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Abstract: Deformation monitoring data provide a direct representation of the structural behavior of
reservoir bank rock slopes, and accurate deformation prediction is pivotal for slope safety monitoring
and disaster warning. Among various deformation prediction models, hybrid models that integrate
field monitoring data and numerical simulations stand out due to their well-defined physical and
mechanical concepts, and their ability to make effective predictions with limited monitoring data.
The predictive accuracy of hybrid models is closely tied to the precise determination of rock mass
mechanical parameters in structural numerical simulations. However, rock masses in rock slopes
are characterized by intersecting geological structural planes, resulting in reduced strength and
the creation of multiple fracture flow channels. These factors contribute to the heterogeneous,
anisotropic, and size-dependent properties of the macroscopic deformation parameters of the rock
mass, influenced by the coupling of seepage and stress. To improve the predictive accuracy of
the hybrid model, this study introduces the theory of equivalent continuous media. It proposes a
method for determining the equivalent deformation parameters of fractured rock mass considering
the coupling of seepage and stress. This method, based on a discrete fracture network (DFN) model,
is integrated into the hybrid prediction model for rock slope deformation. Engineering case studies
demonstrate that this approach achieves a high level of prediction accuracy and holds significant
practical value.

Keywords: slope deformation; hybrid safety monitoring model; fractured rock mass; equivalent
deformation parameters

1. Introduction

Reservoirs play a crucial role in regulating water supply, flood control, disaster reduc-
tion, and ecological conservation. However, the safe operation of dams and reservoir bank
slopes faces significant challenges due to various adverse factors such as water pressure,
heavy rainfall, and extreme weather events [1]. To prevent engineering accidents, it is es-
sential to monitor and diagnose the safety status of reservoir bank slopes [2-6]. Monitoring
data provide the most comprehensive and intuitive reflection of the evolutionary process
of slope structural behavior under multiple factors. Currently, two primary methodologies
are employed for monitoring, data analysis, and prediction.

The first approach involves numerical simulation methods such as finite element
models and geological mechanics models to simulate the behavior characteristics of slopes
under various influencing factors, predicting slope deformation and stability. Zhuang
et al. [7] investigated the impact of soft interlayers, faults, and extreme rainfall on the sta-
bility of high rock slopes, combining numerical analysis with strength reduction methods
to calculate landslides’ stability under natural and extreme rainfall conditions, validated
with field monitoring data. Paswan [8] developed a rainfall-induced slope monitoring sys-
tem based on Micro-Electro-Mechanical System (MEMS) sensors. demonstrating effective
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monitoring of both gradual and sudden slope movements induced by rainfall. However,
due to the highly nonlinear nature of geological conditions, the complex properties of
rock masses involved in predicting rock slope deformation and instability timing, and
the intricacies of mechanics [9], the consideration of rheological or geometric nonlinear
numerical simulation methods currently struggles to comprehensively reflect the dynamic
evolution of rock slope deformation under various complex conditions.

The second approach utilizes prediction models based on monitoring data and vari-
ous mathematical theories, such as statistical analysis, fuzzy mathematics, and artificial
intelligence theories. For instance, Tonini [10] first introduced the idea that factors affecting
dam displacement included water pressure components, temperature components, and
time-dependent components, representing water pressure and temperature components
using third-degree polynomials. To address the issue of noise contamination in prototype
data of dam foundation seepage pressure, Zhu et al. [11] employed the Variational Mode
Decomposition (VMD)-Wavelet Packet Denoising method to denoise the noisy prototype
data, developing an improved Time-Series Convolutional Network (ITCN) model for
effective prediction of dam foundation seepage pressure data.

Lin etal. [12,13] decomposed deformation sequences based on temporal characteristics
and employed various artificial intelligence algorithms to predict each sequence component,
yielding favorable prediction results. Dong [14] introduced a real-time wireless monitoring
system to obtain high-frequency overall data describing the deformation characteristics
of steep slopes, using a Deep Autoregressive Network (DeepAR) model to predict slope
displacements and assess the safety of excavated slopes. Du et al. [15] integrated weaker
learners, proposing a novel ensemble learner to mine field data acquired from Ground-
Based Synthetic Width Radar (GB-SAR) to create a slope deformation prediction model.
However, mathematical models are primarily suited for datasets with longer sequences of
data and sometimes lack the ability to provide a fundamental mechanical understanding of
slope deformation behavior.

Addressing these issues, Bonaldi et al. [16] combined the strengths of empirical data
and numerical simulations, proposing a hybrid model for the deformation of gravity dams.
In this model, primary deformation components or some deformation components are
calculated using finite element numerical analysis, referred to as deterministic components
with clear physical concepts. The remaining components are fitted based on statistical mod-
els using monitoring data. This approach proves effective for monitoring and prediction,
especially when monitoring data are limited. However, the accuracy of the hybrid model’s
predictions depends heavily on the selection of rock mass mechanical parameters during
the calculation of deterministic components. Rock reservoir bank slopes are often situated
in mountainous and complex geological settings, with internal rock masses segmented
by various geological structural planes, resulting in lower strengths and the formation of
fracture permeation pathways. These factors result in the performance parameters of rock
masses, such as their macroscopic deformation, displaying non-uniformity, anisotropy, and
size effects. Additionally, numerous fractures within rock reservoir bank slopes constitute
primary seepage channels, with continuous external water environments altering fracture
widths and deformation responses. Studying the mechanical parameters of rock reservoir
bank slopes requires considering the size effects of these parameters and the coupled effects
of the seepage field and stress field.

In conclusion, this paper considers the influence of geological conditions and seepage
factors on the mechanical parameters, deformation behavior, and monitoring data of slopes.
It proposes a method for determining the equivalent deformation parameters of fractured
rock masses under seepage—stress coupling. Subsequently, the deformation behavior of
slopes under seepage conditions is computed based on the theory of equivalent continuous
media, and a deterministic model is established to determine rainfall components. Finally, a
hybrid model for slope deformation prediction is constructed by incorporating temperature
components and time-dependent factors. The research roadmap is illustrated in Figure 1.
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Figure 1. The research roadmap of this paper.

2. Hybrid Prediction Model for Rock Reservoir Bank Slope Deformation

Rainfall, humidity, evaporation, temperature, groundwater, and snowmelt all influ-
ence slope deformation [17]. These influencing factors often number in the tens or even
dozens. Including all these factors in a regression equation can lead to the degradation of
the coefficient matrix, making it unsolvable or reducing the precision. Therefore, before
establishing the regression equation, researchers often use methods such as the Maxi-
mal Information Coefficient (MIC) method [18], stepwise regression [19], and sensitivity
analysis [20] to select the factors that significantly contribute to slope deformation. This
ensures that the resulting regression equation includes only significant factors and excludes
insignificant ones.

This paper introduces a multifactor regression model based on the stepwise regression
method. At each step, F-tests and Variance Inflation Factor (VIF) tests are performed to
add or remove factors, ensuring that only significant factors are included in the regression
equation and reducing multicollinearity among the model variables. Through the analysis
of deformation monitoring data from several reservoir slopes and feedback from actual
engineering projects in China, the model identifies rainfall, temperature, and aging as
the main factors influencing slope deformation J (including cumulative horizontal and
vertical displacements) [21,22]. Building on this model, the coefficients for the rainfall
component 3 are determined by fitting the equation to slope deformation data obtained
from multiple numerical calculations. The coefficients for the temperature component o
and time-dependent component Jy are determined by fitting the equation to observed slope
deformation data. This results in the formulation of a hybrid model for predicting rock
slope deformation, as shown in Equation (1).

5:3114-5]“-1—(59 1)

@ Rainfall Component dy;

The rainfall component is represented using a deterministic expression obtained
through finite element analysis. Rainfall impacts slope deformation by infiltrating the
ground, raising the groundwater level, and altering the slope’s water content. This pro-
cess exhibits a time lag effect between slope deformation and rainfall [23-25]. Previous
studies have shown that rainfall occurring more than 15 days prior can be neglected to
avoid redundant calculations due to minimal impact [22]. Therefore, the observed rainfall
within the 15 days prior to the observation date is used as the boundary condition for the
finite element analysis in this paper. By fitting the deformation values of measurement
points obtained from finite element analysis under various rainfall conditions into the
deterministic model expression for the rainfall component, the rainfall fitting coefficients
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can be determined. There are several methods to define the specific expressions for rainfall
components [26]. This paper adopts the approach from reference [27], selecting multiple
antecedent average rainfall amounts as the rainfall factors:

a

Su =y (alh) )
i=1

where U is the mean antecedent observed rainfall on the observed days, where Uj, Uy, Us, Uy
is the mean rainfall of the antecedent 1, 2, 3, and 7 days, respectively. g; is the regression
coefficient of the rainfall factor. The main steps for determining coefficients a; are as follows:

Step 1: Based on long-term rainfall observation data for the region where the slope is
located, determine the range of daily rainfall to be used as boundary conditions;

Step 2: Randomly combine the daily rainfall values within this range to generate
multiple 15-day rainfall sample sets;

Step 3: Using the input sample sets, perform numerical simulations to calculate the
deformation at each measurement point on the slope. This results in training datasets
composed of the influencing factor samples and the corresponding deformations at each
measurement point;

Step 4: Using the obtained training dataset, fit the coefficients 4; in Equation (2).

@ Temperature Component é7

Temperature variations can affect the fracture width and stresses in rock slopes, which
consequently influence the stability of slopes. Unlike structures such as dams, where ther-
mometers can be embedded during construction, temperature sensors are rarely installed
within slopes. In cases where monitoring data are insufficient, temperature components
are typically simulated using the periodic terms of sine and cosine functions. The formula
is as follows [22,28]:

27tit 27tit 27tit 27tit
5]‘:2{ . 7T1 . 7Tt 7T1 TTlLQ

by;(sin 365 S %) + byi(cos 365~ SO aeE )]

€)
where ¢ is the cumulative number of days from the observation date to the starting date, ¢g
is the cumulative number of days from the first monitoring date of the modeling dataset
to the initial monitoring date, and by; and by; are statistical coefficients for temperature
factors, such as yearly (i = 1) or semi-yearly (i = 2) cycles. The coefficients by; and by;
for the rainfall component, along with the coefficients c; and c; for the time-dependent
component, are determined using regression equations. This is accomplished by subtracting
the rainfall component from the observed deformation values at each measurement point
and analyzing the relationship between the remaining deformation é7,9 = 6 — §;; and
influencing factors.

(® Time-Dependent Component Jy

The time-dependent component reflects the trend changes in slope deformation over
time. It includes the deformation caused by the deterioration and fragmentation of the rock
mass under the long-term action of water—rock, as well as the creep and plastic deformation
of the rock mass and rock discontinuity. Considering the nonlinear characteristics of the
time-dependent component, a combination of linear and nonlinear terms is used for slopes
that have not yet entered the accelerated deformation stage [22,29]:

59 :C1(9—90)+C2(h‘19—h’190) (4)

where 0 = t/100, t denotes the cumulative number of days from the observation date to the
starting date, and ¢ and c; are regression coefficients for time-dependent factors. ¢; (6 — 6p)
corresponds to the linear portion of the rock creep curve, and ¢, (In6 — In ) corresponds
to the nonlinear portion. The method for determining the coefficients c; and c; for the
time-dependent component is the same as that for determining the temperature component
coefficients by; and by;.
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(® Expression of the Hybrid Model

In summary, considering the characteristics of rock reservoir bank slopes and account-
ing for the influence of initial measurements, the hybrid model for slope deformation
monitoring data can be expressed as follows:

mTit . 2rity 27tit 27Tity
o(t) =ag+ E (a;U;) + E [bll(sm g5 St W) + by;(cos 265 SO 3eE )] 5)

+c1 (9 90) + C2(11’19 11’190)

where g represents the constant term.

The hybrid model developed here encapsulates the combined effects of rainfall, tem-
perature, time-dependent factors, and initial measurements to facilitate the prediction of
deformations in rock reservoir bank slopes.

3. Determination of Rock Mass Mechanical Parameters

As shown in Figure 2, the mechanical properties of fractured rock masses vary with
the size of the rock blocks. However, when the size reaches a certain value known as the
mechanical Representative Elementary Volume (REV), the mechanical parameters of the
rock mass become stable. The concept of the REV plays a pivotal role in the selection
of mechanical models and parameter values across various phases of rock engineering,
including surveying, testing, design, and construction. Initially introduced by Bear [30] in
the context of groundwater flow in soils, the concept of REV has subsequently been applied
to the study of rock masses. Shlomo [31] utilized in situ measurements to establish the
REV of rock masses, while Kulatilake [32] employed finite element analysis to assess the
representation of rock mass units. Ki Bok et al. [33] conducted an analysis of the REV of
jointed rock mass using the Discrete Element Method (DEM). It is important to note that
this study focuses only on rock mass with non-persistent joints. Persistent joints, which
could influence the whole slope deformation, should be analyzed separately.

Mechanical
parameters

N
7

REV Volume

Figure 2. Concept of Representative Elementary Volume (REV).

At present, various methods are utilized to determine the mechanical parameters of
materials within rock reservoir bank slopes. Analytical methods typically assume regular,
non-intersecting structural surfaces, making it challenging to accurately represent the actual
structural characteristics of the rock mass. Experimental techniques provide parameters
that only reflect the characteristics of rock masses within a limited range around rock
samples or test points, failing to represent the macroscopic properties of the measured
rock mass. Numerical methods, on the other hand, have gained prominence in the study
of the REV of rock mass. They enable the reconstruction of discontinuity surfaces in
rock masses by integrating geological survey data and stochastic sampling techniques.
These methods facilitate the assignment of specific constitutive relationships or properties
to discontinuity surfaces or rock blocks, allowing for numerical simulations of stress—
strain relationships on these surfaces. In this study, finite element analysis is employed
to determine the mechanical parameters of slope rock masses. By introducing complex



Water 2024, 16, 1880

6 of 19

joint elements and accounting for variations in joint widths, iterative calculations of the
seepage field and stress field are conducted, enabling the determination of deformations
in both rock media and fracture media within rock mass analysis units. Subsequently,
equivalent deformation parameters for rock masses are computed based on the principle of
deformation equivalence.

3.1. Numerical Simulation Analysis Method Considering Seepage—Stress Coupling

The finite element analysis software ABAQUS 6.14-4 is used to simulate the discrete
fracture network (DFN). The governing equations and finite element solution models
are thoroughly described in reference [32]. The block elements of the equivalent rock
mass adopt the Mohr-Coulomb constitutive model, while the joint surfaces consist of
composite elements, which include equal-thickness Goodman’s joint elements [34] and line
elements. The relationship between mechanical joint widths and stress is represented using
a parabolic equation [35].

3.1.1. Composite Fracture Elements

When conducting deformation analysis of fracture media considering seepage effects,
two sets of node and element information come into play: equal-thickness Goodman'’s joint
elements for stress analysis and line elements for seepage analysis. As depicted in Figure 3,
these two sets of information employ identical element numbers to denote the same
computational domains, both corresponding to fractures, ensuring accurate transmission
of all coupled parameters across all elements during the computational steps. It is worth
noting that the line elements shown in Figure 3 do not possess thickness. However, for
the computation of fracture permeability matrices, their thickness is assigned based on the
joint widths at the current time step during the coupling calculation with the stress field.

yL
3 4 X

1 2
Fracture
—_ -—- - = B ~ -
73 :::4 le—e2
. / 1 2 N
Continuum element ( Li ) f
\ Goodman’s joint inear element tor
\\ element for stress seepage calculation P 7
N \calculation - -~

_ —

Figure 3. Combination elements in coupled stress—seepage analysis.

3.1.2. Fracture Width Variation

Fracture width variation is fundamental in the coupled analysis of rock mass perme-
ability and stress. Under specific normal stress conditions, changes in fracture flow are
primarily attributed to changes in fracture width. The relationship between mechanical
width variation and stress is established using existing empirical deformation formulas,
facilitating the derivation of the link between equivalent hydraulic width and stress. This
approach, grounded in extensive experimental research and practical applications, offers a
robust theoretical basis and exposes the core impact of stress on fracture flow. Specifically,
the relationship between mechanical width variation and stress is expressed using the
following parabolic equation [35]:

On

AV=—u——
ko + 0/ bimo

(6)
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where AV is mechanical width variation, k,,g is the initial normal stiffness coefficient, o, is
the normal effective stress on the fracture surface, and by, is the initial fracture width at
zero normal stress. The above equation can be simplified as follows [35]:
AV =1 )
kn
where k,, = k;,0 + 0, /by is the secant normal stiffness coefficient.

Considering that, under high-stress conditions, fracture surfaces typically do not fully
close, thereby maintaining permeable pathways, a smaller residual fracture width should
be assigned when the calculated mechanical deformation of the fracture surface equals or
exceeds the initial fracture width. At this juncture, the relationship between fracture width
and normal stress on the fracture is represented as follows [35]:

bo (1 — 2 0n < byokn
b = f(on) = o(1-5ik) oki) (®)
Res (Un > mekn)

where b, is the fracture width, and Res is the residual fracture width.

To apply Darcy’s law for fracture flow calculations, the mechanical fracture width
derived from Equation (8) must be converted to an equivalent hydraulic fracture width,
ensuring an accurate representation of stress’s impact on fracture flow. Additionally, since
natural fracture surfaces typically possess roughness, a correction to the cubic law is
necessary for single-fracture flow. Based on empirical data, Barton proposed a correlation
between equivalent hydraulic width, mechanical fracture width, and the Joint Roughness
Coefficient (JRC) [36]: ,
bin

bh = ]Rcz.S

©)

3.1.3. Coupled Analysis Process of DEN for Flow and Stress

By incorporating the obtained fracture width changes into the iterative computations
of both the flow field and stress field, the final flow field and deformation field can be
determined. The analysis process is illustrated in Figure 4.

Construct a finite element calculation
model based on the fracture network

l

‘ Calculate initial seepage field and nodal water loads ‘

]

‘ Calculate stress and deformation in fractured rock mass ‘

]

‘ Compute normal stress on fractures and fracture width ‘

l

Update incremental changes in the seepage field and
nodal water loads

l

‘ Update changes in stress field and fracture width ‘

Check if the width
increments meet convergence
criteria

‘ Output the calculation results ‘

End

Figure 4. Flow chart of seepage-stress coupling calculation for rock mass analysis unit.
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3.2. Calculation of Equivalent Deformation Parameters Considering Seepage—Stress Coupling

As previously discussed regarding the Representative Elementary Volume (REV) con-
cept, when the size of the equivalent continuous body exceeds the REV, the equivalent
parameters that characterize its behavior stabilize. To obtain representative equivalent
deformation parameters, finite element analysis models are established based on a stochas-
tic fracture network, utilizing the fracture distribution characteristics of the slope rock
mass obtained from on-site engineering surveys. Numerical simulation tests are conducted
on finite element models of varying sizes and orientations to calculate the equivalent
deformation parameters. The calculation process is illustrated in Figure 5.

‘ Investigate distribution rules of rock mass fractures ‘

i Monte-Carlo method

‘ Generate random fracture network ‘

i HyperMesh

Build fracture network models of different sizes and directions
L I

y

Mesh to obtain the finite element model

Obtain rock and fracture mechanical
parameters by experiment
]

A
Calculate the equivalent deformation
|_parameters of the rock mass analysis unit [E] |

[E] satisfy the common
Quantity properties and tensor-like
properties

Change load conditions

!

Y
Increase rock |
mass analysis —

unit size

[E] still satisfy the common
Quantity properties and tensor-like
properties

I . g 3 o o |
The size of this rock mass analysis unit is
the representative unit body

v

End

Figure 5. Determination process of calculating the equivalent deformation parameters based on
numerical experiments.

4. Case Study

This section analyzes the equivalent mechanical parameters of fractured rock masses
and the hybrid prediction model for the deformation of rock slopes at ZN Pumped Storage
Power Station in China.

4.1. Overview of the Project

ZN Pumped Storage Power Station is located in Fujian Province, China, and boasts
an installed capacity of 1200 MW, classifying it as a Type I large hydropower project.
The infrastructure of the power station encompasses the upper reservoir, lower reservoir,
water conveyance system, underground powerhouse, and other structures. The lower
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reservoir is nestled in a creek valley with roughly symmetrical dam surroundings. The area
surrounding the reservoir exhibits steep terrain, characteristic of highly dissected, low-to-
mid-elevation mountain slopes, forming a deep “V” shape in the valley. These mountainous
terrains feature steep slopes ranging from 38° to 60°. The geological conditions at the
dam site are intricate, marked by several secondary faults, rock veins, and unfavorable
geological structures. Some natural slopes in the area exhibit deep unloading rock masses.
The exposed bedrock formations in the lower reservoir (dam) area primarily consist of the
Upper Nan-yuan Formation from the Late Jurassic period, late-stage Yanshan intrusive
rocks, and Quaternary surface formations. The predominant rock type is potassic feldspar
granite, composed of minerals like potassium feldspar, plagioclase, quartz, and biotite. This
granite exhibits a medium-to-fine-grained granitic structure with blocky features. Both
sides of the reservoir area feature bedrock outcrops with varying degrees of weathering.
The full weathered layer’s thickness is limited, and various diabase dikes () and a quartz
diorite porphyry dike (nom) can be found.

Our study focuses on the rock slope segment stretching from 0 + 114.5 to 0 + 162.5 m
downstream of ZN Pumped Storage Power Station’s lower reservoir, with elevations
ranging from 190 to 280 m. Based on the information provided by the design department,
the positions of the monitoring instruments and the geological cross-section of the typical
profile are shown in Figure 6.

Altitude(m)
280+

270
260
2507
240
230

220

Excavated Surface
210

200

190 7

180 —

Multi-Point Displacement Gauge ®  Surface Displacement Points
I Fresh, Slightly Weathered Granite [ mid Weathering (Lower Section) Granite
I:l Mild Weathering (Upper Section) Granite I:l Severe Weathering Granite

Figure 6. Location of the monitoring instruments and geological cross-section of the typical profile.

4.2. Establishment of Numerical Models

(1) Distribution characteristics of slope joints

Below, we focus specifically on the Mild Weathering (Upper Section) Potassium
Feldspar Granite (Rock Mass Rating III2A) as an example, detailing the entire process from
stochastic fracture network modeling to the calculation of final equivalent deformation pa-
rameters. The potassic feldspar granite in this area exhibits a blocky-to-sub-blocky pattern.
Extensive joint development is observed, with some joints extending for longer distances
and featuring flat surfaces. These fracture surfaces often display iron-manganese staining.
Geological mapping and tunnel data examination revealed that the major structural discon-
tinuity groups on the left and right banks consist of three sets each, characterized by the
major structural discontinuities with suggested combinations as presented in Table 1.
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Table 1. Slope structural surface combination characteristics table.
Location Fracture Set Strike Characteristics Spacing (cm)
Long extensions, flat surfaces,
N50 ~ 60°E NW(SE)£70 ~ 90° multiple surfaces with 20~50
iron-manganese staining
Left Bank N60 ~ 70°E NWZL80 ~ 90° Long. extenspr}s, flat surfa.ces., some 30~50
iron staining or mud infill
N40 ~ 50°E NW(SE)£30 ~ 40° Long extensions, flat surfaces, 20~50
iron staining
N80 ~ 90°E NWZ£ 80 ~ 90° Long ext.enswns., ﬂat surfaces, 20~50
iron staining
Right Bank N70 ~ 80°E NWZZ70 ~ 90° Long ext.ensmns., ﬂat surfaces, 10~50
iron staining
N60 ~ 70°E NWZ/ 60 ~ 90° Long extensions, flat surfaces, 20~50

iron-manganese staining

(2) Construction of Finite Element Models for Slope Rock Mass

To determine the REV of the slope rock mass, we studied variations in equivalent pa-
rameters of rock mass analysis units of various sizes and orientations. Firstly, it is necessary
to establish a stochastic fracture network. The modeling principle relies on the statistical
parameters and patterns of on-site fractures, which are then simulated using computer
visualization techniques. The modeling process primarily involves the following steps:

Step 1: Geological surveys of the excavation face are conducted to collect data on rock
mass structural features;

Step 2: Based on the structural orientation characteristics, the data are categorized and
subjected to statistical analysis for each category;

Step 3: Probability distribution models representing structural feature parameters are
constructed. In these models, dip angles follow a normal distribution, while trace lengths
and spacings follow negative exponential distributions;

Step 4: The Monte Carlo method is applied to perform random sampling of fracture
feature parameters, generating a series of random variables conforming to the probability
models mentioned above. These variables are then used to construct the rock mass fracture
network model;

Step 5: The fracture parameters in the model are validated and adjusted through
comparison with field survey data.

After utilizing the fracture distribution pattern described in Table 1 and employing
the Monte Carlo method, we created a random fracture network. This network was then
imported into the Hypermesh 2023 software. Various square rock mass analysis unit models
were constructed with different sizes and orientations, using the center point of the fracture
network model as the reference point, as shown in Figure 7.

According to the research outlined in reference [37], the maximum model size should
be at least three times the average trace length, while the minimum size should be similar
to the average trace length. As such, the side lengths of models in various directions were
set as follows: 4 m, 6 m, 8 m, 10 m, 12 m, 14 m, 16 m, and 18 m. The directions for each
model were set at 0°, 30°, 60°, 90°, 120°, and 150°. Additionally, rock mass analysis units
in directions 180°, 210°, 270°, 300°, and 330° can be analyzed using symmetry. With these
settings, our study considered 8 sizes and 6 directions, leading to the construction of a total
of 48 finite element models.
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90°
120° * 60°
X

Figure 7. Schematic diagram of rock analysis unit models of different sizes and directions.

4.3. Numerical Calculations and Results Analysis
4.3.1. Material Parameters and Boundary Conditions

In the finite element models of rock mass analysis units, two sets of nodes and elements
were defined: one set consisted of equal-thickness joint elements used for stress analysis of
the fracture units, and the other set consisted of line elements used for seepage analysis of
the fracture units. The mesh division for these units is depicted in Figure 8. The material
constitutive relationship for the rock was assumed to be elastic, while the fracture unit
followed the Goodman joint element constitutive model. Relevant material mechanical
parameters are presented in Table 2.

line element

Joint Element

it S el

Figure 8. Finite element model of rock mass unit of analysis in fluid—solid coupling calculation
(direction 0°, size 6 m x 6 m).

Table 2. Table for parameters of material property of the model.

Element Deformation Poisson’s Normal Stiffness  Shear Stiffness  Cohesion Friction Density
Type Modulus (GPa) Ratio (MPa/mm) (MPa/mm) (MPa) Angle (°) (kg/m3)
Rock 36 0.2 / / 1.75 285 2.5 x 10°
Joint / / 15 5.28 / / /

For the boundary conditions, as depicted in Figure 9, the model’s bottom was con-
strained as a fixed boundary, the left and right sides were subjected to horizontal link
constraint boundaries, and normal loads 0y, = 1, 2, 3, 4 MPa were applied to the top and
bottom boundaries. Regarding seepage boundary conditions, the left boundary of the
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Pore water
pressure (kPa)
100

80
60
40
20
0

model had fixed water pressure p; = 100 kPa, and the right boundary had fixed water
pressure p; = 0 kPa. The top and bottom were treated as impermeable boundaries.

O'y

100 kPa
,=0 kPa

p=

A

Figure 9. Schematic diagram of finite element model and boundary conditions.

4.3.2. Determination of Equivalent Deformation Parameters

Assuming that the rock is an impermeable medium and applying the loading and
hydraulic boundary conditions to the rock mass analysis units, the seepage field within the
fracture network is simulated. Taking Ill;4 rock mass under a load of 0, = 2 MPa as an
example, the distribution of fracture water pressure in the rock mass analysis units on the
10th, 20th, and 50th days is shown in Figure 10a—c. From the figures, it can be observed
that the fluid infiltration is very slow, and, with time, the pore water pressure gradually
increases from left to right.

e

(a) (b) ©

Figure 10. Distribution of fracture water pressure in rock mass analysis unit at different times
(10 m x 10 m). (a) 10 d; (b) 20 d; (c) 50 d.

To study the deformation characteristics of rock mass analysis units of different sizes, a
comparative analysis was conducted on the influence of different loads on the deformation
distribution pattern. Using models with sizes of 6m X 6 m, 10 m X 10 m, and 14 m x 14 m
as examples, their deformation contours under load 0, = 2 MPa are shown in Figure 11.
The observations include the following: (D in the 6 m x 6 m-sized model, the presence of
fracture structural surfaces significantly influences the deformation distribution in the rock
mass analysis units, resulting in notable discontinuities in displacement values on either
side of the fracture structural surfaces. (2) In the 10 m x 10 m-sized model, the influence of
fracture structural surfaces on the deformation in the rock mass analysis units decreases,
and the differences in displacement values on either side of the fracture structural surfaces
also reduce. (3 In the 14 m x 14 m-sized model, the deformation in the rock mass analysis
units exhibits a more uniform distribution, and the influence of fracture structural surfaces
on the deformation is minimal.
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Figure 11. Distribution diagram of rock mass deformation under different sizes. (a) 6 m x 6 m;
(b) 10 m x 10 m; (c¢) 14 m x 14 m.

By applying loading boundary conditions in various directions and sizes to rock mass
analysis units, a simulation of the deformation field was carried out. The results, which are
shown in Table 3, include the variation curves of the x-direction-equivalent elastic modulus
(Ex), the y-direction-equivalent elastic modulus (E,), and the xy-plane-equivalent shear
modulus (Gyy) with respect to rock mass analysis unit size, as depicted in Figure 12. The
upper and lower limits of the effective equivalent parameters were established based on the
calculation results for an 18 m x 18 m-sized rock mass analysis unit, using an acceptable
error of 10% [38,39]. When the rock mass analysis unit size is taken as 10 m x 10 m or
larger, the calculated values for Ey, Ey;, and Gy, are all within the acceptable error range, and
there are no significant fluctuations with changing rock mass analysis unit size, satisfying
quasi-constant properties. In order to investigate the tensor-like properties, it is necessary to
analyze the coefficients of variation in different directions (0°, 30°, 60°, 90°, 120°, 150°, 180°,
210°, 270°, 300°, and 330°) of the analysis units. The relationship between the coefficient of
variation (Cuy, Cvy, and Coyy) and the rock mass analysis unit size is shown in Figure 13.
When the rock mass analysis unit size is greater than 10 m x 10 m, all the coefficients of
variation no longer exhibit significant changes, and the calculated values fall within the
acceptable error range, satisfying quasi-tensor characteristics.

——EXx —a— Ey —h— ny

Rock mass analysis unit size(m)

Figure 12. Curve of equivalent deformation modulus versus rock mass analysis unit size.
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Figure 13. The variation coefficient of equivalent deformation modulus with the variation of rock
mass analysis unit size.
Table 3. Comparison of calculation results of equivalent deformation modulus of different rock mass
analysis unit sizes (direction: 0°).
Size 4mx4m 6m X 6m 8m x 8m 10m x 10 m 12m x 12m 14m x 14 m 16 m X 16 m 18 m x 18 m
E, 3.6 4.4 5.2 5.0 5.4 5.7 5.6 5.5
Ey 2.2 2.7 3.2 4.0 44 45 4.8 4.8
ny 15 1.6 2.0 2.2 24 2.4 2.6 2.5
Following the aforementioned procedures and methods, calculations and analyses
were conducted for several other types of rock masses, yielding the equivalent deformation
parameters for various rock masses, as shown in Table 4. Due to limitations in experimental
conditions, comparative tests on the deformation parameters of engineering rock samples
were not conducted. However, the calculated parameters fall within the reasonable range
of variations reported for granite deformation parameters in reference [40], validating the
computational approach used in this study. It should be noted that physical and mechanical
properties of rock masses vary across different regions due to differences in geological
ages, weathering degrees, and degree of development of structural planes. Therefore, the
calculated engineering rock mass deformation parameters in this study may exhibit some
discrepancies when compared to those reported in other research.
Table 4. Equivalent deformation parameters of various rock masses.
Rock Mass .
Rock Type Rating Weathering Degree REV (m) Ey (GPa) E, (GPa) Gyy (GPa)
P . s Fresh, Slightly Weathered 10 x 10 15.7 15.3 7.1
;tfgsmm I A Mild Weathering (Lower Section) 10 x 10 7.2 5.9 2.8
Ge sPtar 1IN Mild Weathering (Upper Section) 8x8 53 4.6 2.1
ranie v Severe Weathering 8x8 1.67 1.43 0.7

4.4. Prediction Results of the Hybrid Model

Through numerical analysis, the coefficients for rainfall components in Equation (2)
are determined by fitting the calculated results of the displacements of monitoring points
under various rainfall conditions. The temperature- and time-dependent components are
expressed using the statistical model expressions in Equations (3) and (4), and the model
coefficients are obtained through stepwise regression analysis. By analyzing data on slope
deformations from 2018 to 2022, the regression coefficients for the hybrid prediction model
are obtained. Taking the horizontal displacements in the downslope direction at monitoring
points M4xn1-1 and M4xn1-2 as an example, the coefficients are shown in Table 5.
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Table 5. Coefficients in the hybrid model of two monitoring points.

Monitoring Points Monitoring Points
Coefficients Coefficients

M4xn1-1 M4xn1-2 M4xn1-1 Mi4xn1-2
agp 0.12373 —1.6799 b1y —0.17012 —0.29339
Mm 0.06194 0.03898 b1a 0.00689 —0.06974
a» 0.04831 0.05896 by —0.16921 0.05185
as 0.02492 0.01244 bao 0.00728 0.15842
as 0.00464 0.00651 1 0.01342 0.02285
as 0.00248 0.00793 cp 0.20623 0.41164

The fitting and predictive results are shown in Figure 14a,b. These figures illustrate
that the predictive model proposed in this paper exhibits strong fitting and predictive
capabilities, accurately reflecting the overall deformation patterns of the rock reservoir
bank slope. However, the process of acquiring slope deformation monitoring data is
inevitably affected by factors such as human error, external interference, and equipment
failures. This results in irregular jumps in the monitoring data, particularly noticeable
in the early stages of monitoring for measurement point M4xn1-2 (prior to 1 May 2019),
leading to poor fitting performance during this period. Since there is no systematic pattern
in the errors between measured and predicted data, no correlation with environmental
variables, and no detected structural changes in the slope, these errors are likely caused by
external random factors such as monitoring uncertainties and rock mass properties.

20 ——Measured data —=—Predicted data
' |
1
1
’g 15 1
N |
g 1
g 1.0 1
19) 1
£ |
Q. 1
é’ 05 F 1
.. 1 . .
Training Set e | == Validation Set
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Date
(b)
Figure 14. Prediction results of two monitoring points. (a) M4xn1-1; (b) M4xn1-2.
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Relative Error

4.5. Comparison of Prediction Accuracies

To analyze the modeling effectiveness of this model, the complex correlation coefficient
(R) and the root mean square error (RMSE) are introduced as evaluation metrics. The
modeling effectiveness of the traditional statistical model M;, the deterministic model M,
and the hybrid model M3 are compared, and the results are presented in Table 6. It can be
observed that the proposed hybrid model in this paper exhibits the highest R, closest to 1,
and the smallest RMSE among all the models, indicating that this model provides the best

prediction results.

Table 6. Comparison results of different prediction models.

Eval.uat.lon RMSE
Criteria
Models M1 Mz M3 M1 M2 M3
Mi4xn1-1 0.8941 0.8628 0.9358 0.1514 0.1961 0.1021
Mi4xn1-2 0.8077 0.8349 0.8627 0.4303 0.3439 0.2238

Figure 15a,b presents a comparative diagram of the prediction results from the tradi-
tional statistical model, the deterministic model, and the hybrid model. The figures indicate
that the proposed hybrid model achieves better prediction results than other comparative
methods, demonstrating the effectiveness of combining numerical simulation with statisti-
cal regression. Figure 15¢,d present the relative errors of prediction results from the three
models. The figures reveal that, on certain dates (e.g., 8 February 2022, and 9 January 2023),
the statistical or deterministic models perform better. However, for the majority of dates,
the hybrid model demonstrates superior predictive capability. Additionally, due to the
relatively modest measured average values (1.25 mm and 1.82 mm) during the forecasting
period, coupled with substantial fluctuations (0.75 mm and 1.11 mm) and poor regularity,
this results in notable relative errors.
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Figure 15. Schematic of the prediction results of the proposed and the comparison methods for two
monitoring points. (a) Displacement of M4xn1-1; (b) displacement of M4xn1-2; (c) relative error of

M4xn1-1; (d) relative error of M4xn1-2.
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Figure 16 displays boxplots of residuals from different models. It can be seen from
the figure that the residuals at monitoring point M4xn1-1 are closer to zero, while those for
monitoring point M4xn1-2 are more tightly clustered, with the median line of the residuals
also approaching zero, indicating higher accuracy of this approach. It is noteworthy that all
three prediction models exhibit certain biases. Referring to Figure 15, the authors suggest
that this bias to the models mainly reflects the overall patterns in the training dataset,
making them less effective in accounting for the occasional fluctuations in the validation
dataset. For example, at the beginning of the validation set, without significant changes in
environmental factors or structural conditions, M4xn1-1 abruptly increased from 1.39 mm
to 1.59 mm, reaching the maximum value of the entire sequence; simultaneously, M4xn1-2
suddenly decreased from 2.42 mm to 1.62 mm.
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Figure 16. Residual boxplot results of two monitoring points. (a) M4xn1-1; (b) M4xn1-2.

5. Conclusions and Discussion

Considering the deformation characteristics of fractured rock masses under seepage
conditions, this paper introduces the equivalent continuous medium theory. Through
numerical simulations of discrete fracture networks considering the coupling of seepage
and stress, the size effect and anisotropy of the deformation parameters were explored.
Based on this analysis, a method for calculating the equivalent deformation parameters of
fractured rock masses was proposed, consequently enhancing the predictive precision of
the hybrid model. The principal conclusions can be summarized as follows:

(1) A method for iteratively solving the discrete fracture network model while consid-
ering seepage-stress coupling was proposed. The calculations of equivalent deformation
and seepage parameters of the equivalent continuous medium under various load con-
ditions were investigated, thus calculating the equivalent deformation parameters of the
fractured rock mass;

(2) By harnessing the advantages of integrating statistical models with finite element
analysis models, the proposed model can adeptly incorporate temperature- and time-
dependent characteristics while also reflecting the mechanical mechanisms of rainfall
factors on predictive quantities. Engineering case study results demonstrate that, compared
to traditional statistical models and deterministic models, the hybrid model proposed in
this paper exhibits superior predictive performance.

However, further elucidation is required regarding some assumptions and limitations
of the proposed model. The deterministic component of this model only computes de-
formations within the elastic range of slope lines under rainfall effects, while attributing
deformations caused by rainfall-induced groundwater level changes and other factors such
as degradation and creep of slope rock masses to time-dependent effects. Whether the
selected time-dependent components comprehensively reflect these influences remains to
be studied. Additionally, slope monitoring often encounters sudden changes attributed to
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random factors. Currently, prediction intervals (PIs) are commonly employed to address
this issue, which also remains a topic for future research.
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