects the pressure fluctuation at the trailing edge of
the blade. Within the range of wrap angles examined, the impeller with a 35◦ wrap angle
exhibits a lower pressure pulsation amplitude at all operating conditions, indicating that
the impeller with a 35◦ wrap angle is more favorable for stable operation of the turbine.
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To compare the frequency domain characteristics of the pressure pulsation in three
impeller models, the frequency distribution of radial pressure pulsation within the impeller
flow passage is illustrated in Figure 18. Observations from the figure indicate that the
main frequency of the pressure pulsation inside the impeller is the shaft frequency or its
multiple. Among the different blade wrap angles, the impeller with blade wrap angles of
35◦ and 75◦ shows a gradual reduction in pressure pulsation amplitude from the inlet to the
outlet, whereas the impeller with a 55◦ blade wrap angle initially experiences a decrease
in pressure pulsation amplitude before it starts increasing. Notably, the impeller with a
35◦ blade wrap angle shows the lowest amplitude among the various operating conditions,
and the amplitude variation from the impeller inlet to the outlet is small. Hence, it can
be inferred that the impeller with a blade wrap angle of 35◦ exhibits a relatively weak
degree of pulsation intensity inside the centrifugal turbine, which is conducive to safe and
stable operation.

Water 2024, 16, x FOR PEER REVIEW 15 of 17 
 

 

 
Figure 18. Frequency domain analysis of radial pressure pulsation on the impeller. 

In order to gain a more comprehensive understanding of the root causes behind the 
low-frequency signals within the impeller flow path, transient characteristics of the mid-
section of the 55°-blade-wrap-angle impeller were investigated from T0 to every 1/4T ro-
tation during operation at 0.8Qt. Here, T0 denotes a certain moment and T signifies a full 
rotation cycle of the impeller. Figure 19 illustrates that the vortex at the monitored point 
exhibits a pattern of decline followed by an increase between T0 and T0 + 3/4T, which cor-
responds to the decrease and then increase of the impeller pressure, as shown in Figure 
18. It can be concluded that the pressure pulsation variations at different monitoring 
points are consistent with the previous conclusion, and the periodicity of the vortex is 
closely linked to the periodicity of pressure pulsation. 

 
Figure 19. Transient characteristics of turbulent kinetic energy of a 55°-blade-angle impeller at 0.8Qt. 

5. Conclusions 
In this work, the internal flow and pressure fluctuation characteristics of centrifugal 

pumps as turbines with different blade wrap angles were investigated by conducting 
steady and unsteady simulations. The accuracy of numerical simulation was validated by 
experimental results, and the conclusions are obtained as follows: 

(1) The hydrodynamic performance of centrifugal pumps as turbines, measured by 
their flow rate and efficiency, is notably affected by variations in blade wrap angle. When 
the flow rate exceeds 30 m3/h, the efficiency of all design points decreases rapidly as the 
blade wrap angle increases. With an increase in wrap angle, the optimal efficiency flow 
rate point gradually decreases. Among the five tested wrap angles, maximum efficiency 
is achieved with a blade wrap angle of 35°. The widest range of high efficiency region can 
be found with blade wrap angle of 45°. The high entropy production rate regions in PATs 
are concentrated in the volute tongue and impeller blade inlet regions. The entropy pro-
duction rate at the impeller inlet region increases and then decreases as the blade wrap 
angle decreases. 

(2) Pressure pulsation within the volute is influenced by the impeller, and the number 
of impeller blades determines the period of pressure pulsation. For the blade wrap angles 
of 55° and 75°, the pressure pulsation amplitude in the Qt condition is relatively higher 

Figure 18. Frequency domain analysis of radial pressure pulsation on the impeller.

In order to gain a more comprehensive understanding of the root causes behind the
low-frequency signals within the impeller flow path, transient characteristics of the mid-
section of the 55◦-blade-wrap-angle impeller were investigated from T0 to every 1/4T
rotation during operation at 0.8Qt. Here, T0 denotes a certain moment and T signifies a
full rotation cycle of the impeller. Figure 19 illustrates that the vortex at the monitored
point exhibits a pattern of decline followed by an increase between T0 and T0 + 3/4T,
which corresponds to the decrease and then increase of the impeller pressure, as shown in
Figure 18. It can be concluded that the pressure pulsation variations at different monitoring
points are consistent with the previous conclusion, and the periodicity of the vortex is
closely linked to the periodicity of pressure pulsation.
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5. Conclusions

In this work, the internal flow and pressure fluctuation characteristics of centrifugal
pumps as turbines with different blade wrap angles were investigated by conducting
steady and unsteady simulations. The accuracy of numerical simulation was validated by
experimental results, and the conclusions are obtained as follows:

(1) The hydrodynamic performance of centrifugal pumps as turbines, measured by
their flow rate and efficiency, is notably affected by variations in blade wrap angle. When
the flow rate exceeds 30 m3/h, the efficiency of all design points decreases rapidly as the
blade wrap angle increases. With an increase in wrap angle, the optimal efficiency flow
rate point gradually decreases. Among the five tested wrap angles, maximum efficiency
is achieved with a blade wrap angle of 35◦. The widest range of high efficiency region
can be found with blade wrap angle of 45◦. The high entropy production rate regions in
PATs are concentrated in the volute tongue and impeller blade inlet regions. The entropy
production rate at the impeller inlet region increases and then decreases as the blade wrap
angle decreases.

(2) Pressure pulsation within the volute is influenced by the impeller, and the number
of impeller blades determines the period of pressure pulsation. For the blade wrap angles
of 55◦ and 75◦, the pressure pulsation amplitude in the Qt condition is relatively higher
than that in the 0.8Qt condition. The lowest pressure pulsation amplitude in the volute is
observed with blade wrap angle 35◦ under the design condition, and with a blade wrap
angle of 75◦ under a part-load condition. Within the impeller, the primary frequency of
pressure pulsation is the shaft frequency and its harmonics. The impeller blades with a 35◦

wrap angle exhibit a lower pressure pulsation amplitude under all operating conditions.
The pressure pulsation amplitude in the impeller inlet region is always the largest, especially
under 0.8Qt.

(3) Pressure pulsation is not only affected by rotor–stator interactions but also by
backflow vortices and separation vortices. The closer the interface between the volute and
the impeller, the more severe the effect of the rotor–stator interaction on pressure pulsation,
and the higher the pulsation amplitude. The periodicity of vortices is closely related to the
periodicity of pressure pulsation. The utilization of a blade wrap angle of 35◦ is beneficial
in improving the stability of PATs.
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