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Abstract: Amid the escalating global demand for raw materials, the gradual exhaustion of terrestrial
mineral resources, and the rise in extraction costs and energy consumption, the development of deep-
sea mineral resources has become a focal point of international interest. The pipeline lifting mining
system, distinguished by its superior mining efficiency and minimized environmental impact, now
accounts for over 50% of the total energy consumption in mining operations. Serving as the “heart”
of this system, the deep-sea lifting pump’s comprehensive performance (high pressure tolerance,
non-clogging features, elevated lift capacity, wear resistance, corrosion resistance, and high reliability,
etc.), is critical to transport efficiency, operational stability, and lifespan of the mining system. As a
mixed transport pump for solid and liquid media under extreme conditions, its internal flow structure
is exceedingly complex, incorporating gas–liquid–solid multiphase flow. A precise understanding
of its internal flow mechanisms is essential for breaking through the design limitations of deep-
sea lifting pumps and enhancing their operational stability and reliability under various working
conditions and multiphase media, thereby providing technical support for advancing global marine
resource development and offshore equipment upgrades. This paper comprehensively reviews the
design theory, optimization methods, numerical simulations, and experimental studies of deep-sea
lifting pumps. It discusses the application of various design optimization techniques in hydraulic
lifting pumps, details the multiphase flow numerical algorithms commonly used in deep-sea lifting
pumps along with their modified models, and summarizes some experimental methodologies in this
field. Lastly, it outlines the forthcoming challenges in deep-sea lifting pump research and proposes
potential directions to promote the commercial development of deep-sea mining, thereby offering
theoretical and engineering support for the development of deep-sea mining slurry pumps.

Keywords: deep-sea mining; solid—liquid two-phase flow; centrifugal pump; slurry pump

1. Introduction

The expanse of the ocean, approximately 2.4 times that of terrestrial land, harbors
abundant mineral resources [1]. Initially, there was sanguinity regarding the alleviation of
pressure on terrestrial resource reservoirs through the extraction of oceanic minerals. In the
early 1980s, a boom in Pacific manganese nodule exploitation ensued [2]. Countries and
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regions such as the United States, Europe, and Japan focused mainly on deep-sea polymetal-
lic nodules, researching their own exploration and commercial mining schemes [3], while
also conducting experimental mining technologies for cobalt-rich crusts and polymetallic
sulfides, including in the Red Sea and near Japan. Nevertheless, due to the nebulous
commercial outlook, nations curtailed their investment in deep-sea mining research [4].
By the late 1980s and early 1990s, South Korea, India, and China sequentially joined the
expedition for deep-sea mineral resource development, endeavoring to explore commercial
mining solutions (see Figure 1).
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Figure 1. Exploration for minerals in the area [5].

However, the absence of efficacious and steadfast deep-sea mining apparatuses at the
time constrained the widescale implementation of these technological frameworks [6]. In
recent years, countries around the world have turned to undersea geological reservoirs
on near-shore continental shelves as a relatively low-risk and more accessible option to
meet the widespread demand for metals and minerals [7]. Furthermore, the progressive
evolution of deep-sea mining equipment has expedited global cognizance of oceanic re-
sources, heralding the onset of the epoch of extensive deep-sea development. In the early
20th century, research on deep-sea mineral resources showed an increasing trend (as shown
in Figure 2) according to academic standards in the fluid machinery industry. Presently,
nations across the globe are embarking on individual and holistic sea trials, precipitating
significant strides in the advancement of deep-sea mineral resource mining technology and
equipment.
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Currently, research into key technologies for deep-sea mining and the development
of commercial mining solutions are focused on pipeline lift mining systems (see Figure 3).
The system is mainly composed of the mining truck subsystem, lifting subsystem, mother
ship subsystem with auxiliary support, and deep discharge subsystem. The systems use
hydraulic or pneumatic lifting technology to efficiently transport seabed ore to the surface.
Central to this process is the deep-sea lifting pump, a pivotal component of the hydraulic
lifting system that directly influences the reliability of the entire mining apparatus. The
deep-sea lifting pump is the key component of the hydraulic lifting system to achieve this
process method, which directly determines the reliability of the entire mining system [8].
In 1978, Ocean Management Company (OMI) successfully mined 800t of nodules in the
deep-sea area of the Eastern Pacific Equatorial Sea through a six-level deep-sea lifting pump
with a bowl diffuser developed by KSB [9].
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Figure 3. Pipeline-lifting mining systems: (A) a polymetallic nodule mining operation using a single
collector vehicle and (B) possible associated return water discharge. (C) A seafloor massive sulfide
mining operation around a hydrothermal vent site. (D) A cobalt crust mining operation on the flank
of a seamount. (E) deep-sea lifting pump [10].
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The slurry pump with a bowl diffuser exhibits structural similarities to a mixed-flow
pump and demonstrates superior particle passage capabilities compared to traditional
slurry pumps, making it particularly well-suited for the demands of deep-sea mining
(see Figure 4). Building upon this advancement, the Korea Institute of Geological and
Marine Resources (KIGAM) [11] and the China Changsha Research Institute of Mining
and Metallurgy (CRIMM) [12] independently developed their own multistage mud pumps
for deep-sea mining experimentation. Central South University conducted hydraulic tests
on a six-level centrifugal pump for mud conveying at the State Key Laboratory of Deep-
Sea Mineral Resources Exploitation (China) [13]. Current research indicates that during
the operation of deep-sea lifting pumps, particle-induced wear on flowed passage parts
and particle reflux leading to pump blockage are significant contributors to pump failure.
Consequently, a thorough understanding of the intricate flow mechanisms is crucial for the
design and performance optimization of deep-sea lifting systems.
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In the early 20th century, computational fluid dynamics (CFD) emerged as a crucial de-
velopment in the study of fluid mechanics. With the advancement of computer technology,
CFD has evolved into a vital tool for analyzing complex fluid flow phenomena. Quantifying
the internal flow of deep-sea lifting pumps through experimental means is challenging
and expensive. CFD bridges this gap by establishing a connection between experimental
observations and internal flow processes, providing a comprehensive explanation of vari-
ous flow phenomena [15,16]. Currently, CFD technology is extensively employed in the
field of deep-sea lifting pumps. In multiphase flow modeling, two primary methods are
commonly used: the Euler–Euler method and the Euler–Lagrange method. The Euler–Euler
method treats both liquid and solid phases as interpenetrating continua. In the context of
simulating solid–liquid two-phase flow in a centrifugal slurry pump, the two-fluid model
(TFM) is utilized. The accuracy of TFM simulations is validated by comparing numerical
results with experimental performance characteristics of the pump [17]. In the context
of deep-sea mining lifting systems, the solid phase primarily consists of fine particles
from bottom deposits and crushers. The particle size of lifted ore can reach up to 20 mm,
exhibiting a large span and coarse particle characteristics. Treating the solid phase as a
two-fluid model, composed of quasi-fluid and liquid phases, fails to accurately represent
the slurry of seafloor ore with such characteristics. The Euler–Lagrange method, on the
other hand, tracks solid particles individually or in groups according to Newton’s laws of
motion, considering particle–particle and particle–wall interactions. The computational
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fluid dynamics–discrete element method (CFD-DEM) has gained popularity for multiphase
simulations due to its ability to interpret particle interactions realistically [18,19]. Chen
et al. [20] employed the CFD-DEM coupling method to analyze contact forces and particle
velocity characteristics of non-spherical particles with different shapes and spherical parti-
cles with varying sizes in a single-channel centrifugal pump. Deng et al. [13] utilized the
CFD-DEM simulation method to study particle movement in a six-level deep-sea mining
lifting system, obtaining slurry transport characteristic curves and particle transport and
distribution characteristics.

Although numerical simulation can provide profound insights and useful predictions
in many cases, its accuracy is not always guaranteed. Experimentation has become an
indispensable component for validating the accuracy of numerical simulations. Through
experimentation, the behavior of actual systems can be directly observed and measured,
thereby validating and calibrating simulation results. In the early stages, experimental
methods for deep-sea lift pumps primarily focused on the pump’s external characteristics,
although they played a role in validating the accuracy of pump simulations, they could not
reflect the internal particulate flow behavior. On-intrusive flow visualization optical tech-
niques play a decisive role in the historical development of fluid mechanics. In recent years,
advancements in technology such as cameras, lasers, and other devices have improved
the accuracy and reliability of methods like high-speed imaging (HSI) and particle image
velocimetry (PIV), making them more effective in visualizing complex transient flows [21].
By employing non-intrusive flow visualization optical techniques, researchers can intu-
itively observe and measure the internal particulate flow behavior, thereby validating and
calibrating numerical simulation results. This integrated approach of utilizing numerical
simulation and experimental techniques aids in enhancing the understanding of internal
flow behavior in deep-sea lift pumps and provides reliable foundations for their design
and optimization.

The current review on deep-sea lift pumps mainly focuses on the analysis of numerical
simulation and experimental results. However, a systematic and comprehensive summary
of the design optimization, numerical simulation, and experimental methods for the inter-
nal particle motion of deep-sea lift pumps has not yet been established. Further research is
required in this field to construct a more complete theoretical framework and simulation
methods, thereby enhancing the efficiency and reliability of deep-sea lift pump design and
application. The Section 1 of this paper reviews the research background of deep-sea lift
pumps. The Section 2 describes the design optimization methods for deep-sea lift pumps.
The Section 3 introduces numerical simulation methods for the internal multiphase flow
in deep-sea lift pumps, presenting the theoretical basis of computational fluid dynamics,
analyzing various multiphase flow models, and providing a detailed overview of methods
for modifying resistance. The Section 4 details various experimental measurement methods
for deep-sea lift pumps. In Section 1, a thorough introduction to various experimental
measurement methods for deep-sea lift pumps is provided. This part offers readers system-
atic knowledge on how to accurately measure and evaluate the performance of deep-sea
lift pumps through an in-depth discussion of different experimental techniques and mea-
surement strategies. In the Section 5 of this paper, a systematic summary of the research
progress on deep-sea mining pumps is presented, focusing on significant achievements in
this field. Additionally, Section 1 highlights the current shortcomings of deep-sea mining
pump technology and discusses potential directions for improvement. Furthermore, future
research trends for deep-sea mining pumps are outlined in order to guide and inspire
subsequent research efforts, promoting the advancement of this field to a higher level.

2. Design and Optimization Methods
2.1. Performance of Pump

In engineering applications, the external characteristics of water pumps play a pivotal
role. Pump performance is characterized by variations in head, power consumption, and
efficiency relative to changes in flow rate. Ensuring stable operation across different flow
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rates is primarily achieved through understanding the head and flow characteristics. The
operational range of water pumps guarantees system stability within specific flow rates
and heads, thereby enhancing overall system reliability and efficiency [22,23].

The head of the deep-sea lifting pump is defined as follows:

H =
pout − pin

ρg
+ (zout − zin) +

(ν2
out − ν2

in)

2g
(1)

where p is the pressure; ρ is the fluid density; z and v are the distance to the checkpoint and
the flow rate, respectively.

The expression for the liquid hydraulic power (Ph) obtained from the pump per unit
of time, and the input power of the pump, known as the shaft power (Ps), can be defined as
follows:

Ph =
ρgQH

1000 × 3600
(2)

Ps = ωT (3)

where Q is the volume flow rate, ω is the angular velocity, and T is the torque in. The
efficiency equation can be written as follows:

η =
Ph
Ps

(4)

Due to the fact that deep-sea lifting pumps are often multi-stage series pumps, it is
essential to discuss the pump in stages. It is necessary to treat each domain of the pump as
a control volume and quantitatively analyze the energy losses within each component of
the pump. The definition of impeller efficiency is:

ηImp =
(p2 − p1)Q

Tω
(5)

where p1 is the total pressure at the impeller inlet and p2 is the total pressure at the impeller
outlet.

Diffuser efficiency is defined as [24]:

ηDi f =
p4 − pin
p3 − pin

× 100% (6)

where p3 is the total pressure at diffuser inlet, p4 is the total pressure at diffuser outlet, and
pin is the total pressure at pump inlet.

2.2. Performance of Deep Sea Lift Pump

Compared to the condition with clear water, the deep-sea lifting pump operates with
a mixture of solid and liquid phases, which presents differences in density between the
two phases. The presence of solid particles within the fluid increases flow instability. In the
study of solid–liquid two-phase flow, it is necessary to consider the physical properties of
the two phases, such as concentration, mixture density, particle settling velocity, and other
factors, which can affect the performance of the pump.

The concentration of the mixture is further categorized into mass concentration and
volume concentration.

Cν =
ρm − ρ f

ρs − ρ f
(7)

Cm =
ρs

ρm
Cν (8)
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where ρs is the solid density, ρf is the fluid density, and ρm is the mixture density:

ρm = (1 − Cν)ρ f + Cνρs (9)

The definition of particle settling velocity is the speed at which a particle falls or settles
through a fluid under the influence of gravity. When the particles sink in the liquid, they
begin to accelerate and then sink at a uniform speed in equilibrium with the resistance. For
the settling velocity of the spherical particles in still water:

vt =

√
4gd

ρs − ρ f

3ρ f CD
(10)

where CD is the particle resistance coefficient, the particle resistance coefficient will change
in different flow modes, the specific value can be referred to [25,26].

In the solid–liquid two-phase flow pump, the performance of the pump is reduced due
to the joint flow of solid particles and liquid. Therefore, how to quantify the head reduction
factor is crucial for the design and operation of two-phase flow pumps to optimize their
performance and efficiency. Based on the experimental data, the researchers proposed
different correlation formulas to estimate the performance of pump transport of multiphase
media (see Table 1 for specific formulas).

HR = Hs/Hw (11)

where Hs is head developed by slurry at a given flow rate; Hw is head developed by water
at the same flow rate. The head reduction factor (KH) is defined as:

KH = 1 − HR (12)

Fairbank et al. [27] demonstrated through experimental data that the total lift produced
by a centrifugal pump is related to the concentration of foreign substances carried by the
liquid being pumped. He postulated that the velocity of solid particles at the impeller
outlet exceeds that of water alone and derived an expression to assess the theoretical
head using Euler’s equation. In the correlation formula proposed by Cave et al. [28],
the effect of granularity on head is considered and the granularity is expressed by the
median mass diameter (d50). By using average particle diameters to characterize solid
particles, Wesserroth et al. [29] experimentally observed that the characteristics of low
specific velocity pumps vary greatly compared to medium specific velocity pumps, and
attributed this phenomenon to differences in the flow friction path within the pump. Gahlot
et al. [30] investigated the performance of centrifugal slurry pumps under different particle
size distributions, by using existing empirical correlations to predict performance with large
deviations compared to experimental data, due to improper calculations of the specific
gravity of solids or the use of d50 as representative particle size. Kazim et al. [31] modified
the head reduction factor correlation established by Gahlot et al. [30], taking into account
the effects of particle size, size distribution, and concentration. Vocadlo et al. [32] report
that the effect of solids on large slurry pumps is less than that of small slurry pumps.
Engin et al. [33] took into account the effect of pump size on the head loss coefficient by
incorporating impeller outlet diameter (D2) into the established correlation.

The efficiency reduction factor is defined by Kη . Gandhi et al. [34] show that the
reduction in head is 2–10% greater than the reduction in efficiency. However, in practice,
the efficiency reduction factor (Kη) is generally considered to be equal to the head drop
factor (KH).
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Table 1. Available correlations for estimation of head reduction factor of centrifugal slurry pump.

References Existing Correlation for Head Reduction Factor “KH”

Fairbank [27] [1 − (1−CV )
Sm

]− SCV(U2 − Vs
f 2Cotβ2)

Sm(U2 − Vw
f 2Cotβ2)

Cave [28] 0.0385 · (S − 1) · (1 + 4
S
) · Cw · ln(

d50
0.0227

)

Wesserroth [29] 3.16 · 10−4 CV
ψW

(NS)
−2.46(Rep)

1
3

Gahlot [30] 0.00056(Ss − 1)0.72CW
Ss + 3

Ss
, ln(50dwn)

Kazim [31] 0.13 · CW ·
√

S − 1 · ln(
dwn

20
)

Vocadlo [32] CV(Ss − 1)
Sm

[0.167 + 6.02

√
d50(Ss − 1)

D
]

Engin [33] 0.11CW(Ss − 1)0.64 ln(44dwn)
Engin [35] 2.705CW · (S − 1)0.64(dwn/D2)

0.313

2.3. Design Method of Deep Sea Lift Pump
2.3.1. Enlarged Flow Design Method

Due to the working characteristics of the deep-sea lifting pump, its channel should
have a wide enough cross-section to ensure the smooth passage of coarse particles. The
specific speed ns of the pump is closely related to the geometry of the pump, and the higher
the specific speed, the wider the flow channel of the pump.

ns = 3.65n
√

Q
H3/4 (13)

where n is the speed of the pump; Q is the flow rate; and H is the pump head.
In the process of transporting solid particles with deep-sea lifting pumps, particles

collide with the blades, causing wear and vibration, thus making high speeds unsuitable.
Kuntz et al. [36] increased the flow rate to increase the specific speed of the bowl diffuser
slurry pump. This design method not only allows for the design of a wide flow channel
suitable for particle passage but also effectively separates the pump’s operating point from
the design point, thereby improving efficiency. Kang et al. [14] designed a new type of
deep-sea lifting pump using the increased flow rate method. Compared to conventional
methods, the pump designed using the enlarged flow design method shows a more uniform
distribution of internal particles and improved flow characteristics. Due to the operating
point being lower than the design point, the pump exhibits good boosting performance.
The increased flow rate method can effectively enhance the anticlogging performance and
has been widely applied in the field of design for deep-sea lifting pumps. The increased
flow method is expressed as the following formula [37]:

Q′
d = K1Qd (14)

N′
s = K2Ns (15)

where Q′
d and Ns are the working flow rate and specific speed of the pump, respectively;

Q′
d and N′

s are the flow and specific speed of the pump after using the increased flowrate
method; K1 and K2 are the amplification coefficients of the flow rate and specific speed,
respectively.

With the amplification of flow rate, the specific speed will also increase accordingly.
However, when the specific speed exceeds a certain value, the performance of deep-
sea lifting pumps may decrease instead. Therefore, it is essential to select a reasonable
amplification factor for the increased flow rate design method. In the past, designers usually
selected the amplification factor based on traditional empirical methods, but in practical
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applications, it was found that statistical data or empirical formulas were not accurate.
Due to the limitations of traditional empirical methods, Yang et al. [38] proposed a method
for calculating the reasonable amplification factor for the flow rate and specific speed of
a centrifugal pump based on performance prediction. The method for determining the
amplification factor is based on predicting the pump performance using CFD technology
to obtain the optimal impeller blade outlet width and impeller outer diameter, ultimately
resulting in the optimal amplification factor. In order to improve calculation accuracy and
obtain the most precise amplification factor, Yang introduced a third equation into the
general expression of the increased flow rate method:

H′
d = K3Hd (16)

where K1, K2, K3 can be expressed as [38]:

K1 =
(

b2
b′2

K5/8
3

)4/3

K2 =
K1/2

1

K3/4
3

K3 =
σu2

2
D′

2

D2
− K1/4

1 K5/8
3 vm2cotβ2u2

σu2
2 − vm2cotβ2u2

(17)

where b2 is the impeller outlet width by the conventional method; b′2 is the impeller outlet
width obtained by increasing the flow method; u2 is the exit peripheral speed; vm2 is the
exit radial velocity; β2 is the impeller blade outlet angle; D2 is the outer diameter of the
impeller obtained by the conventional method, and D′

2 is the outer diameter of the impeller
obtained by the increased flowrate method; σ is the Stodata slip coefficient, defined by:

σ = 1 − π

2
sinβ2 (18)

In the design process of deep-sea lifting pumps, if the increased flow rate method
is used for design, the actual working flow rate will be lower than the design flow rate
condition. In this situation, the pump inlet area is prone to cause backflow and flow
separation phenomena, which will increase hydraulic losses and may lead to unstable
operation of the pump at low flow rate conditions. To avoid these issues, careful selection of
the pump’s design parameters should be made during the design phase to ensure its good
performance within the expected operating range. Considering that the impeller and the
volute are the main flow components inside the pump, the determination of their geometric
parameters has a decisive impact on the overall pump performance. Therefore, during
the design stage, it is necessary to accurately calculate and optimize these key parameters
to ensure that the pump can maintain high efficiency and stable operation under various
operating conditions. The selection of the main parameters can be seen in Table 2.

Table 2. Solid–liquid two-phase flow pump design parameters.

Parameter Equation

Impeller inlet diameter
Dj =

√
D2

0 + d2
h

D0 = K0

√
Q
n

K0 = 3.8 ∼ 4.5

Impeller blade outlet width
b2 = kb

3
√

Q
n

kb = 0.64kb2(
ns

100
)

5/6
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Table 2. Cont.

Parameter Equation

Impeller outlet diameter D2 =
60
nπ

[
νm2

2tanβ2
+

√(
νm2

2tanβ2
+ gHt∞ + u1νu1

)]
Number of impeller blades Z1 = 3 ∼ 6

The width of diffuser blades b3 = b2 + (3 ∼ 5)mm
Number of diffuser blades Z2 = Z1 + 1

2.3.2. Inverse Design Method

In the hydraulic design of deep-sea lift pumps, inverse design methods are often
employed. These methods involve deducing the design parameters and structural char-
acteristics of the pump based on known performance requirements. The inverse design
method was initially proposed by Hawthorne et al. [39] and Tan et al. [40], and Zangeneh
et al. [41] expanding upon and applying it to the design of rotating machinery. Unlike tra-
ditional geometric parameter-based design methods, 3D inverse design methods have the
design determined by blade loading distribution or pressure distribution. This approach
can easily handle three-dimensional flow effects, allowing designers to understand the
formation of secondary flows and how to eliminate undesirable ones. Researchers typically
assume irrotational and steady flow when using inverse design methods. The depiction of
blades involves the utilization of vorticity sheets, wherein the intensity is directly linked to
the specified bound circulation or 2πr

-
vθ . Additionally, from the conservation of angular

momentum, the head can be expressed as:

gH = u(1, s)vθ(1, s)− u(0, s)vθ(0, s) = ωr(1, s)vθ(1, s) (19)

where g denotes the acceleration due to gravity, u is rotational velocity,
-
vθ is the pitch-

averaged component of absolute velocity, ω is the angular velocity of rotation, r is the
radial coordinate and s is the spanwise non-dimensional coordinate.

rνθ(0, s) =
gH
ω

(20)

where the r
-
vθ is defined as

rνθ =
N
2π

∫ 2π/N

0
rνθdθ (21)

where N denotes the blade number.
In this approach, the variables are known input parameters. The work by Zangeneh

et al. [42] employs an algorithm to compute 3D blade shapes. Typically, under various
initial conditions, non-penetrability conditions (22) are applied alongside Euler solvers
based on numerical methods (such as finite difference or finite element methods) to achieve
the final blade shape satisfying both non-penetrability conditions and the prescribed blade
loading distribution.

Wbl · ∇α =
(W+ + W−) · ∇α

2
= 0 (22)

where ∇α is a vector normal to the blade surface and Wbl is the relative velocity vector,
here W+ and W− are the velocities on the upper and lower surfaces of the blades.

In the realm of pump design, the optimization process based on geometric parameters
often becomes highly time-consuming and computationally expensive due to the multi-
tude of involved parameters and the complexity of the objective function. However, by
integrating three-dimensional reverse engineering techniques with modern optimization
algorithms, designers can gain a profound understanding of the fluid dynamics phenom-
ena and their intimate connection with design variables [43]. This integration not only
enhances the efficiency of the design process but also emphasizes meeting performance
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requirements and practical application objectives. Compared to traditional design methods,
inverse design methods effectively achieve precise control over the expected performance
indicators by systematically optimizing and adjusting design parameters. Therefore, this
method provides a more efficient and goal-oriented solution for engineering design.

2.4. Optimization Methods
2.4.1. Parameter Modeling Optimization

In the design optimization of slurry pumps, orthogonal experimental design [44]
or surrogate modeling methods [45] are commonly employed. Orthogonal experiments
require designers to reflect overall characteristics through local characteristics by planning
experimental schemes and analyzing results rationally. Shi et al. [46] optimized model
pumps using orthogonal experiments and CFD techniques. The optimized pump head
was increased by 2.81 m, and efficiency improved by 5.6%. This method is suitable for
optimization tasks with limited targets and parameters and short cycles. However, its
accuracy may be insufficient when facing optimization problems with multiple variables
and objectives. Surrogate modeling, as an effective technique, has been widely applied in
engineering design and scientific research. This method simulates the response or behavior
of complex systems by establishing a simplified mathematical model. Its essence lies in
training the surrogate model with limited sample data to significantly reduce the required
computational resources and time consumption while ensuring a certain level of accuracy.
Through this approach, surrogate models can effectively improve the efficiency of design
and analysis, especially demonstrating significant advantages in dealing with computa-
tionally intensive problems. The construction of surrogate models should ensure both
accuracy and computational efficiency. In the initial stage, experimental design methods
such as orthogonal design, uniform design, or Latin hypercube design are employed to
select a representative sample point set from the design space. The selection of sample
points should accurately reflect the key physical characteristics of the system and their vari-
ation trends. Based on this, the objective function values are computed at selected sample
points, i.e., the response of the real model, providing the foundation dataset for training the
surrogate model. Finally, the predictive ability of the surrogate model is validated using an
independent testing dataset, and the model parameters or structure are adjusted based on
the validation results to optimize the predictive accuracy and generalization performance
of the model. The significant findings regarding pump optimization utilizing optimization
algorithms are summarized in Table 3.

Table 3. Summary of algorithm optimization of pump.

Authors Optimization Algorithm Pump Type Efficiency
Optimization

Head
Optimization

Pei et al. [47]
Improved

particle swarm
optimization

Centrifugal pump - -

Gong et al. [48] Improved bat algorithm
Seawater desalination

high pressure
multistage pump

+3.98% -

Lu et al. [49]

Radial basis function (RBF)
neural network

multi-islands genetic
algorithm (MIGA)

Mixed-flow pump +4.3% -

Derakhshan et al. [50] Artificial colony algorithm Centrifugal pump +3.59% +6.89 m

Wu et al. [51,52] Artificial neural network
Genetic algorithm

Multistage centrifugal
pump

+2.8%,
(CMEI decreases by

1.34%)
+8.8%

As the most critical component for energy conversion in pumps, the impeller signifi-
cantly influences pump performance and is the focus of optimization [53]. Kim et al. [54],
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Hao et al. [55], and Zhang et al. [56] optimized multiphase pump impellers, obtaining
improved models with increased head and efficiency. Zhang et al. [57] proposed a multi-
objective optimization method combining numerical computation, Latin hypercube design
(LHS), Kriging surrogate modeling, and genetic algorithm (GA) to optimize the radial
parameters of double-suction pump impellers. Hong et al. [58] optimized the slurry pump
using the RSM method, achieving a 29.5% reduction in average impeller wear intensity
while meeting the requirements for head and efficiency. As energy-consuming components,
guide vanes should minimize energy losses to enhance pump performance. Kim et al. [59]
optimized mixed-flow pump diffusers using radial basis neural network (RBNN) models
and SQP optimization algorithms based on numerical simulation results. While optimizing
the impeller or guide vanes individually can enhance pump efficiency to some extent, both
impeller and guide vanes collectively determine pump performance, and optimizing them
separately may not yield optimal results. Li et al. [23] treated the geometric parameters
of the impeller and guide vanes as design variables, aiming to maximize efficiency at
the design flow rate with the corresponding head as a constraint. The ASO optimization
algorithm was employed, and Spearman correlation coefficient analysis was conducted to
assess the correlation and sensitivity between variables and optimization objectives. As
shown in Figure 5 this optimization method provides guidance for the design of centrifugal
pumps with diffusers. Single-objective optimization often fails to meet the requirements
for pump performance optimization under multiphase flow conditions. Researchers pro-
pose utilizing multi-objective optimization algorithms and machine learning methods
to optimize various pump characteristics. Nourbakhsh et al. [60] optimized centrifugal
pumps using multi-objective particle swarm optimization (MOPSO) and multi-objective
genetic algorithm (NSGA-II), demonstrating the feasibility of multi-objective optimization
algorithms for pump optimization. Gan et al. [61] proposed an improved multi-objective
optimization method for centrifugal pumps combining particle swarm optimization with
neural networks, resulting in significant efficiency improvements under three specified
operating conditions and highlighting the correlation between impeller inlet conditions
and pump performance in pipelines. Zhang et al. [62] combined BP neural networks with
NSGA-II, increasing the pressure rise of a helical axial multiphase pump by 10% and im-
proving efficiency by 3%. Shojaeefard et al. [63] optimized centrifugal pump inducers using
neural networks and NSGA-II, achieving a 14.3% increase in pump head coefficient, a 0.3%
increase in efficiency, and a 30.2% reduction in required net power. Xu et al. [64] improved
jet pumps using NSGA-II and radial basis function (RBF) neural networks, resulting in a
30.46% increase in pump head and a slight improvement in efficiency. Cui et al. [65] opti-
mized the impellers of multi-stage submersible electric pumps while maintaining constant
blade total load and head to improve efficiency. By analyzing the performance and flow of
18-stage submersible electric pumps, an optimized scheme comprising front, intermediate,
and rear stages was determined. Under design conditions, impeller outlet flow losses and
pressure pulsations decreased, and the interaction between impellers and guide vanes
weakened. This led to a reduction in unstable flow phenomena such as secondary flows
and vortices, improving flow stability at the impeller outlet. Hu et al. [66] proposed a
multi-objective optimization strategy based on genetic algorithm backpropagation (GABP)
neural networks and non-dominated sorting genetic algorithm III (NSGA-III), enhancing
the hydraulic performance of deep-sea mining pumps. Under rated solid–liquid two-phase
flow conditions, the head still met design requirements, with a 15.64% decrease in shaft
power and a 6.00% increase in efficiency. Kim et al. [67] designed multiphase pumps using
multi-objective optimization design techniques, establishing optimization models using
response surface methodology and analyzing the effects of GVF on multiphase flow perfor-
mance in the optimization model. Peng et al. [68] jointly optimized the impeller and guide
vanes of multiphase mixed-flow pumps. Initial response surface models were established
using minimal point design experiments, followed by various adaptive refinement methods
to improve the accuracy of the response surface.
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2.4.2. Alternative Optimization Methods

Due to the continuous pressurization in multi-stage pumps, the total axial thrust on
the impellers can reach several tens of tons, threatening the stable operation of the pump.
Moreover, improper design of balancing devices can lead to bearing overload, collisions
between moving and stationary parts, and pump shaft fractures [69]. Kang et al. [70]
conducted a study on the axial thrust and hydraulic performance of deep-sea mining
pumps. A computational fluid dynamics model of a two-stage centrifugal pump was
established using the full-flow field method. The numerical simulation of the transportation
process of pure liquids and solid–liquid mixtures was carried out using an actual mining
pump as the research subject. The results indicated that the position of the balancing holes
has a minimal impact on the hydraulic performance and thrust of the pump. Larger hole
diameters can help increase the flow rate and the capacity to balance axial thrust, but they
also lead to more significant flow losses and poorer hydraulic performance (see Figure 6).
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Figure 6. Hydraulic axial loads and reduction indexes with different values of Db. Schematic diagram
of axial load components on the impeller [70].

The degree of wear particles on solid surfaces is not only related to the properties of
the solid material but also depends on the geometric shape of the solid surface. Different
surface geometries can change the form of interaction between particles and solid surfaces,
thereby significantly affecting wear, such as the angle and speed of particle collisions, the
distribution and dynamic changes in the collision region, and the impact of the flow field
on particle movement. Nature has evolved biological structures that reduce drag and
wear [71], such as the striped scale structures found on shark skin. These groove structures
can change the structure and velocity distribution of the turbulent boundary layer on the
skin surface during swimming [72]. Li et al. [73] combined drag-reduction technology
of non-smooth surfaces with the solid–liquid two-phase flow in centrifugal pumps. Gu
et al. [74], based on the theory of drag reduction by non-smooth surfaces (see Figure 7),
established a pit-type non-smooth blade surface model and analyzed the impact of actual
non-smooth surfaces on blade surfaces and the effect of solid volume fraction on centrifugal
pump performance through numerical simulation. The study showed that blades treated
with special surface treatments could effectively reduce the frictional resistance and energy
loss between the fluid and the wall. With the same solid particle volume concentration, the
shear stress produced by solid particles on non-smooth surfaces is generally lower than
that on smooth surfaces. With the increase in flow rate, non-smooth surfaces show a better
effect in reducing shear stress, which can effectively improve the head and efficiency of
centrifugal pumps.
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3. Numerical Simulation Methods

The two-phase flow in deep-sea lifting pumps involves multiscale interfacial coupling
and multi-physical reaction processes [75]. Complex forces exist between fluid and solid
particles, and understanding the internal flow distribution and particle motion patterns
is crucial for addressing the performance of deep-sea lifting pumps. Over the past few
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decades, several numerical strategies have been developed to describe particle flows. At
present, there are two main methods to simulate particle phase in liquid: Euler–Euler
method and Euler–Lagrange method. In the mid-20th century, scientists endeavored to
develop effective methodologies for describing and predicting the behavior of multiphase
flow systems by solving the equations governing mass, momentum, and energy conser-
vation in granular fluid systems using Euler–Euler methods [76,77]. The Euler–Euler
modeling is suitable for one or two particle sizes, rather than a wide range of particle size
distributions. Additionally, the model does not offer information regarding the residence
time of individual reactive particles. To address this problem, scientists track the motion
of material particles in the fluid through the Euler–Lagrange method, where the fluid is
considered as a continuous phase in computational fluid dynamics (CFD) and solved by
the Navier–Stokes equations, while particles are modeled using the Discrete Phase Model
(DPM) introduced by Gidaspow and Strack [78]. The discrete element method (DEM) is a
powerful numerical simulation tool for solving Newton’s second law and reproducing the
flow of discrete media, making it suitable for numerical simulation of two-phase flow in
slurry pumps [79].

Among many commercial and open-source computational fluid dynamics (CFD)
software such as ANSYS Fluent, Siemens STAR-CCM+, Open FOAM, MFiX, Hyperworks
CFD, users can obtain flow field information through them. As mentioned earlier, (DEM)
modeling is performed at the scale of individual particles, while CFD solutions for fluid
flow are implemented at the computational cell level. By combining CFD and DEM, the
flow behavior of particles and fluids can be reasonably simulated. Since the pioneering CFD
and DEM coupling research conducted by Tsuji et al. [80], CFD-DEM coupling models have
become widely adopted methods for applications involving interactions between fluid and
particle phases [81–83]. The Fluent and EDEM coupling method is widely used in CFD-
DEM calculations, with the specific process outlined in Figure 8. The two software packages
establish a data bridge through a data interface, exchanging simulation data at each time
step. Fluent transfers the particle forces generated by the flow field to EDEM, where EDEM
computes the Lagrange motion of particles and updates their position, velocity, and volume
data through the data bridge. Fluent calculates particle forces on the fluid and updates the
changes in the flow field for the next time step, while the DEM solver is responsible for
tracking each particle in the computational domain.
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The coupling of EDEM with the same company’s Hyperworks CFD software, with
the coupling interface being updated with the latest versions, represents a more powerful
method compared to EDEM and Fluent. Rocky DEM, as an emerging discrete element
software, is gradually becoming a new trend in the CFD-DEM simulation field. Further-
more, Rocky DEM’s functionality surpasses that of EDEM, supporting various polyhedral
particles, particle fracture models, and coupled CFD resistance algorithms. Additionally,
open-source software such as MFiX and CFDEM possess powerful capabilities, albeit many
functionalities requiring programming implementation. This section provides an overview
of the basic theory of numerical simulation methods for hydraulic lifting pumps, includ-
ing introductions to fluid models, discrete phase models, as well as basic theories and
correction methods for resistance models involved in numerical simulations.

3.1. Control Equations of Fluids

The computational fluid dynamics (CFD) method has been widely used in simulating
the internal fluid behavior of pumps and turbines [85,86]. Numerical methods play a crucial
role in solving hydraulic machinery problems. However, the accuracy of numerical simula-
tions largely depends on the turbulence model used. Therefore, selecting an appropriate
turbulence model is essential for improving the reliability of simulation results [87,88]. For
the computation of complex turbulence, analytical methods are unable to predict accurately.
Hence, numerical simulation becomes one of the effective methods for studying turbulence,
mainly divided into Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), and
Reynolds-Averaged Navier–Stokes Simulation (RANS). DNS directly solves the Navier-
Stokes equations to capture all scales of vortex structures in the flow. This method does
not rely on any turbulence model or approximation. However, it requires very fine grid
resolution and computational time steps, demanding high computational resources [89,90].
Due to computational limitations, DNS can only solve simple turbulent problems with low
Reynolds numbers. LES is a compromise solution between Direct Numerical Simulation
(DNS) and Reynolds-Averaged Navier–Stokes (RANS) models. Large-scale eddies are
directly resolved, while small-scale eddies are treated with subgrid scale models, enabling
the simulation of complex flows with distinct advantages in capturing large-scale turbulent
structures. However, it imposes high demands on grid accuracy and boundary condi-
tions, making it difficult to achieve for conventional design purposes. RANS is one of
the primary methods used in computational fluid dynamics (CFD) to simulate turbulent
flow. In granular flow systems, turbulence distribution is complex, so researchers primarily
focus on the time-averaged distribution characteristics of system flow, with RANS solving
the fluid governing equations after time averaging. In dense granular flow systems, the
Navier–Stokes equations for fluid volume fractions need to be considered:

∂α f ρ f

∂t
+

∂(α f ρ f ui)

∂xi
= 0 (23)

∂(α f ρ f ui)

∂t
+

∂(α f ρjuiuj)

∂xj
= −α f
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+
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)
∂u f ,k
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δij (25)

where ρ f , u, p are the density, velocity, and pressure of the fluid, respectively, Ff→p and
Fp→ f are the locally averaged particle–fluid interaction forces. where τf is the viscous stress
tensor, where λ f is the viscosity of the fluid, µ f is the shear viscosity of the fluid, and δij is
the Kronecker function.

In the simulation research of some dense granular flow systems, the influence of
turbulence is significant due to the presence of numerous vortex structures inside. Therefore,
when employing the RANS method, often turbulence models such as the k-ε model,
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Reynolds stress model (RSM), etc., are chosen [91,92]. Ku et al. [93] considered the fluid
volume fraction in the transport equations of the standard k-ε model.

∂
∂t (α f ρ f k) + ∂

∂xj
(α f ρjujk) = ∂

∂xj
[α f (µ f +

µt
σk
) ∂k

∂xj
]

+α f µi
∂ui
∂xj

(
∂uj
∂xi

+ ∂ui
∂xj

)− α f ρ f ε
(26)
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− C2ρ f ε
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where C1, C2 is the calculator parameter, σε and σk are the turbulent Prandtl number.
The Reynolds stress model (RSM) is an advanced turbulence model used to simulate

turbulent flow. RSM directly solves the turbulent stress tensor rather than relying on the
concept of turbulent viscosity, allowing the model to describe the complexity of turbulence
more accurately. RSM is suitable for complex turbulent flows such as separation flows,
strong shear flows, and vortex flows, thus providing more accurate calculations and
predictions for complex flows and being more suitable for anisotropic rotating flows [94,95].

While Direct Numerical Simulation (DNS) provides a high-precision method for
describing turbulence by solving the entire turbulent eddy, Large Eddy Simulation (LES)
models consider the larger scales of eddies within the turbulent flow. However, due to
the computational challenges and high demands on computational resources, they have
not been widely used. In contrast, the Reynolds-Averaged Navier–Stokes (RANS) method
balances computational resources and solution accuracy, making it suitable for solving
most engineering problems. In multiphase flow simulations, both the k-ε model and RSM
have been widely applied.

3.2. Euler–Euler Model

The distribution of particles inside deep-sea lifting pumps exhibits certain patterns,
and hence the internal two-phase flow can be described by average macroscopic variables
such as density, velocity, pressure, and temperature. In the Euler–Euler model, each phase
(for example, gas, liquid, or solid particles) is treated as a continuous medium, and the Eu-
lerian perspective is used to describe the motion and interactions of each phase. Currently,
the Euler–Euler model has evolved into a mature framework, enhanced by the integration
of some theoretical models [96]. Particularly, the incorporation of particle dynamics theories
and drag models has enabled it to handle more complex and detailed multiphase flow
issues. Therefore, the Euler–Euler method demonstrates significant operational advantages
and substantial potential when studying the mixing and separation of large quantities of
particles in deep-sea lifting pumps.

3.2.1. Two-Fluid Model

The Two-Fluid Model (TFM) treats the two phases (liquid and solid) as interpene-
trating continua within the Euler–Euler framework, assuming each phase fills the entire
computational domain. To simulate the interactions between solid particles, an additional
conservation equation for solid phase kinetic energy needs to be solved. Each phase in
the model has its own physical quantities such as density, velocity, temperature, and pres-
sure, and the coupling between different phases is described by interphase interaction
coefficients. The continuity equations have the form:

∂(βnρn)

∂t
+∇ · (βnρnVn) = 0 (28)

where n is either “s” or “f ”, representing fluid and solid, respectively.
Momentum equations:
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For fluid phase:

∂
∂t (β f ρ f V f ) +∇ · (β f ρ f V f V f )

= −β f∇p +∇τ f + β f ρ f g + Ms, f (Vs − V f )
(29)

For solid phase:

∂
∂t (βsρsVs) +∇ · (βsρsVsVs)

= −βs∇p −∇ps +∇τs + βsρsg + M f ,s(V f − Vs)
(30)

where the fluid–solid exchange coefficient can be expressed as:

Ms, f =
3
4

CD

(1 − β f )β f ρ f

∣∣∣Vs − V f

∣∣∣
ψds

β−2.65
f (31)

where βn, ρn, τn, pn, and CD represent the volume fraction, density, stress tensor, pressure,
and drag coefficient, respectively. The selection of specific parameters can refer to the work
of Ostermeier et al. [97].

3.2.2. Mixture Model

The mixture model is based on the principle of full Eulerian multiphase model. It
solves the two-phase mixing of the continuity and momentum equations. The model allows
the two phases to move at different speeds by introducing the concept of slip velocity [17].
Mixture model can perform as well as a full multiphase model while solving a smaller
number of variables than the full Eulerian multiphase model. The continuity equations
have the form:

∂ρm

∂t
+∇ · (ρmVm) = 0 (32)

where Vm is the mass-averaged velocity as defined in User’s guide FLUENT below:

Vm =

t
∑

p=1
βpρpVp

ρm
(33)

and ρm is the mixture density expressed as:

ρm =
t

∑
p=1

βpρp (34)

Momentum equation for the mixture:

∂(ρmVm)
∂t +∇ · (ρmVmVm) = −∇P + ρmg +∇ ·

[
µm
(
∇Vm +∇VT

m
)]

+∇ ·
(

n
∑

p=1
βkρkVdr,pVdr,p

)
(35)

where µm is the viscosity of the mixture expressed as:

µm =
t

∑
p=1

βpµp (36)

and Vdr,p is the drift velocity for the secondary phase expressed as

Vdr,p = Vp − Vm (37)
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Wang et al. [98] simulated a centrifugal slurry pump at design flow rate using the
Euler–Euler (EE) model and validated the predictions with experiments. The study revealed
the influence of particle concentration on the performance of dilute slurry pumps, showing
a decrease in head with increasing particle concentration. The predicted values exhibited a
deviation of around 10% from experimental measurements. Building upon Wang’s work,
Zhao et al. [99] employed a mixture multiphase model to investigate the performance of
solid–liquid mixture pumps, examining the effects of particle size and flow rate on the
internal flow field of the impeller. It was found that within the impeller, particles primarily
flowed along the pressure surface and hub, while in the volute, particles predominantly
flowed along the pressure surface and hub. As particle diameter increased, particles tended
to aggregate on the pressure side of the impeller. Li et al. [100] utilized a mixture model
to study the influence of flow rate and particle size on the performance of dilute slurry
centrifugal pumps. They observed that the degradation in pump performance increased
with increasing particle size and flow velocity, with deviations in head and efficiency
predictions of approximately 7–8% from experimental data. Zhang et al. [101] analyzed
pressure on both sides of the mid-plane of the impeller using a mixture model. Tarodiya
et al. [17] compared two-phase flow models, the Euler–Euler model and the mixture model,
with experimental data. Results showed closer agreement between the Euler–Euler model
and the mixture model. Noon and Kim [102] utilized the Euler continuous phase model to
analyze the erosion of lime slurry as it flows through a centrifugal pump, and its impact on
head and efficiency loss. Peng et al. [103,104] predicted the solid phase volume fraction
and slip velocity inside a slurry pump under different particle concentrations and flow
conditions using the Euler–Euler model. As shown in Figure 9 the wear experiment verifies
the results of numerical simulation. Early two-fluid models only considered interactions
between particle and fluid phases. Yang et al. [105] simulated semi-open sewage pumps of
different clearance sizes using the Euler–Euler method. They conducted a multifactorial
analysis to study the comprehensive impact of different two-phase flow conditions and
clearance sizes on the performance of sewage pumps. Under certain load conditions, parti-
cle concentration, and clearance size both significantly affect efficiency. Two-phase flow
greatly enhances the non-steady flow intensity near the impeller inlet and outlet, which is
the main reason for the decrease in sewage pump performance. Numerical solution meth-
ods for the models are continuously being improved to enhance computational efficiency
and accuracy. Figure 10 illustrates the variation of the mean vorticity under different flow
rates and particle concentrations, in accordance with academic standards. Researchers have
started to introduce more complex mathematical models to describe particle collision and
aggregation phenomena, as well as turbulent effects between particles and fluids [106].

One advantage of the Euler–Euler method is its suitability for fine computational grids
due to the continuous treatment of the solid phase. Therefore, it is commonly used for
predicting fluid dynamics [97] and heat transfer [107]. Additionally, it is computationally
less demanding, making it a widely used method for industrial applications [108]. However,
when modeling large-scale geometries, coarse computational grids must be used, and
special attention must be paid to correctly implementing momentum exchange between
the liquid and solid phases. The Euler–Euler model can analyze pump characteristics at
a macroscopic level and is relatively fast in computation speed, making it applicable for
automatic optimization design of two-stage pumps to improve efficiency, head, and wear
characteristics under certain conditions. Nevertheless, it still lacks sufficient capability to
acquire internal particle information.
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3.3. Discrete Element Method

The (DEM), like the Lagrange method, determines the translational and rotational
motion of each particle according to Newton’s Second Law of Motion. The force balance of
particles is described as:

m
dν

dt
= Fc + Fcoh + Fp f + mg (38)

I
dω

dt
= Tc + T f (39)

where t is time, and m, I, v and ω represent the mass, inertia tensor, linear velocity and
angular velocity of a single particle, respectively. Fc is the contact force between contacting
particles, Fcoh is the cohesion force, Fpf is the interaction force between fluid and particle, Tc
is the contact torque, and Tf is the torque caused by fluid.

3.3.1. Soft-Sphere Models

In general, the treatment of particle collision or particle contact can be classified into
two categories: the hard-sphere model and the soft-sphere model [109]. Tsuji et al. [80]
first coupled DEM with multiphase flow calculations, employing both soft-sphere and
hard-sphere models to compute inter-particle forces. Ye et al. [110] validated their approach
in fluidized beds. While the hard-sphere model conserves some computational resources
through force simplification, the soft-sphere model provides more collision information.
The hard-sphere method has limited capability in handling multiple contacts and is suitable
only for simulating dilute-phase flows with few particle contacts. However, due to its
ability to handle multiple contacts effectively, the soft-sphere method has a wider appli-
cation range, being capable of simulating both dilute and dense particle flows. Therefore,
the soft-sphere method is more commonly used in DEM studies of particle discrete sys-
tems [111–113]. In slurry pumps, the soft-sphere model is typically chosen for contact force
acquisition. Contact forces generated by particle interactions can be expressed through
the viscoelasticity of particle collisions and their relationship with time. As shown in
Figure 11, in the DEM model, forces between particles are calculated using a rigid spring
whose direction is perpendicular to the contact surface and tangential to the contact surface.
Cundall and Strack [114] first proposed the linear spring–dashpot model. The linear elastic
repulsion and damping force models are widely applied in DEM due to their simple com-
putational formulas. The hysteretic linear spring model, widely employed in numerous
academic works for calculating normal contact force, does not incorporate viscous damping
terms or rely on the relative velocities of colliding particles. Furthermore, it is capable
of accurately determining overlap amounts that are challenging to capture [115]. Hertz
introduced the Hertzian spring–dashpot model in 1882, distinguishing it from the linear
spring–dashpot model by incorporating nonlinear elastic and damping components [116].
The specific formula is shown in Table 4.

The calculation of normal forces between particles is crucial for tracking particle
motion behavior, but tangential forces should not be overlooked. Models used to compute
tangential forces are detailed below. The linear spring Coulomb limit model represents the
predominant tangential force model in use. It accounts for frictional behavior to determine
the tangential force, emphasizing the significant influence of particle sliding during contact.
The model’s equations are expressed as:

Ft,T
ij = min

(∣∣∣Ft,T−∆T
ij − Kτ∆sτ

∣∣∣, ϑFn,T
ij

) Ft,T
ij∣∣∣Ft,T
ij

∣∣∣ (40)

where is the normal contact force Fn,T
ij at time T, ϑ is the friction coefficient, Kτ is the

loading normal stiffness, and ∆sτ is the tangential relative displacement per unit time step.
It is worth noting that ϑ is static friction if no sliding occurs at the contact point, and ϑ is
dynamic friction if sliding occurs at the contact point.
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Table 4. Normal contact force calculation formula.

Normal Contact Force Equation

Linear spring–dashpot model [114] Fn
ij = Knlsn + Cn

.
sn

Hysteretic linear spring model [115] Fn
ij =

 min
(

Knlst
n, Ft−∆t

ij + Knu∆sn

)
∆sn ≥ 0

max
(

Ft−∆t
ij + Knu∆sn, λKnlst

n

)
∆sn < 0

Hertzian spring–dashpot model [116] Fn
ij = K̂Hs3/2

n + ĈHs1/4
n

.
sn

3.3.2. Particle–Fluid Interaction Forces

To accurately reproduce the behavior of particles in particle–fluid systems, the in-
teraction forces between particles and fluids must also be considered. Specifically, the
forces exerted by the fluid on the particles should be accurately calculated. Generally,
the interaction forces between particles and fluids mainly include drag force, lift force,
pressure gradient force, virtual mass force, Basset force, etc. To reduce the complexity
of the model, only the primary forces are usually considered in simulations, while other
particle–fluid interaction forces are ignored, yet still yield reasonable simulation results.
For example, in gas–solid fluidized bed systems, drag force predominates [117], and since
the gas superficial velocity is relatively low, lift force can reasonably be neglected. However,
the internal flow of deep-sea lifting pumps is highly complex. In the simulation process,
it is necessary to consider various forces acting on particles and fluids, using appropriate
mechanical models to ensure more accurate numerical simulation results.

The forces acting on a single particle mainly include surface forces and physical forces.
Gravity and buoyancy are the main volume forces to be considered in a multiphase flow
containing particles. The surface force of the fluid on the particles can be divided into four
types, namely, the drag force caused by the relative slip speed, the additional mass force
caused by the acceleration and deceleration of the particles, the additional gradient force
caused by the presence of pressure gradient or temperature gradient in the flow field, and
the additional lift caused by the rotation of the particles.

The gravity forces arise from the mass of an object and the gravitational pull of Earth.

Fgra = mpg (41)
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The buoyancy force experienced by the particles in the fluid is related to the volume
and density of the expelled fluid, in the direction opposite to gravity.

Fbou = −π

6
ρ f d3

pg (42)

Drag force is the result of fluid acting on particles, caused by the difference in velocities
between the phases and applied in the direction of relative velocity between the fluid and
particles. Drag force primarily acts on the surface of particles; however, in DEM simulations,
it is commonly assumed that drag force is effective at the center of the particles [118]. The
drag force FD for a single particle can be calculated by the following equation [119]:

FD = −(
1
2

ρl)(
π

4
d2)CD(wg − wl)|wg − wl | (43)

where ρl is the density of the fluid, d is the diameter of the projected area of the particles
in the flow field, wi is the relative velocity of the fluid and the particle, CD is the drag
coefficient of the particles, and CD is determined by Re.

(1) Schiller Naumann model [26]

This model is applicable to sparse solid particles and is derived from the high Reynolds
number drag model formulated by Oseen in 1913. It corrects the deviation of drag force
from experiments when predicting high Reynolds number flows. For flows with Reynolds
numbers less than 800, the drag force coefficient can be expressed as:

CD =
24
Re

(1 + 0.15Re0.687) (44)

When the Reynolds number approaches 1000, its drag coefficient is consistent with
the drag coefficient of a smooth sphere, which is 0.44. Therefore, its expression for different
Reynolds numbers is

CD =


24
Re (1 + 0.15Re0.687), Re ≤ 1000

0.44, Re > 1000
(45)

(2) Wen–Yu model [25]

This model, which is generally used when the solid phase volume concentration is
less than 20%, was created by Wen and Yu in 1966, and the expression is as follows:

CD =
24

αfRe
(1 + 0.15(αfRe)

0.687) (46)

where αf is the volume fraction of the liquid phase.

(3) Gidaspow model [120]

This model is widely used in industrial and hydraulic projects such as fluidized beds,
and the expression is as follows:

CD = 24
αtRe (1 + 0.15(αtRe)0.667)αs < 0.2

C(d)
αβ = 150 (1−αf)

2µf
γrd2

s
+ 7

4
(1−αf)ρf|Uf−Ud|

ds
αs > 0.2

(47)

The model is a combination of the Wen–Yu model and the Ergun model. When the
solid phase volume concentration (αs) is lower than 20%, the Wen–Yu model is adopted.
When the solid phase volume concentration (αs) is greater than 20%, the Ergun model is
used.
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(4) Syamlal O’Brien model [121]

This model is derived based on the experimental measurement results of particle
velocity in the settling bed. It was created by Syamlal and O’Brien in 1987. It uses a
simplified form to express the relationship between particle settlement and void fraction.

CD =

(
0.63 +

4.8√
Res/νr,s

)2
Resαg

24ν2
r,s

(48)

where vr,s is the final velocity correlation of the solid phase; Res represents the Reynolds
number of solid particles.

For non-spherical particles, accurate prediction of drag becomes more complex as
particle shape and orientation can significantly influence the flow field. Therefore, besides
the general drag expression mentioned above, researchers have also developed various
drag coefficient correlations specifically tailored for particles with fixed shapes [122–124].
Additionally, some researchers have further introduced machine learning to more accurately
correlate the shape, and orientation of non-spherical particles, and flow conditions with
interaction forces [125,126]. If it is necessary to consider the influence of non-spherical
particles, the effect of non-spherical particles can be further introduced. Table 5 summarizes
the general correlation of the resistance coefficient CD of non-spherical particles.

Table 5. General correlations for the drag coefficient CD of non-spherical particles.

References Correlations

Haider and Levenspiel [127]
CD = 24

(
1 + A1ReA2

p

)
/Rep + A3/

(
1 + A4/Rep

)
,

A1 = exp
(
2.3288 − 6.4581ϕ + 2.4486ϕ2),

A2 = 0.0964 + 0.5565ϕ,
A3 = exp(4.905 − 13.8944ϕ + 18.4222ϕ2 − 10.2599ϕ3),
A4 = exp(1.4681 + 12.2584ϕ − 20.7322ϕ2 + 15.8855ϕ3)

Ganser [128]
CD
K2

=
24

RepK1K2

(
1 + 0.1118

(
RepK1K2

)0.6567
)
+

0.4305
1 + 3305/

(
RepK1K2

)
K−1

1 =
1
3
+

2
3

ϕ−0.5, logK2 = 1.8148(−logϕ)0.5743, RepK1K2 ≤ 105

Leith [129] CD =
8

Rep

1√
ϕ⊥

+
16

Rep

1√
ϕ

Tran-Cong et al. [130] CD =
8

Rep

1√
ϕ⊥

+
16

Rep

1√
ϕ

Hölzer and Sommerfeld [131] CD =
8

Rep

1√
ϕ⊥

+
16

Rep

1√
ϕ
+

3√
Rep

1
ϕ3/4 + 0.42 × 100.4(−logϕ)0.2 1

ϕ⊥

Virtual mass forces occur when a particle accelerates or decelerates within an ideal,
incompressible fluid. This motion induces fluid movement around the particle, causing
the surrounding fluid to reach the particle’s velocity. This synchronization results in an
apparent increase in the particle’s effective mass, thus generating virtual mass forces.

FVer = CVer
ρ f

ρp
mpar (49)

where ar is the relative acceleration and CVer is the correction factor.
The Basset force, also known as the history force, accounts for the viscosity effect of

fluid on a particle’s surface by considering the time delay in boundary layer development.

Fbas =
3
2

d2
p
√

ρ f µ f π
∫ t

0

d
(

u f − vp

)
/dτ

√
t − τ

dτ (50)
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The lift force mainly includes the Saffman force due to the fluid velocity gradient over
a particle and the Magnus force caused by the rotational motion of particles.

FL = 0.5CLρ f
π

4
d2

p|u − ν|2êL (51)

where CL is the lift coefficient (see Table 6); êl is the direction of lift force.

Table 6. Correlations of calculating the lift coefficient CL for non-spherical particles.

References Correlations Notes

Sanjeevi et al. [132] CL =

(
a1

Rep
+ a2

Rea3
p
+ a4

Rea5
p

)
(sinαL)

1+a6Rea7
p (cosαL)

1+a8Rea9
p

For spherocylinder and ellipsoid
Valid when 0.1 ≤ Rep ≤ 2000

Zastawny et al. [124] CL =

(
b1

Reb1
p
+ b3

Reb4
p

)
(sinαL)

b5+b6Reb7
p (cosαL)

b8+b9Reb10
p

For spherocylinder and ellipsoid
Valid when 0.1 ≤ Rep ≤ 300

Cao and Tafti [133] CL =

(
1.688 + 6.617

Re1.063
p

)
(sin αL)

0.8222(cos αL)
0.9796 For cylinder with w = 0.25

Valid when 10 ≤ Rep ≤ 300

Richter and Nikrityuk [134]
CL = 0.97

Re0.25
p

sin(2α̃L)− 0.0262
Re0.25

p
cos(2α̃L)

α̃L =|[(αL + 90)mod180]− 180|
For ellipsoid with w = 2

Valid when 10 ≤ Rep ≤ 200

3.3.3. Coupling Scheme between CFD and DEM

In addition to traditional CFD methods, some emerging CFD techniques (such as
LBM [135] and SPH [136]) can also be coupled with DEM methods. The Lattice Boltzmann
Method (LBM) is a computational fluid dynamics (CFD) numerical simulation technique
based on a microscopic particle model. Originating in the 1980s with contributions from
Frisch, Hasslacher, Pomeau, and others, this method implicitly solves the Navier–Stokes
equations by solving linear kinetic gas theory equations, greatly simplifying the modeling
process. The inherent discreteness of LBM provides natural advantages for coupling
with DEM. Smoothed Particle Hydrodynamics (SPH) is an adaptive mesh-free particle
method, and due to its Lagrange nature, SPH differs significantly from traditional CFD
methods in the Eulerian coordinate system. SPH simulates the behavior of fluid or solid
media by discretizing them into a series of particles, similar to LBM, without the need to
solve complex Navier–Stokes equations. Within the SPH framework, each particle carries
relevant physical quantities, exhibiting highly consistent numerical algorithms and data
structures with the practicality of DEM.

Although numerical solutions for fluid flow can be achieved through various solvers,
the differences between various particle–fluid coupling models mainly lie in the specific
programming implementations of the numerical models. In other words, whether it is
CFD-DEM, LBM-DEM, SPH-DEM, or other types of particle–fluid coupling models, they
generally adhere to similar fundamental principles in the coupling strategies between the
fluid solver and DEM. Figure 12 presents the general process of the CFD-DEM numerical
simulation algorithm.

Based on the ratio of different CFD cell sizes ∆L to particle diameters dp (hereinafter
referred to as size ratio), three coupling strategies of CFD and DEM are proposed, as shown
in Figure 13.

For undistinguished CFD-DEM models, a size ratio greater than 3 is recommended.
For distinguished CFD-DEM models, the size ratio should be at most 1/10 of the particle
diameter. Additionally, for semi-distinguished CFD-DEM, the size ratio ranges from 1/10
to 3. Unresolved CFD-DEM models are also referred to as particle–grid methods, based
on the characteristic that a single CFD cell typically contains many solid particles [137].
This method solves fluid flow by introducing porosity and utilizing the Navier–Stokes
equations for particle–fluid multiphase coupling based on the concept of local averaging.
Unresolved CFD-DEM models do not resolve particle boundaries, thus offering superior
computational convenience when simulating particle–fluid systems. It is for these reasons
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that the majority of models currently used in CFD-DEM research are unresolved CFD-DEM
models, especially for particle–fluid systems containing a large number of particles.
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When the grid size is comparable to or slightly smaller than the particle size, the
porosity cannot be accurately described. Semi-resolved CFD-DEM models provide sev-
eral methods for calculating cell porosity and background velocity, such as the two-grid
method [138], kernel-based method [139], and diffusion-based method [140].

Compared to undistinguished and semi-distinguished CFD-DEM models using em-
pirical interaction force models, in distinguished CFD-DEM models, the particle–fluid
interaction forces are typically determined by precise particle–fluid interaction processes
along the particle boundary surface. As the CFD cell size is much smaller than the particle
size in resolved models, fluid flow can be fully resolved over the entire boundary surface
of the particle, allowing for effortless determination of detailed flow fields around the
particles. Analytical CFD-DEM methods should theoretically be considered the most accu-
rate approach and may be the only theoretical tool capable of studying nonlinear complex
phenomena in particle–fluid systems.
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According to the interaction forces that can occur between particles and fluids, there are
four different coupling strategies for CFD-DEM, as shown in Figure 14 [141]. For very low
particle volume fractions (µs ≤ 10−6), where the influence of particles on fluid motion can
be neglected, a one-way coupling strategy is used, solving particle equations independently
of fluid equations. When the particle volume fraction is within the range 10−6 ≤ µs ≤ 10−3,
particle motion affects fluid turbulence, and numerical simulations should employ two-
way coupling. The three-way coupling strategy considers particle wakes and vortices
generated by particles affecting subsequent particle disturbances, building upon the two-
way coupling. When the particle volume fraction is within the range of 10−3 ≤ µs ≤ 1,
collisions between particles affect the overall system motion, and a four-way coupling
strategy should be employed.

Water 2024, 16, x FOR PEER REVIEW 32 of 54 
 

 

vortices generated by particles affecting subsequent particle disturbances, building upon 
the two-way coupling. When the particle volume fraction is within the range of 10−3 ≤ µs ≤ 
1, collisions between particles affect the overall system motion, and a four-way coupling 
strategy should be employed. 

 
Figure 14. Coupling strategies and their effects on turbulence. 

3.3.4. Applications of CFD–DEM in Deep-Sea Lift Pump 
Numerical simulation methods are widely employed in the study of solid–liquid 

two-phase pump transportation, elucidating complex fluid and particle dynamics issues 
within the transportation system. Chen et al. [142] conducted coarse particle collection 
simulations for deep-sea mining hydraulic collectors, revealing flow and motion infor-
mation including forces, displacements, velocities, angular velocities, streamlines, and 
wake structures. Wang et al. [143] performed CFD-DEM simulations of unsteady solid–
liquid flow in a single-stage pump, analyzing the spatial distribution and motion charac-
teristics of 5–15 mm particles with a volume concentration of 5%. It was found that particle 
size significantly affects the vortex intensity within the pump, with lift error and efficiency 
error of the CFD-DEM method being less than 1% and 5%, respectively. Li et al. [144] 
analyzed internal flow fields and particle motion patterns of a two-stage deep-sea lift 
pump at different speeds using the discrete element method coupled with computational 
fluid dynamics. Additionally, physical phenomena such as flow velocity, secondary flow, 
and particle flow were studied. Shao et al. [145] conducted CFD-DEM simulations of ero-
sion within a mixed-flow pump impeller, revealing that erosion primarily occurs at the 
hub and shroud of the impeller, with particle concentration greatly influencing erosion. 
Cheng et al. [146] studied the impact of solid-phase characteristics on the internal flow 
characteristics of pumps, particularly elucidating the wear mechanism of solid particles 
on pump walls. The study employed a Fluent and EDEM coupled method to investigate 
solid–liquid two-phase flow within pumps, using the Euler–Lagrange model for numeri-
cal simulation. Results indicated that under high-flow conditions, particles tend to 

Figure 14. Coupling strategies and their effects on turbulence.



Water 2024, 16, 1881 29 of 49

3.3.4. Applications of CFD–DEM in Deep-Sea Lift Pump

Numerical simulation methods are widely employed in the study of solid–liquid two-
phase pump transportation, elucidating complex fluid and particle dynamics issues within
the transportation system. Chen et al. [142] conducted coarse particle collection simulations
for deep-sea mining hydraulic collectors, revealing flow and motion information including
forces, displacements, velocities, angular velocities, streamlines, and wake structures. Wang
et al. [143] performed CFD-DEM simulations of unsteady solid–liquid flow in a single-stage
pump, analyzing the spatial distribution and motion characteristics of 5–15 mm particles
with a volume concentration of 5%. It was found that particle size significantly affects
the vortex intensity within the pump, with lift error and efficiency error of the CFD-DEM
method being less than 1% and 5%, respectively. Li et al. [144] analyzed internal flow fields
and particle motion patterns of a two-stage deep-sea lift pump at different speeds using
the discrete element method coupled with computational fluid dynamics. Additionally,
physical phenomena such as flow velocity, secondary flow, and particle flow were studied.
Shao et al. [145] conducted CFD-DEM simulations of erosion within a mixed-flow pump
impeller, revealing that erosion primarily occurs at the hub and shroud of the impeller, with
particle concentration greatly influencing erosion. Cheng et al. [146] studied the impact
of solid-phase characteristics on the internal flow characteristics of pumps, particularly
elucidating the wear mechanism of solid particles on pump walls. The study employed
a Fluent and EDEM coupled method to investigate solid–liquid two-phase flow within
pumps, using the Euler–Lagrange model for numerical simulation. Results indicated that
under high-flow conditions, particles tend to agglomerate within the passage, forming
longer wear bands at the pressure-side blade trailing edge, while little wear was observed
on the suction-side blade. Su et al. [147] applied CFD-DEM to simulate particle migration in
a two-stage slurry transport pump, revealing the significant impact of collisions on particle
departure velocities within the impeller, and summarizing particle motion patterns within
the impeller and diffuser. Deng et al. [13] utilized CFD-DEM simulation methods to obtain
slurry transport characteristic curves, particle transport, and distribution characteristics,
validating the simulation method with experimental data. The study revealed that particles
are transported in a pulsatile manner within the pump, with the characteristics of particles
transported in the latter stage resembling those in the preceding pump stage (see Figure 15).

Hu et al. [148] simulated reflux slurry using the CFD-DEM method, analyzing the
relationship between particle characteristics and blockage, demonstrating that considering
particle volume and adhesion in CFD-DEM simulations of coarse particle flow results in
higher accuracy. Deng et al. [13] conducted CFD-DEM simulations of a six-stage mining
pump, discovering severe particle accumulation near the impeller inlet. Subsequent work
by Deng [84] addressed impeller inlet particle accumulation issues by introducing a baffle
plate and obtaining optimal baffle plate length through simulation. The local particle
distribution at the impeller inlet with varying lengths is depicted in Figure 16, and the total
particle mass within the red box area is quantified to assess the anti-accumulation effect of
different diverter plates at the suction mouth. Hu et al. [149] employed CFD-DEM coupling
simulations to study particle reflux motion in a six-stage pump during an emergency power
failure, utilizing the JKR contact model for particle simulation and introducing irregular
particles to realistically simulate reflux characteristics under deep-sea mining conditions.
Figure 17 shows the behavior and distribution of the mixed particles.

Li et al. [150] performed CFD-DEM coupled simulations of external vibrations induced
by ocean currents and waves in operational environments. The study indicated that in the
suction chamber, as vibration frequency increases, the dynamic count of particles decreases,
while the percentage of particles with velocities exceeding fluid velocity increases (see
Figure 18). In the impeller passage, as vibration frequency increases, the number of
collisions between particles and the impeller pressure surface decreases, leading to an
increase in average energy loss per collision. Thus, external vibrations provide additional
kinetic energy to particles, reducing sedimentation effects and enhancing particle passage.
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3.4. Discrete Phase Model (DPM)

Similar to DEM, the standard Lagrange DPM is based on translational force balance
formulated for individual particles. In standard DPM, each particle represents a particle
parcel. Like DEM particles, DPM parcels are influenced by gravity, drag, pressure, Mag-
nus force, virtual mass force, and Saffman force. The key difference from DEM is that
particle–particle collisions are neglected in the DPM framework. Due to the neglect of
particle–particle collisions and particle liquid displacement in DPM, the volume fraction of
the liquid phase remains constant. Due to these assumptions and simplifications, DPM is
only effective for dilute fluid–particle flows. Chen et al. [151] studied the flow and erosion
characteristics of solid–liquid two-phase flow in an energy storage pump by establishing
an improved calculation model based on modified resistance and erosion models. In the
calculation model, a modified resistance model that considers the influence of turbulence in-
tensity was proposed. As shown in Figure 19, the DPM model can track particle trajectories.
A recent review of DPM-CFD modeling techniques can be found in reference [79].
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The DDPM model overcomes the limitations of particle–particle interactions in DPM
by considering solid–solid interaction forces between particles, calculating stress tensors
using the Kinetic Theory of Granular Flow (KTGF) method, and incorporating solid volume
fraction into an extended set of governing equations. The current DDPM model is suitable
for transient modeling of particle–fluid flow in centrifugal slurry pumps under various
solid concentrations. For details, please refer to the work of wang et al. [152].

3.5. Model Modification
Modified Drag Model

Drag force is the primary form of force experienced by solid particles in a flow field,
directly related to particle characteristics and the relative motion between solid and liquid
phases. Most researchers directly employ established drag models, whose coefficients are
derived from free-settling data and are solely dependent on the particles’ Reynolds number.
However, some studies indicate that particle drag is significantly influenced by turbulent
intensity, particularly within the turbulent flows present in rotating machinery [153]. Pan-
neerselvam et al. [154] utilized an Eulerian–Eulerian model and simulated agitators using
the Brucato drag model, finding mismatches between radial and tangential velocity compo-
nents in regions with high turbulent fluctuations, such as impeller zones. Lane et al. [155]
coupled turbulent characteristics with drag coefficients and applied a novel turbulent drag
coefficient model within stirred tanks. Building upon Lane’s work, Li et al. [119] modified
the drag force model between gas–liquid phases within dynamic pumps based on the
drag model proposed by Ishii and Zuber [156]. Experimental validation showed that the
modified drag force model exhibited better accuracy. Ge et al. [157], based on the modified
drag model, considered bubble deformation under high inlet gas volume fraction (IGVF)
and numerically simulated the gas–liquid two-phase flow performance of a mixed-flow
pump, validated through experiments. Due to the significant turbulence induced by strong
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rotation, large curvature, and complex wall constraints within slurry pumps, considering
the influence of turbulence intensity and wall effects on particle drag becomes a critical
research area. Existing approaches include using relative turbulence intensity and turbulent
length scale compared to particle diameter to adjust the drag coefficient (CD).

For the turbulence factor Ct [158] in the former strategy, it is expressed as:

Cd = 1 + 6 ·

√
2k f /3∣∣∣V f − Vs

∣∣∣ ·
(

Rep

500

)0.687
(52)

where kf is the turbulent kinetic energy of the water phase, Vf is the velocity vector of the
water phase, vs. is the velocity vector of the sand phase, and Rep is the sand Reynolds
number. There are different empirical formulas corresponding to different ranges of the
particle Reynolds number Rep [159], and the above expression (Equation (52)) provides a
uniform fitting formula in a wide range. For the latter strategy, the Brucato formula is a
typical representative [153], which is given by.

Cd = 1 + a1 ·
(

dp

lk

)a2

(53)

where λ is the Kolmogorov length scale [153]:

λ =

(
ν3

ε

)0.25

(54)

where ν is the kinematic viscosity of fluid, and ε is the dissipation of turbulent kinetic
energy, which is provided by the turbulence model.

Equations (50) and (51) can quantify the effect of water turbulence, but Cd from
Equation (50) may decrease as the eddy viscous damping function decreases, which may
be inconsistent with real physics. In contrast, by Equation (51) it is more efficient in
engineering applications because the decomposition dissipation rate ε is almost negligible.

Chen and Tan [151] modified the drag model based on the Euler–Lagrange method,
taking into account the influence of turbulence on drag, and studied the solid–liquid two-
phase flow and erosion characteristics in centrifugal pumps. According to the resistance
coefficients of different flow modes summarized by Brown et al. [160]:

Cd0 =
24

Rep

(
1 + 0.150Re0.681

p

)
+

0.407
1 + 8710

Rep

(55)

where Rep is the particle Reynolds number:

Rep =
ρdp
∣∣u − up

∣∣
µ

(56)

where µ is the dynamic viscosity of fluid.
The relationship between the Kolmogorov length scale and particle diameter is

adopted as follows:
Cd − Cd0

Cd0
= 8.676 × 10−4

(
dp

λ

)3

(57)

Bring Equations (54) and (55) into Equation (57), a modified drag model, by consider-
ing the effect of turbulence intensity is proposed. The modified drag model is expressed as
follows:
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Cd =

1 + 8.676 × 10−4

(
d4

pε

ν3

)0.75
×

 24
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p

)
+
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Rep

 (58)

In subsequent work, Chen [161] employed a large eddy simulation to calculate turbu-
lent dissipation.

ε = 2νS′
ijS

′
ij = 2νS′

ij : S′
ij = 2ν

∣∣∣S′
ij

∣∣∣2 (59)
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+
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j

∂xi

)
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Compared to Reynolds-averaged Navier–Stokes (RANS), Large Eddy Simulation
(LES) can accurately capture unsteady secondary eddies in the flow [162]. Additionally, in
engineering computations, particles are typically assumed to be spherical.

4. Experimental Research

Deep-sea boosting pumps operate in harsh environments within the ocean, facing
complex conditions influenced by vibrations in the deep-sea pipelines and variations
in particle concentration. Numerical simulations of two-phase flow involve numerous
assumptions, and the accuracy of computational fluid dynamics (CFD) results must be
validated through experimentation. Therefore, offshore test data are crucial to ensure the
stable operation of hydraulic boosting systems in engineering applications.

4.1. External Characteristic Experiment

In the 1970s, several semi-commercial mining trials were conducted globally. The earli-
est experimental efforts in deep-sea mining were undertaken by the Kennecott Consortium
(KCON), Ocean Management Incorporated (OMI), Ocean Mining Association (OMA), and
Ocean Minerals Corporation (OMCO), sequentially conducting mining trials of deep-sea
mining systems as detailed in Table 7.

Table 7. Mining test of early deep-sea mining system.

Consortium KCON (Kennecott
Consortium)

OMA (Ocean Mining
Association)

OMI (Ocean Management
Incorporated)

OMCO (Ocean
Mineral Company)

Established 1974 1974 1975 1977

Mining
1975–1976; collector

model test at depth of
5000 m (Shaw [9])

1970; mining system
test at the depth of

800 m

1976; collector test in deep
sea

1978; mining system
test in shallower water

Test 1978; lift up test
on-land

1978; mining pilot test
in the DOMES site C
(4400 m) and lift up

500 t nodules

1978; pilot miner test in the
DOMES A(5000–5200 m) and

lift up 500 t nodules
(Chung [163])

1979; mining system
test in deep sea

(Xiao [164])

Target Ni, Co, Cu Ni, Cu, Co, Mn Ni, Cu, Co -

These trials validated the feasibility of deep-sea mining theory. However, they also
exposed numerous engineering issues, including significant wear and blockage problems.
The Pacific Ocean holds vast mineral resources, prompting research on deep-sea mining by
various research institutions in Asian countries. Japan’s DOMCO conducted mining exper-
iments in the northern Pacific Ocean. In 2017, Japan conducted a trial mining operation at a
depth of 1600 m near Okinawa in its Exclusive Economic Zone (EEZ), successfully extract-
ing 15 tons of nodules [165]. South Korea conducted slurry pump shallow-water lifting tests
in nearby waters in 2007 and 2009 [166,167]. The National Institute of Ocean Technology in
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India conducted offshore trials of slurry pump mining systems in the Indian Ocean in 2000
and 2006 [168,169]. In June 2018, China successfully tested a 500-m seabed polymetallic
nodule collection system in the South China Sea, with a slurry pump capable of lifting
50 tons per hour of polymetallic nodules. Due to confidentiality, detailed results of these
tests are challenging to obtain. However, limited publicly available information reveals
that hydraulic boosting pumps still face many technical challenges that need resolution
before they can be deployed for commercial mining operations.

Offshore experiments often entail significant costs, and the complexities of marine
environments make measurements more challenging. To minimize time, financial, and re-
source investments, and to conduct more comprehensive tests on slurry pumps, numerous
research institutions have undertaken land-based experiments. Engelmann (1978) [170]
utilized radioactive tracing to measure particle velocities in a U-shaped hydraulic lift sys-
tem. They used radioactive density probes to measure mixture densities and friction in
stainless steel pipes. Extensive studies were conducted on solid–liquid flow within the
system, investigating the flow patterns and forces experienced by particles of varying sizes
and concentrations within the riser. Empirical formulas for obtaining local slip velocities
and relative friction factors were derived from experimental data. However, this experi-
ment solely analyzed particles within hydraulic lift pipelines, and particles did not enter
rotating machinery. Park et al. (2004) [171] and Yoon et al. (2004) [172] used a mining
pump experimental system to measure the characteristics of two-phase flow at the outlet
section of slurry pumps, discovering correlations between hydraulic gradients and solid
fractions. In 2007, KIGAM enhanced their experimental system, introducing particles into
the system via a screw feeder after the pipeline was filled with water. The newly generated
two-phase flow was then lifted to the top of the system using a slurry pump and returned
to the screw feeder after separation and metering. Compared to the original system, the
upgraded system included instruments to measure pump inlet and outlet pressures. Yoon
et al. (2007) [173] optimized the existing test bed by adding pressure measurement instru-
ments at the pump inlet and outlet, using a slurry pump to obtain frictional hydraulic
gradients. Hydraulic gradients increased with higher volume fractions or reduced mixed
airflow velocities. As a pioneer in China’s deep-sea mining, CRIMM’s land-based slurry
pump test system incorporated a closed subsystem that allowed for convenient adjustment
of the pump’s operational state. Using this closed system, researchers measured speed,
pressure, rotation, torque, and temperature, and observed the flow patterns of solid–liquid
two-phase flows. The experiments studied pump performance under various design con-
ditions of particle sizes and volume concentrations. Overall, pump efficiency was found
to be unsatisfactory even under conditions with particles smaller than 30 mm, failing to
meet commercial needs. Additionally, blockages occurred with particle diameters below
50 mm, partly due to unexpected pump shutdowns. A deep-sea mining lifting system
powered by a six-stage centrifugal pump, as designed by Central South University, is
shown in Figure 20. The impeller inlet is the most critical part of slurry transport within the
pump, as it experiences the highest particle concentrations. Deng et al. [84] proposed the
axial installation of diverters to improve transport conditions at the impeller inlet, largely
resolving particle accumulation issues and enhancing the safety of deep-sea mining pumps.
Kang et al. [70] conducted axial thrust and hydraulic performance tests on a dual-stage
lifting pump at an open test platform operated by Tianjin Premier Electric Dust Removal
Pumping System Co., Ltd., Tianjin, China.
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4.2. Visualization Experiment

Experimental characterization of pump external characteristics refers to the measure-
ment and analysis of pump inputs (such as motor power, speed, etc.), and outputs (such as
flow rate, head, etc.), under certain operating conditions. Although such experiments are
crucial for understanding and assessing pump performance, they may be challenging to
accurately simulate actual fluid behavior for pumps handling multiphase flows or complex
fluids (such as those containing solid particles or high-viscosity fluids). Numerical simu-
lation methods for two-phase flows are still not sufficiently advanced, and the dynamics
of internal particle motion must be validated through experiments. Given this necessity,
there is a need to enhance understanding of the physical phenomena occurring in single-
phase and two-phase flows inside impellers and diffusers, as these flow characteristics
strongly influence the behavior and performance of slurry pumps. With advancements
in technology, such as the widespread application of laser emitters, digital cameras, and
high-performance computers, non-intrusive flow visualization optical techniques have
become increasingly popular. Currently, the most commonly used techniques rely on
tracking tracer particles, including Particle Tracking Velocimetry (PTV), Laser Doppler
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Velocimetry (LDV), and Particle Image Velocimetry (PIV) [174]. PIV is used to measure
flow velocity distributions and vortex structures inside pumps in one-way flows, thereby
evaluating pump performance, such as efficiency, head, and flow rate. By analyzing these
data, pump designs can be optimized to improve performance and reduce energy con-
sumption [175–178]. Keller et al. [179] conducted extensive research on single-phase flow
in pumps. As shown in Figure 21, the researchers utilized a conventional 2D-2C PIV
system along with a transparent pump prototype. An analysis of the fluid dynamic flow
structures between the impeller outlet and volute tongue was conducted. The development
of vorticity and turbulent kinetic energy at the trailing edge of the blade and the junction
with the tip of the tongue is illustrated in Figures 22 and 23, respectively. Particle tracking
velocimetry visualization techniques are widely used in gas–liquid two-phase flows. Cubas
et al. [180] evaluated the dynamics of individual gas bubbles in pump impellers based on
Particle Tracking Velocimetry visualization techniques. Estevam [181] developed a proto-
type with a transparent impeller and analyzed bubble phenomena resulting in reduced
pump performance through bubble visualization. The authors also proposed a dimen-
sionless number-based model to predict flow patterns observed inside impellers under
each operating condition. Zhang et al. [182] visualized flow using a high-speed camera
with a resolution of 1280 × 1024 pixels and a capture rate of 5000 frames per second (fps),
studying the influence of gas–liquid two-phase flow on the performance of a three-stage
rotodynamic multiphase pump. Tan et al. [183] revealed the motion characteristics of coarse
particles inside pumps by tracking single particles of different densities and diameters in
a two-phase flow of coarse particles and liquid using a high-speed photography system,
obtaining particle trajectories. Li et al. [150] designed and fabricated a transparent model
pump, constructed an experimental platform (see Figure 24), and combined high-speed
camera recordings with numerical simulation results to validate the accuracy of CFD-DEM
simulation methods(see Figure 25). Cheng et al. [146] measured the velocity of particles
inside a centrifugal pump through high-speed photography, tracking the trajectories of
four particles in the volute.
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Figure 23. Turbulent kinetic energy production next to the volute tongue. The maximum turbulent
kinetic energy production occurs at blade trailing edge when it aligns with tongue tip [179].

Using high-speed cameras for flow visualization offers numerous advantages, as
these devices ensure the observation of rapid transient phenomena with high spatial and
temporal resolutions. However, visualization experiments require transparent casings or
impellers, imposing high demands on manufacturing processes, and under some harsh
conditions, the strength requirements may not be met. There is a need for a method that
does not require the development of transparent prototypes but still captures the internal
flow state. In recent years, due to advancements in digital data processing, radiation sources,
and detectors, the spatial and temporal resolutions of Computed Tomography (CT) systems
have significantly improved, making them a highly promising method for quantitatively
determining the two-phase distribution of rotating machinery and its components. CT
employs gamma rays (or γ-rays) and X-ray radiation to penetrate opaque materials and
can be applied to real pumps with metal casings. Schüafer et al. [184,185] demonstrated the
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ability of gamma-ray and X-ray CT methods to reveal transient gas–liquid flow behavior in
their recent studies. However, due to the inability to understand flow within pumps, the
detection of flow structures such as cavities and bubbles has been indirect.
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Figure 25. Comparison of the particle distribution between simulation and experiment [150].

So far, few scholars have devoted themselves to using HSI and PTV to study particle–
fluid flow. Nevertheless, in gas–liquid and liquid–liquid two-phase flow visualization
work, researchers have overcome many difficulties, with abundant studies demonstrating
that HSI and PTV are useful visualization tools for characterizing the kinetics and dynamics
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of bubbles in impellers. The skills and specialized knowledge in this area can readily be
transferred to visualization work in solid–liquid two-phase flows.

4.3. Wear Experiment

Particle-induced wear of flow components can decrease the lifespan, performance,
and reliability of fluid power machinery, leading to energy wastage and equipment failures,
which is also one of the significant challenges faced in deep-sea mining systems [186,187].
The wear of moving components such as pump impellers is severe, but the wear of impellers
is generally uniform. However, for slurry pumps, pump casings are often difficult to
replace, so research on casing wear is equally important. Many researchers have studied
the wear of impellers and volutes. Measurement of material loss due to erosion during
field trials requires prolonged operations. Typically, special methods such as paint wear,
wall thickness loss measurement, overall weight loss measurement, SEM analysis, etc., are
employed for the components under study. Zhu et al. [188] simulated the damage caused
by short-term support agent reflux in a multi-stage submersible pump using the paint wear
method. The study analyzed the performance of the pump, erosion marks, and changes
in erosion geometry. The results indicate that the wear mechanism in the secondary flow
area (seal ring and sleeve) is believed to transition from abrasive wear to erosion-abrasion
composite wear. Hong et al. [189] observed the wear of flow components in a novel deep-
sea mining multi-stage pump under different flow conditions using the paint wear method.
Sharma et al. [190] reported a weight loss of 1.99% in Francis turbine runners within a year
due to hydraulic erosion. The trailing edge region of the runner blades was reported as
highly susceptible to erosion, likely due to the micro-cutting failure mechanism. Sharma
calculated the mass loss rate by measuring the weight loss of different specimens after
testing. Material removal mechanisms on the surface of rotor passages were analyzed using
scanning electron microscopy (SEM). As shown in Figure 26, SEM micrographs depicted
variations in particle impact conditions along the passages, providing theoretical support
for studying particle–blade surface contact patterns.
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5. Conclusions and Outlook
5.1. Conclusions

This provides a comprehensive and advanced review of the design optimization, nu-
merical simulation, and experimental research methods for deep-sea lifting pumps. Initially,
the paper describes several classical design methods for multiphase flow transport pumps
and proposes various feasible optimization strategies, including theoretical optimization,
algorithm optimization, and some special optimization methods, addressing some defi-
ciencies in current design approaches. Subsequently, it introduces numerical methods
suitable for deep-sea lifting pumps, revisiting the basic theories of common continuous
phase models (TFM and Mixture models) and discrete phase models (CFD-DEM, DPM).
The paper analyzes the multiphase flows within deep-sea lifting pumps from different
scales, using both Eulerian–Eulerian and Eulerian–Lagrange methods, with a focus on the
CFD-DEM method for its excellent representation of internal particle movements, widely
applied in the numerical simulation studies of deep-sea lifting pumps. Therefore, a de-
tailed analysis of the applicability conditions and coupling strategies of the CFD-DEM
method is provided. The accurate description of drag force in solid–liquid two-phase
flow significantly affects the accuracy of simulations, leading to a description of recent
modifications to drag models used in multiphase flow pumps. Lastly, the review covers
the experimental research on deep-sea lifting pumps, where early studies investigated
pump performance and issues through sea trials and base experiments but typically yielded
more macroscopic measurement data. With the advancement of numerical simulations,
researchers have studied the distribution and movement behavior of particles within the
flow field. Traditional experimental methods could only validate the performance of the
pumps and not the accuracy of numerical simulations. However, with the development
of non-invasive visualization technologies, visualization experiments have demonstrated
great potential in validating the accuracy of numerical simulations for deep-sea lifting
pumps. This research work provides theoretical guidance for studying the evolutionary
process of internal particle flow systems in deep-sea lifting pumps and offers significant
insights for their development and optimization.
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5.2. Outlook

Currently, researchers have conducted extensive work on deep-sea lifting pumps;
however, there are deficiencies in design theory, computational methods, coupling effi-
ciency, and handling complex scenarios. Therefore, further refinement is needed in the
study of deep-sea lifting pumps.

1. Presently, no robust design methodologies exist for deep-sea lifting pumps; however,
employing numerical simulations in conjunction with optimization algorithms and
parametric modeling proves significantly efficacious for the design of these pumps
under complex operational conditions. However, the optimization of deep-sea lifting
pumps in solid–liquid two-phase flow conditions remain inadequately explored.

2. Optimization studies of deep-sea lifting pumps predominantly consider efficiency
in steady-state conditions designed for constant speed. Considering the complexity
of deep-sea mining applications, it is pertinent to evaluate efficiency across vari-
able speeds and different operating states. Moreover, attention must be given to
the impacts of wear on the pump’s efficiency and reliability, suggesting a shift to-
wards optimization goals that include multi-speed, multi-state efficiency, and wear
characteristics.

3. In solid–liquid two-phase flows, the presence of solid particles can induce changes in
the flow pattern, particle clogging and deposition, wear, and erosion, as well as uneven
particle concentration and distribution. These factors may lead to flow instability and
separation, thereby triggering rotational stalls. Rotational stalls can significantly affect
the efficiency of pumps, increase vibration and noise, exacerbate component wear, and
lead to operational instability, negatively impacting the performance and lifespan of
the pump. Therefore, to effectively prevent and mitigate the occurrence of rotational
stalls, it is necessary to optimize the design of impellers and flow passages and to
adjust and maintain operating conditions. These strategies are crucial for enhancing
system reliability and efficiency, and for extending the service life of the equipment.

4. Considering the particle systems within deep-sea lifting pumps, which often comprise
a large number of particles, the associated (DEM) simulations require substantial
computational effort. The computational efficiency is further compromised when
DEM is coupled with computational fluid dynamics (CFD). Thus, enhancing the
computational efficiency of the integrated CFD-DEM approach is crucial for prac-
tical deployment. Integration of the Coarse-Grained Methodology (CGM) into the
CFD-DEM framework could substantially lower computational demands. Modern
commercial software now often incorporates GPU-accelerated parallel computation
techniques to facilitate CFD-DEM solvers, as evidenced by platforms such as EDEM
and Rocky DEM.

5. The CFD-DEM approach is predominantly employed for investigating solid–liquid
two-phase flows in rotating machinery. However, the complex structural demands
of these machines make mesh generation particularly challenging. The Smoothed
Particle Hydrodynamics (SPH) method, representing a novel mesh-free approach,
provides extensive potential for addressing complex challenges such as free surface
flows, multiphase flows, and interactions between fluids and particles.

6. Modifications to computational models for two-phase flow pumps have traditionally
focused on the effects of turbulence on drag forces. However, the influence of addi-
tional forces warrants consideration. It is imperative that these models are refined to
enhance the simulation accuracy of slurry pumps.

7. Particles in deep-sea lifting pumps are typically heterogeneous and non-spherical.
Much of the extant research is based on spherical particles, with a notable deficiency
in studies addressing non-spherical particles and their fragmentation.

8. For visualization experiments concerning deep-sea lifting pumps, the identification
and velocimetry of particles present intricate challenges. A promising resolution could
involve deploying advanced image processing technologies anchored in machine
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learning methodologies. Such enhancements are expected to enrich the database for
impellers in two-phase flow pumps significantly.
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