A Novel Artificial Intelligence Prediction Process of Concrete Dam Deformation Based on a Stacking Model Fusion Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feature Engineering of Deformation Monitoring Data
2.1.1. Spatiotemporal Correlation Weighted Regression Interpolation Method
2.1.2. Wavelet Analysis Denoising Method of Monitoring Data
2.2. Stacking Ensemble Learning Prediction Process
- The original dataset is split into a training set T and a test set D in a specified proportion.
- The training set (T) is randomly divided into five equal parts: T1, T2, T3, T4, and T5. Each subset Ti (i = 1, 2, 3, 4, 5) serves as the validation set, with the remaining subsets combined as the training set for model training. This setup is used to predict outcomes for both the validation and test sets.
- After completing the 5-fold cross-validation, the first base learner compiles the predicted values for each validation set and the test set into separate columns. These predictions are then consolidated: the predictions from each validation set are merged into a single column denoted as A1, and the average of the predictions for the test set is calculated and recorded as B1, as depicted in Figure 4.
- Upon completion of the training for all base learners, the input characteristic matrices for the meta-learner model, denoted as = (A1, A2, ⋯, An), and for the final test set, as = (B1, B2, ⋯, Bn), are established. The label values from the original training set are used as the output matrix for the model. The meta-learner then uses these matrices to generate the final prediction result after model fusion, as illustrated in Figure 5.
2.3. Stacking Ensemble Model-Based Learner
2.3.1. XGBoost
2.3.2. Extra-Trees
2.3.3. SVR
2.4. Model Performance Evaluation System
2.4.1. Superiority Evaluation Indicator
2.4.2. Accuracy Evaluation Indicator
2.4.3. Generalized Evaluation Indicator
3. Design and Implementation of the Model
3.1. Project Overview
3.2. Model Sample and Input Factor Selection
3.3. Model Implementation
3.3.1. Feature Engineering
3.3.2. Stacking Ensemble Learning Prediction Process
3.3.3. Model Performance Evaluation
4. Results and Discussion
4.1. Feature Engineering of Deformation Monitoring Data
4.1.1. Monitoring Data Spatiotemporal Correlation Weighted Regression Interpolation
4.1.2. Denoising of Monitoring Data
4.2. Analysis of Modeling Characteristics of Prediction Models
4.2.1. Training and Prediction Process Analysis of Dam Deformation Prediction Models
4.2.2. Training and Prediction Residual Analysis of Dam Deformation Prediction Models
4.2.3. Analysis of Evaluation Indicators of Dam Deformation Prediction Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Prediction at Measurement Points EXD-2, EXD-14, and EXD-25
References
- Su, H.; Wen, Z.; Wang, F.; Hu, J. Dam Structural Behavior Identification and Prediction by Using Variable Dimension Fractal Model and Iterated Function System. Appl. Soft. Comput. 2016, 48, 612–620. [Google Scholar] [CrossRef]
- Bukenya, P.; Moyo, P.; Beushausen, H.; Oosthuizen, C. Health Monitoring of Concrete Dams: A Literature Review. J. Civil Struct. Health Monit. 2014, 4, 235–244. [Google Scholar] [CrossRef]
- Salazar, F.; Moran, R.; Toledo, M.A.; Onate, E. Data-Based Models for the Prediction of Dam Behaviour: A Review and Some Methodological Considerations. Arch. Comput. Method Eng. 2017, 24, 1–21. [Google Scholar] [CrossRef]
- Kang, F.; Liu, J.; Li, J.; Li, S. Concrete Dam Deformation Prediction Model for Health Monitoring Based on Extreme Learning Machine. Struct. Control Health Monit. 2017, 24, e1997. [Google Scholar] [CrossRef]
- Salazar, F.; Toledo, M.A.; Oñate, E.; Morán, R. An Empirical Comparison of Machine Learning Techniques for Dam Behaviour Modelling. Struct. Saf. 2015, 56, 9–17. [Google Scholar] [CrossRef]
- Bernier, C.; Padgett, J.E.; Proulx, J.; Paultre, P. Seismic Fragility of Concrete Gravity Dams with Spatial Variation of Angle of Friction: Case Study. J. Struct. Eng. 2016, 142, 05015002. [Google Scholar] [CrossRef]
- Wang, S.; Xu, Y.; Gu, C.; Bao, T.; Xia, Q.; Hu, K. Hysteretic Effect Considered Monitoring Model for Interpreting Abnormal Deformation Behavior of Arch Dams: A Case Study. Struct. Control Health Monit. 2019, 26, e2417. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Le, V.D.; Huynh, T.Q.; Nguyen, N.H.T. Influence of Settlement on Base Resistance of Long Piles in Soft Soil—Field and Machine Learning Assessments. Geotechnics 2024, 4, 447–469. [Google Scholar] [CrossRef]
- Huynh, T.Q.; Nguyen, T.T.; Nguyen, H. Base Resistance of Super-Large and Long Piles in Soft Soil: Performance of Artificial Neural Network Model and Field Implications. Acta Geotech. 2023, 18, 2755–2775. [Google Scholar] [CrossRef]
- Hariri-Ardebili, M.A.; Mahdavi, G.; Nuss, L.K.; Lall, U. The Role of Artificial Intelligence and Digital Technologies in Dam Engineering: Narrative Review and Outlook. Eng. Appl. Artif. Intell. 2023, 126, 106813. [Google Scholar] [CrossRef]
- Rankovic, V.; Grujovic, N.; Divac, D.; Milivojevic, N. Development of Support Vector Regression Identification Model for Prediction of Dam Structural Behaviour. Struct. Saf. 2014, 48, 33–39. [Google Scholar] [CrossRef]
- Su, H.; Li, X.; Yang, B.; Wen, Z. Wavelet Support Vector Machine-Based Prediction Model of Dam Deformation. Mech. Syst. Signal Proc. 2018, 110, 412–427. [Google Scholar] [CrossRef]
- Yao, K.; Wen, Z.; Yang, L.; Chen, J.; Hou, H.; Su, H. A Multipoint Prediction Model for Nonlinear Displacement of Concrete Dam. Comput.-Aided Civil Infrastruct. Eng. 2022, 37, 1932–1952. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, D.; Liu, Y. Deformation Prediction System of Concrete Dam Based on IVM-SCSO-RF. Water 2022, 14, 3739. [Google Scholar] [CrossRef]
- Gu, C.; Wu, B.; Chen, Y. A High-Robust Displacement Prediction Model for Super-High Arch Dams Integrating Wavelet De-Noising and Improved Random Forest. Water 2023, 15, 1271. [Google Scholar] [CrossRef]
- Dai, B.; Gu, C.; Zhao, E.; Qin, X. Statistical Model Optimized Random Forest Regression Model for Concrete Dam Deformation Monitoring. Struct. Control Health Monit. 2018, 25, e2170. [Google Scholar] [CrossRef]
- Cao, E.; Bao, T.; Yuan, R.; Hu, S. Hierarchical Prediction of Dam Deformation Based on Hybrid Temporal Network and Load-Oriented Residual Correction. Eng. Struct. 2024, 308, 117949. [Google Scholar] [CrossRef]
- Qu, X.; Yang, J.; Chang, M. A Deep Learning Model for Concrete Dam Deformation Prediction Based on RS-LSTM. J. Sens. 2019, 2019, 4581672. [Google Scholar] [CrossRef]
- Song, S.; Zhou, Q.; Zhang, T.; Hu, Y. Automatic Concrete Dam Deformation Prediction Model Based on TPE-STL-LSTM. Water 2023, 15, 2090. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, S.; Ou, B.; Liu, Z.; Hu, M. Prediction of Dam Deformation Using SSA-LSTM Model Based on Empirical Mode Decomposition Method and Wavelet Threshold Noise Reduction. Water 2022, 14, 3380. [Google Scholar] [CrossRef]
- Cao, E.; Bao, T.; Gu, C.; Li, H.; Liu, Y.; Hu, S. A Novel Hybrid Decomposition-Ensemble Prediction Model for Dam Deformation. Appl. Sci. 2020, 10, 5700. [Google Scholar] [CrossRef]
- Li, Y.; Bao, T.; Gong, J.; Shu, X.; Zhang, K. The Prediction of Dam Displacement Time Series Using STL, Extra-Trees, and Stacked LSTM Neural Network. IEEE Access 2020, 8, 94440–94452. [Google Scholar] [CrossRef]
- Liu, M.; Wen, Z.; Zhou, R.; Su, H. Bayesian Optimization and Ensemble Learning Algorithm Combined Method for Deformation Prediction of Concrete Dam. Structures 2023, 54, 981–993. [Google Scholar] [CrossRef]
- Song, J.; Chen, Y.; Yang, J. A Novel Outlier Detection Method of Long-Term Dam Monitoring Data Based on SSA-NAR. Wirel. Commun. Mob. Comput. 2022, 2022, 6569367. [Google Scholar] [CrossRef]
- Shao, C.; Zheng, S.; Gu, C.; Hu, Y.; Qin, X. A Novel Outlier Detection Method for Monitoring Data in Dam Engineering. Expert Syst. Appl. 2022, 193, 116476. [Google Scholar] [CrossRef]
- Cao, W.; Wen, Z.; Su, H. Spatiotemporal Clustering Analysis and Zonal Prediction Model for Deformation Behavior of Super-High Arch Dams. Expert Syst. Appl. 2023, 216, 119439. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, X.; Su, Y.; Yin, Z.; Wang, X.; Li, S. Intelligent Identification Method for Drilling Conditions Based on Stacking Model Fusion. Energies 2023, 16, 883. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, J.; Ma, Y.; Li, G.; Ma, J.; Wang, C. Short-Term Load Forecasting Method with Variational Mode Decomposition and Stacking Model Fusion. Sustain. Energy Grids Netw. 2022, 30, 100622. [Google Scholar] [CrossRef]
- Yu, F.; Liu, X. Research on Student Performance Prediction Based on Stacking Fusion Model. Electronics 2022, 11, 3166. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD’16: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Assoc Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely Randomized Trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Mehdiyev, N.; Enke, D.; Fettke, P.; Loos, P. Evaluating Forecasting Methods by Considering Different Accuracy Measures. Procedia Comput. Sci. 2016, 95, 264–271. [Google Scholar] [CrossRef]
- Shcherbakov, M.V.; Brebels, A.; Shcherbakova, N.L.; Tyukov, A.P.; Janovsky, T.A.; Kamaev, V.A. A Survey of Forecast Error Measures. World Appl. Sci. J. 2013, 24, 171–176. [Google Scholar]
Interpolation Periods and Methods | 18 June 2014~23 July 2014 | 26 May 2016~4 June 2016 16 July 2016~26 July 2016 | 22 June 2018~18 July 2018 | ||
---|---|---|---|---|---|
STCM | TCM | SCM | TCM | TCM | |
Equation | y = 0.084x1 + 0.003x2 − 0.166x3 + 0.552x4 + 0.351x5 + 0.091x6 | y = −0.021x1 + 0.409x2 + 0.579x3 | y = 0.367x1 + 0.178x2 + 0.516x3 | ||
y = 0.328x1 + 0.642x2 − 0.030x3 | |||||
y = 0.238x4 + 0.434x5 + 0.247x6 | |||||
MAE | 0.222 | 0.436 | 0.216 | 0.399 | 0.441 |
MSE | 0.080 | 0.291 | 0.087 | 0.246 | 0.282 |
Interpolation Periods and Methods | 27 July 2013~7 August 2013 31 October 2013~19 November 2013 | 26 May 2016~4 June 2016 16 July 2016~26 July 2016 | 31 May 2018~12 June 2018 | ||
---|---|---|---|---|---|
STCM | TCM | SCM | TCM | SCM | |
Equation | y = −0.447x1 + 0.173x2 + 0.528x3 − 2.396x4 + 1.221x5 + 2.047x6 | y = 0.140x0 + 0.991x2 − 0.219x3 | y = 1.386x4 + 0.822x5 − 1.382x6 | ||
y = 0.249x1 + 0.652x2 + 0.074x3 | |||||
y = −1.556x4 + 1.915x5 + 0.722x6 | |||||
MAE | 0.196 | 0.635 | 0.347 | 0.485 | 0.337 |
MSE | 0.072 | 0.620 | 0.173 | 0.333 | 0.160 |
Noise Reduction Method | EXD-18 | EXD-D7 | ||
---|---|---|---|---|
RMSE | SNR | RMSE | SNR | |
Sqtwolog-hard | 0.1006 | 32.9741 | 0.0859 | 32.3884 |
Sqtwolog-soft | 0.1435 | 29.8774 | 0.1186 | 29.5752 |
Rigorous-hard | 0.0336 | 42.494 | 0.0260 | 42.7755 |
Rigorous-soft | 0.0517 | 38.7613 | 0.0408 | 38.8422 |
Heursure-hard | 0.0590 | 37.6046 | 0.0502 | 37.0474 |
Heursure-soft | 0.0675 | 36.4320 | 0.0557 | 36.1532 |
Minmaxi-hard | 0.0706 | 36.0454 | 0.0609 | 35.3709 |
Minmaxi-soft | 0.1104 | 32.1618 | 0.0926 | 31.7294 |
Model | Parameters | Optimal Parameter EXD-18 | Optimal Parameter EXD-D7 |
---|---|---|---|
XGBoost | Gamma | 0.05 | 0.04 |
Alpha | 5.05 | 4.07 | |
Eta | 0.20 | 0.18 | |
Max_depth | 7 | 8 | |
Min_child_weight | 7 | 9 | |
Lambda | 0.65 | 0.53 | |
Colsample_bytree | 0.98 | 0.85 | |
Subsample | 0.77 | 0.64 | |
Extra-trees | N_estimators | 89 | 69 |
Max_depth | 6 | 8 | |
Min_samples_split | 2 | 4 | |
Min_samples_leaf | 4 | 6 | |
SVR | C | 1.26 | 1.03 |
Gamma | 0.11 | 0.18 |
EXD-18 | HST | XGBoost | Extra-Trees | SVR | Proposed | |
---|---|---|---|---|---|---|
Training Set | MAE | 0.4705 | 0.2213 | 0.0946 | 0.2538 | 0.1007 |
MSE | 0.3705 | 0.0813 | 0.0171 | 0.1225 | 0.0207 | |
RMSE | 0.6087 | 0.2851 | 0.1308 | 0.3500 | 0.1439 | |
Test Set | MAE | 0.8389 | 0.4341 | 0.4209 | 0.2990 | 0.1249 |
MSE | 0.9183 | 0.2951 | 0.2889 | 0.1488 | 0.0242 | |
RMSE | 0.9583 | 0.5432 | 0.5375 | 0.3857 | 0.1555 |
EXD-D7 | HST | XG-Boost | Extra-Trees | SVR | Proposed | |
---|---|---|---|---|---|---|
Training Set | MAE | 0.5416 | 0.1250 | 0.0511 | 0.3699 | 0.0906 |
MSE | 0.4852 | 0.0260 | 0.0075 | 0.2944 | 0.0164 | |
RMSE | 0.6966 | 0.1612 | 0.0866 | 0.5426 | 0.1281 | |
Test Set | MAE | 0.5979 | 0.4172 | 0.4233 | 0.4516 | 0.2153 |
MSE | 0.5398 | 0.2572 | 0.3067 | 0.3107 | 0.0784 | |
RMSE | 0.7347 | 0.5071 | 0.5538 | 0.5574 | 0.2800 |
EXD-18 | HST | XG-Boost | Extra-Trees | SVR | Proposed |
---|---|---|---|---|---|
SEI1 | 1.0000 | 0.5175 | 0.5017 | 0.3564 | 0.1489 |
SEI2 | 0.1272 | 0.1243 | 0.1734 | 0.0607 | |
AEI1 | 0.1000 | 0.0559 | 0.0535 | 0.0391 | 0.0146 |
AEI2 | 0.3179 | 0.1862 | 0.1798 | 0.1646 | 0.0808 |
GEI | 1.9564 | 2.1021 | 4.7960 | 1.2484 | 1.1906 |
EXD-D7 | HST | XG-Boost | Extra-Trees | SVR | Proposed |
---|---|---|---|---|---|
SEI1 | 1.0000 | 0.6978 | 0.7080 | 0.7553 | 0.3601 |
SEI2 | 0.3035 | 0.3613 | 0.4827 | 0.2312 | |
AEI1 | 0.0779 | 0.0530 | 0.0586 | 0.0531 | 0.0298 |
AEI2 | 0.2653 | 0.2042 | 0.2207 | 0.2326 | 0.1128 |
GEI | 1.3052 | 3.6880 | 7.7606 | 1.0624 | 2.6485 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Su, H.; Feng, Y.; Zhang, S.; Zheng, S.; Cao, W.; Liu, H. A Novel Artificial Intelligence Prediction Process of Concrete Dam Deformation Based on a Stacking Model Fusion Method. Water 2024, 16, 1868. https://doi.org/10.3390/w16131868
Wu W, Su H, Feng Y, Zhang S, Zheng S, Cao W, Liu H. A Novel Artificial Intelligence Prediction Process of Concrete Dam Deformation Based on a Stacking Model Fusion Method. Water. 2024; 16(13):1868. https://doi.org/10.3390/w16131868
Chicago/Turabian StyleWu, Wenyuan, Huaizhi Su, Yanming Feng, Shuai Zhang, Sen Zheng, Wenhan Cao, and Hongchen Liu. 2024. "A Novel Artificial Intelligence Prediction Process of Concrete Dam Deformation Based on a Stacking Model Fusion Method" Water 16, no. 13: 1868. https://doi.org/10.3390/w16131868
APA StyleWu, W., Su, H., Feng, Y., Zhang, S., Zheng, S., Cao, W., & Liu, H. (2024). A Novel Artificial Intelligence Prediction Process of Concrete Dam Deformation Based on a Stacking Model Fusion Method. Water, 16(13), 1868. https://doi.org/10.3390/w16131868