Recent Advances in Biofiltration for PPCP Removal from Water
Abstract
:1. Introduction
2. Source and Occurrence of PPCPs
2.1. Source of PPCPs
2.2. Occurrence of PPCPs
3. Mechanism of Biofiltration Technology
4. Efficiency of Biofiltration on PPCP Removal
4.1. Biological Granular Activated Carbon Filtration
4.2. Biological Sand Filtration
4.2.1. Slow Sand Filtration
4.2.2. Rapid Sand Filtration
4.3. Benefit and Cost Analysis for Biofiltration
5. Influencing Factors of Biofiltration on PPCPs
5.1. Filter Media
5.2. Backwash Conditions
5.3. Empty Bed Contact Time
5.4. Other Parameters
6. Summary and Prospect
- (1)
- A large number of studies have shown that the GAC process can be used alone or in combination with other processes as the mainstream process for removing PPCPs in biofiltration. Its removal efficiency for different types of PPCPs is diverse, which is related to the properties of the PPCPs themselves, including octanol/water partition coefficient, chemical topological structure, biodegradability, etc. Therefore, for different types of PPCPs, it is very important to choose the appropriate conditions to maximize the efficiency of the biofiltration process.
- (2)
- Generally, the interplay between adsorption and biodegradation within BAC processes introduces a dynamic equilibrium for the removal of PPCPs. However, recent studies highlight a fascinating nuance: this equilibrium is not always maintained. Specifically, when using the BAC reactor to tackle non-steroidal anti-inflammatory drugs such as diclofenac, it was found that the biodegradation rate of drugs in BAC appears significantly lower than in a standalone BAC bacterial suspension [83]. This phenomenon implies that the removal of certain drugs by BAC involves more than a mere cumulative effect of biodegradation and activated carbon adsorption. Instead, it suggests the existence of competing mechanisms between biodegradation and adsorption, prompting a deeper exploration into the microbiological intricacies during the BAC process.
- (3)
- In general, the disposal of sludge generated by biological processes is a concern. For the biofiltration process, the generation of sludge is relatively low, while the removal mechanism mainly uses the biofilm grown on the carrier for biological oxidation. In order to control the overgrowth and blockage of the carrier biofilm, backwashing should be performed regularly. For serious cases, pre-chlorination or adding hydrogen peroxide can also be used to remove the overgrown biofilm and reduce the loss of water head. The ultimate disposal of sludge generated by the biofiltration process could be also a direction worthy of attention in the future.
- (4)
- Currently, the forefront of research on the removal of PPCPs by biofiltration revolves around three primary avenues: identifying potent degrading bacteria, pinpointing adsorption media, and devising synergistic combinations. However, one notable knowledge gap exists: the microbial degradation mechanism, particularly the intricate correlation between functional genes and the degradation process at a genetic level, remains insufficiently explored. Metagenomics and metatranscriptomics emerge as powerful tools for mapping microbial community structure and function profiles, and can also help construct transformed enzymatic metabolic pathways for PPCP degradation during the BAC process.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Chu, L. Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: An overview. Radiat. Phys. Chem. 2016, 125, 56–64. [Google Scholar] [CrossRef]
- Kumar, M.; Sridharan, S.; Sawarkar, A.D.; Shakeel, A.; Anerao, P.; Mannina, G.; Sharma, P.; Pandey, A. Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review. Sci. Total Environ. 2023, 859, 160031. [Google Scholar] [CrossRef] [PubMed]
- Daughton, C.G.; Ternes, T.A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect. 1999, 107 (Suppl. 6), 907–938. [Google Scholar] [CrossRef] [PubMed]
- Heberer, T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol. Lett. 2002, 131, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-X.; Zhang, T.; Fang, H.H. Antibiotic resistance genes in water environment. Appl. Microbiol. Biot. 2009, 82, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.; Scrimshaw, M.; Lester, J. The effects of natural and synthetic steroid estrogens in relation to their environmental occurrence. CRC Crit. Rev. Toxicol. 2002, 32, 113–132. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Li, J.; Wang, X.; Gao, X.; Chen, J.; Ai, S.; Li, W.; Huang, Y.; Liu, Z. Study of aquatic life criteria and ecological risk assessment for triclocarban (TCC). Environ. Pollut. 2019, 254, 112956. [Google Scholar] [CrossRef] [PubMed]
- Tumová, J.; Šauer, P.; Golovko, O.; Koba Ucun, O.; Grabic, R.; Máchová, J.; Kocour Kroupová, H. Effect of polycyclic musk compounds on aquatic organisms: A critical literature review supplemented by own data. Sci. Total Environ. 2019, 651, 2235–2246. [Google Scholar] [CrossRef] [PubMed]
- Brausch, J.M.; Rand, G.M. A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere 2011, 82, 1518–1532. [Google Scholar] [CrossRef]
- Li, A.J.; Law, J.C.-F.; Chow, C.-H.; Huang, Y.; Li, K.; Leung, K.S.-Y. Joint Effects of Multiple UV Filters on Zebrafish Embryo Development. Environ. Sci. Technol. 2018, 52, 9460–9467. [Google Scholar] [CrossRef]
- Chen, X.; Lei, L.; Liu, S.; Han, J.; Li, R.; Men, J.; Li, L.; Wei, L.; Sheng, Y.; Yang, L.; et al. Occurrence and risk assessment of pharmaceuticals and personal care products (PPCPs) against COVID-19 in lakes and WWTP-river-estuary system in Wuhan, China. Sci. Total Environ. 2021, 792, 148352. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Jin, B.; Han, M.; Yu, Y.; Zhang, G.; Arp, H.P.H. The distribution of persistent, mobile and toxic (PMT) pharmaceuticals and personal care products monitored across Chinese water resources. J. Hazard. Mater. Lett. 2021, 2, 100026. [Google Scholar] [CrossRef]
- Osuoha, J.O.; Anyanwu, B.O.; Ejileugha, C. Pharmaceuticals and personal care products as emerging contaminants: Need for combined treatment strategy. J. Hazard. Mater. Adv. 2023, 9, 100206. [Google Scholar] [CrossRef]
- Mehinto, A.C.; Hill, E.M.; Tyler, C.R. Uptake and Biological Effects of Environmentally Relevant Concentrations of the Nonsteroidal Anti-inflammatory Pharmaceutical Diclofenac in Rainbow Trout (Oncorhynchus mykiss). Environ. Sci. Technol. 2010, 44, 2176–2182. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.; Alder, A.C.; Koller, T.; Widmer, R.M. Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater. Environ. Toxicol. Chem. 1998, 17, 377–382. [Google Scholar] [CrossRef]
- Simpson, D.R. Biofilm processes in biologically active carbon water purification. Water Res. 2008, 42, 2839–2848. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Lee, W.-N.; Coleman, C.; Nowack, K.; Carter, J.; Huang, C.-H. Removal of pharmaceuticals and personal care products by two-stage biofiltration for drinking water treatment. Sci. Total Environ. 2019, 664, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Basu, O.D.; Dhawan, S.; Black, K. Applications of biofiltration in drinking water treatment—A review. J. Chem. Technol. Biotechnol. 2016, 91, 585–595. [Google Scholar] [CrossRef]
- Fu, J.; Lee, W.-N.; Coleman, C.; Meyer, M.; Carter, J.; Nowack, K.; Huang, C.-H. Pilot investigation of two-stage biofiltration for removal of natural organic matter in drinking water treatment. Chemosphere 2017, 166, 311–322. [Google Scholar] [CrossRef]
- Gibert, O.; Lefèvre, B.; Fernández, M.; Bernat, X.; Paraira, M.; Calderer, M.; Martínez-Lladó, X. Characterising biofilm development on granular activated carbon used for drinking water production. Water Res. 2013, 47, 1101–1110. [Google Scholar] [CrossRef]
- Krishnan, R.Y.; Manikandan, S.; Subbaiya, R.; Biruntha, M.; Govarthanan, M.; Karmegam, N. Removal of emerging micropollutants originating from pharmaceuticals and personal care products (PPCPs) in water and wastewater by advanced oxidation processes: A review. Environ. Technol. Innov. 2021, 23, 101757. [Google Scholar] [CrossRef]
- Kümmerer, K. The presence of pharmaceuticals in the environment due to human use—Present knowledge and future challenges. J. Environ. Manag. 2009, 90, 2354–2366. [Google Scholar] [CrossRef] [PubMed]
- WHO. Antimicrobial Resistance: Global Report on Surveillance. Australas. Med. J. 2014, 7, 237. [Google Scholar]
- Ajay; Walters, W.P.; Murcko, M.A. Can We Learn To Distinguish between “Drug-like” and “Nondrug-like” Molecules? J. Med. Chem. 1998, 41, 3314–3324. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Fei, B.; Xiu, G. Characteristics of Volatile Organic Compound Leaks from Equipment Components: A Study of the Pharmaceutical Industry in China. Sustainability 2021, 13, 6274. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Y.; Qin, T.; Wu, M.; Chen, Z.; Zhang, Y.; Liu, W.; Xie, X. Global trends in the research and development of medical/pharmaceutical wastewater treatment over the half-century. Chemosphere 2023, 331, 138775. [Google Scholar] [CrossRef]
- Oliveira, T.S.; Murphy, M.; Mendola, N.; Wong, V.; Carlson, D.; Waring, L. Characterization of pharmaceuticals and personal care products in hospital effluent and waste water influent/effluent by direct-injection LC-MS-MS. Sci. Total Environ. 2015, 518, 459–478. [Google Scholar] [CrossRef] [PubMed]
- Kovalova, L.; Siegrist, H.; Singer, H.; Wittmer, A.; McArdell, C.S. Hospital Wastewater Treatment by Membrane Bioreactor: Performance and Efficiency for Organic Micropollutant Elimination. Environ. Sci. Technol. 2012, 46, 1536–1545. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Ahmed, S.; Farooqi, I.H.; Ali, I. Innovative method used in modern time for the treatment of hospital wastewater. Int. J. Environ. Anal. Chem. 2023, 103, 6445–6457. [Google Scholar] [CrossRef]
- Huang, A.; Yan, M.; Lin, J.; Xu, L.; Gong, H.; Gong, H. A Review of Processes for Removing Antibiotics from Breeding Wastewater. Int. J. Environ. Res. Public Health 2021, 18, 4909. [Google Scholar] [CrossRef]
- Wu, Y.; Song, S.; Chen, X.; Shi, Y.; Cui, H.; Liu, Y.; Yang, S. Source-specific ecological risks and critical source identification of PPCPs in surface water: Comparing urban and rural areas. Sci. Total Environ. 2023, 854, 158792. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Huang, J.; Wang, B.; Deng, S.; Wang, Y.; Yu, G. Contaminants of emerging concern in landfill leachate in China: A review. Emerg. Contam. 2018, 4, 1–10. [Google Scholar] [CrossRef]
- Daughton, C.G. Cradle-to-cradle stewardship of drugs for minimizing their environmental disposition while promoting human health. I. Rationale for and avenues toward a green pharmacy. Environ. Health Perspect. 2003, 111, 757–774. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, Y. Occurrence and risk assessment of estrogenic compounds in the East Lake, China. Environ. Toxicol. Pharmacol. 2017, 52, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Gao, L.; Shi, Y.; Liu, J.; Cai, Y. Occurrence, distribution and risks of antibiotics in urban surface water in Beijing, China. Environ. Sci. Process. Impacts 2015, 17, 1611–1619. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhao, Y.; Xu, H.; Zhang, H.; Yu, B.; Hao, L.; Liu, Z. Selective oxidation of glycerol to formic acid catalyzed by Ru(OH)4/r-GO in the presence of FeCl3. Appl. Catal. B Environ. 2014, 154–155, 267–273. [Google Scholar] [CrossRef]
- Wu, C.; Huang, X.; Witter, J.D.; Spongberg, A.L.; Wang, K.; Wang, D.; Liu, J. Occurrence of pharmaceuticals and personal care products and associated environmental risks in the central and lower Yangtze river, China. Ecotoxicol. Environ. Saf. 2014, 106, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Meng, W.; Xu, J.; Zhang, Y.; Guo, C. Occurrence, distribution and bioaccumulation of antibiotics in the Liao River Basin in China. Environ. Science. Process. Impacts 2014, 16, 586–593. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography–positive electrospray ionisation tandem mass spectrometry. J. Chromatogr. A 2007, 1161, 132–145. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res. 2008, 42, 3498–3518. [Google Scholar] [CrossRef]
- Osorio, V.; Larrañaga, A.; Aceña, J.; Pérez, S.; Barceló, D. Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers. Sci. Total Environ. 2016, 540, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Ginebreda, A.; Muñoz, I.; de Alda, M.L.; Brix, R.; López-Doval, J.; Barceló, D. Environmental risk assessment of pharmaceuticals in rivers: Relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environ. Int. 2010, 36, 153–162. [Google Scholar] [CrossRef]
- Alexy, R.; Schöll, A.; Kümpel, T.; Kümmerer, K. What Do We Know about Antibiotics in the Environment? In Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks; Kümmerer, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 209–221. [Google Scholar]
- Buser, H.-R.; Müller, M.D.; Theobald, N. Occurrence of the Pharmaceutical Drug Clofibric Acid and the Herbicide Mecoprop in Various Swiss Lakes and in the North Sea. Environ. Sci. Technol. 1998, 32, 188–192. [Google Scholar] [CrossRef]
- Dai, G.; Wang, B.; Huang, J.; Dong, R.; Deng, S.; Yu, G. Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China. Chemosphere 2015, 119, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Wang, B.; Lu, S.; Zhang, Y.; Yin, L.; Huang, J.; Deng, S.; Wang, Y.; Yu, G. Characterization of pharmaceutically active compounds in Dongting Lake, China: Occurrence, chiral profiling and environmental risk. Sci. Total Environ. 2016, 557–558, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; He, J.T.; Su, S.H.; Cui, Y.F.; Huang, D.L.; Wang, G.C. Occurrence, distribution, and attenuation of pharmaceuticals and personal care products in the riverside groundwater of the Beiyun River of Beijing, China. Environ. Sci. Pollut. Res. Int. 2017, 24, 15838–15851. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Li, Y.; Li, M.; Ashfaq, M.; Lv, M.; Wang, H.; Hu, A.; Yu, C.P. PPCPs in Jiulong River estuary (China): Spatiotemporal distributions, fate, and their use as chemical markers of wastewater. Chemosphere 2016, 150, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Fontela, M.; Galceran, M.T.; Ventura, F. Stimulatory drugs of abuse in surface waters and their removal in a conventional drinking water treatment plant. Environ. Sci. Technol. 2008, 42, 6809–6816. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Liu, Y.; Yang, Q.; Jiang, L.; Li, G. Occurrence and distribution of Pharmaceuticals and Personal Care Products (PPCPs) in wastewater related riverbank groundwater. Sci. Total Environ. 2022, 821, 153372. [Google Scholar] [CrossRef]
- Peng, X.; Ou, W.; Wang, C.; Wang, Z.; Huang, Q.; Jin, J.; Tan, J. Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China. Sci. Total Environ. 2014, 490, 889–898. [Google Scholar] [CrossRef]
- Wang, N.; Kang, G.; Hu, G.; Chen, J.; Qi, D.; Bi, F.; Chang, N.; Gao, Z.; Zhang, S.; Shen, W. Spatiotemporal distribution and ecological risk assessment of pharmaceuticals and personal care products (PPCPs) from Luoma Lake, an important node of the South-to-North Water Diversion Project. Environ. Monit. Assess. 2023, 195, 1330. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wang, Y.; Pan, C.; Li, R.; Xue, R.; Guo, J.; Zhang, R. Spatiotemporal distributions, source apportionment and potential risks of 15 pharmaceuticals and personal care products (PPCPs) in Qinzhou Bay, South China. Mar. Pollut. Bull. 2019, 141, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Ling, J.; Blancheton, J.-P. Nitrification kinetics of biofilm as affected by water quality factors. Aquac. Eng. 2006, 34, 179–197. [Google Scholar] [CrossRef]
- Fried, J.; Mayr, G.; Berger, H.; Traunspurger, W.; Psenner, R.; Lemmer, H. Monitoring protozoa and metazoa biofilm communities for assessing wastewater quality impact and reactor up-scaling effects. Water Sci. Technol. 2000, 41, 309–316. [Google Scholar] [CrossRef]
- Srivastava, N.K.; Majumder, C.B. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J. Hazard. Mater. 2008, 151, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rittmann, B.E.; Stilwell, D.; Ohashi, A. The transient-state, multiple-species biofilm model for biofiltration processes. Water Res. 2002, 36, 2342–2356. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.K.; Wang, M.-H.S.; Shammas, N.K. Biological Processes for Water Resource Protection and Water Recovery. In Environmental and Natural Resources Engineering; Wang, L.K., Wang, M.-H.S., Hung, Y.-T., Shammas, N.K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 73–168. [Google Scholar]
- Liu, C.; Olivares, C.I.; Pinto, A.J.; Lauderdale, C.V.; Brown, J.; Selbes, M.; Karanfil, T. The control of disinfection byproducts and their precursors in biologically active filtration processes. Water Res. 2017, 124, 630–653. [Google Scholar] [CrossRef]
- Bai, X.; Dinkla, I.J.T.; Muyzer, G. Microbial ecology of biofiltration used for producing safe drinking water. Appl. Microbiol. Biot. 2022, 106, 4813–4829. [Google Scholar] [CrossRef]
- Fu, J.; Lee, W.-N.; Coleman, C.; Nowack, K.; Carter, J.; Huang, C.-H. Removal of disinfection byproduct (DBP) precursors in water by two-stage biofiltration treatment. Water Res. 2017, 123, 224–235. [Google Scholar] [CrossRef]
- Edition, F. Guidelines for drinking-water quality. WHO Chron. 2011, 38, 104–108. [Google Scholar]
- Li, J.; Campos, L.C.; Zhang, L.; Xie, W. Sand and sand-GAC filtration technologies in removing PPCPs: A review. Sci. Total Environ. 2022, 848, 157680. [Google Scholar] [CrossRef] [PubMed]
- Radovic, L.R. Chemistry & Physics of Carbon; CRC Press: Boca Raton, FL, USA, 2004; Volume 29. [Google Scholar]
- Órfão, J.; Silva, A.; Pereira, J.; Barata, S.; Fonseca, I.; Faria, P.; Pereira, M. Adsorption of a reactive dye on chemically modified activated carbons—Influence of pH. J. Colloid Interface Sci. 2006, 296, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Villacañas, F.; Pereira, M.F.R.; Órfão, J.J.; Figueiredo, J.L. Adsorption of simple aromatic compounds on activated carbons. J. Colloid Interface Sci. 2006, 293, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Westerhoff, P.; Yoon, Y.; Snyder, S.; Wert, E. Fate of Endocrine-Disruptor, Pharmaceutical, and Personal Care Product Chemicals during Simulated Drinking Water Treatment Processes. Environ. Sci. Technol. 2005, 39, 6649–6663. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. J. Environ. Manag. 2016, 182, 620–640. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.D.; Cho, J.; Kim, I.S.; Vanderford, B.J.; Snyder, S.A. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res. 2007, 41, 1013–1021. [Google Scholar] [CrossRef]
- Grover, D.P.; Zhou, J.L.; Frickers, P.E.; Readman, J.W. Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: Impact on receiving river water. J. Hazard. Mater. 2011, 185, 1005–1011. [Google Scholar] [CrossRef]
- Newcombe, G.; Drikas, M. Adsorption of NOM onto activated carbon: Electrostatic and non-electrostatic effects. Carbon 1997, 35, 1239–1250. [Google Scholar] [CrossRef]
- Kilduff, J.E.; Karanfil, T.; Weber, W.J. Competitive effects of nondisplaceable organic compounds on trichloroethylene uptake by activated carbon. II. Model verification and applicability to natural organic matter. J. Colloid Interface Sci. 1998, 205, 280–289. [Google Scholar] [CrossRef]
- Pelekani, C.; Snoeyink, V. Competitive adsorption in natural water: Role of activated carbon pore size. Water Res. 1999, 33, 1209–1219. [Google Scholar] [CrossRef]
- De Ridder, D.; Verliefde, A.; Heijman, S.; Verberk, J.; Rietveld, L.; Van Der Aa, L.; Amy, G.; Van Dijk, J. Influence of natural organic matter on equilibrium adsorption of neutral and charged pharmaceuticals onto activated carbon. Water Sci. Technol. 2011, 63, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Urase, T.; Simazaki, D.; Kim, H. Effect of natural organic matter on adsorption of ionic and non-ionic pharmaceuticals to granular activated carbon. Environ. Prot. Eng. 2013, 39, 15–28. [Google Scholar]
- Yu, Z.; Peldszus, S.; Huck, P.M. Adsorption of selected pharmaceuticals and an endocrine disrupting compound by granular activated carbon. 1. Adsorption capacity and kinetics. Environ. Sci. Technol. 2009, 43, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Newcombe, G. Activated carbon and soluble humic substances: Adsorption, desorption, and surface charge effects. J. Colloid Interface Sci. 1994, 164, 452–462. [Google Scholar] [CrossRef]
- Cyr, P.J.; Suri, R.P.; Helmig, E.D. A pilot scale evaluation of removal of mercury from pharmaceutical wastewater using granular activated carbon. Water Res. 2002, 36, 4725–4734. [Google Scholar] [CrossRef] [PubMed]
- Ek, M.; Baresel, C.; Magnér, J.; Bergström, R.; Harding, M. Activated carbon for the removal of pharmaceutical residues from treated wastewater. Water Sci. Technol. 2014, 69, 2372–2380. [Google Scholar] [CrossRef] [PubMed]
- Snyder, S.A.; Adham, S.; Redding, A.M.; Cannon, F.S.; DeCarolis, J.; Oppenheimer, J.; Wert, E.C.; Yoon, Y. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 2007, 202, 156–181. [Google Scholar] [CrossRef]
- Matsui, Y.; Knappe, D.R.; Takagi, R. Pesticide adsorption by granular activated carbon adsorbers. 1. Effect of natural organic matter preloading on removal rates and model simplification. Environ. Sci. Technol. 2002, 36, 3426–3431. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, X.; Zeng, W.; Wang, F.; Gong, W.; Chen, J.; Wang, J.; Li, G.; Liang, H. Pilot-Scale Biological Activated Carbon Filtration–Ultrafiltration System for Removing Pharmaceutical and Personal Care Products from River Water. Water 2022, 14, 367. [Google Scholar] [CrossRef]
- Lu, Z.; Sun, W.; Li, C.; Ao, X.; Yang, C.; Li, S. Bioremoval of non-steroidal anti-inflammatory drugs by Pseudoxanthomonas sp. DIN-3 isolated from biological activated carbon process. Water Res. 2019, 161, 459–472. [Google Scholar] [CrossRef]
- Liu, H.-L.; Li, X.; Li, N. Application of bio-slow sand filters for drinking water production: Linking purification performance to bacterial community and metabolic functions. J. Water Process Eng. 2023, 53, 103622. [Google Scholar] [CrossRef]
- Almeida-Naranjo, C.E.; Guerrero, V.H.; Villamar-Ayala, C.A. Emerging Contaminants and Their Removal from Aqueous Media Using Conventional/Non-Conventional Adsorbents: A Glance at the Relationship between Materials, Processes, and Technologies. Water 2023, 15, 1626. [Google Scholar] [CrossRef]
- Paredes, L.; Fernandez-Fontaina, E.; Lema, J.M.; Omil, F.; Carballa, M. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems. Sci. Total Environ. 2016, 551–552, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Welz, P.J.; Ramond, J.B.; Cowan, D.A.; Burton, S.G. Phenolic removal processes in biological sand filters, sand columns and microcosms. Bioresour. Technol. 2012, 119, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.; Hoefel, D.; Saint, C.P.; Newcombe, G. Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter. Water Res. 2007, 41, 4685–4695. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.E. Research on the Assessment Method of Zouping County Rural Drinking Water Safety. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2018. [Google Scholar]
- Pompei, C.M.E.; Ciric, L.; Canales, M.; Karu, K.; Vieira, E.M.; Campos, L.C. Influence of PPCPs on the performance of intermittently operated slow sand filters for household water purification. Sci. Total Environ. 2017, 581–582, 174–185. [Google Scholar] [CrossRef]
- Zearley, T.L.; Summers, R.S. Removal of Trace Organic Micropollutants by Drinking Water Biological Filters. Environ. Sci. Technol. 2012, 46, 9412–9419. [Google Scholar] [CrossRef] [PubMed]
- Escolà Casas, M.; Bester, K. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)? Sci. Total Environ. 2015, 506–507, 315–322. [Google Scholar] [CrossRef] [PubMed]
- van Gijn, K.; Chen, Y.L.; van Oudheusden, B.; Gong, S.; de Wilt, H.A.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Optimizing biological effluent organic matter removal for subsequent micropollutant removal. J. Environ. Chem. Eng. 2021, 9, 106247. [Google Scholar] [CrossRef]
- D’Alessio, M.; Yoneyama, B.; Kirs, M.; Kisand, V.; Ray, C. Pharmaceutically active compounds: Their removal during slow sand filtration and their impact on slow sand filtration bacterial removal. Sci. Total Environ. 2015, 524–525, 124–135. [Google Scholar] [CrossRef]
- Nakada, N.; Shinohara, H.; Murata, A.; Kiri, K.; Managaki, S.; Sato, N.; Takada, H. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Res. 2007, 41, 4373–4382. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Campos, L.C.; Li, J.; Karu, K.; Ciric, L. Removal of antibiotics in sand, GAC, GAC sandwich and anthracite/sand biofiltration systems. Chemosphere 2021, 275, 130004. [Google Scholar] [CrossRef] [PubMed]
- Yapsakli, K.; Mertoglu, B.; Çeçen, F. Identification of nitrifiers and nitrification performance in drinking water biological activated carbon (BAC) filtration. Process Biochem. 2010, 45, 1543–1549. [Google Scholar] [CrossRef]
- Yapsakli, K.; Çeçen, F. Effect of type of granular activated carbon on DOC biodegradation in biological activated carbon filters. Process Biochem. 2010, 45, 355–362. [Google Scholar] [CrossRef]
- Liu, X.; Huck, P.M.; Slawson, R.M. Factors Affecting Drinking Water Biofiltration. J. AWWA 2001, 93, 90–101. [Google Scholar] [CrossRef]
- Seredyńska-Sobecka, B.; Tomaszewska, M.; Morawski, A.W. Removal of humic acids by the ozonation–biofiltration process. Desalination 2006, 198, 265–273. [Google Scholar] [CrossRef]
- Lin, T.; Yu, S.; Chen, W. Occurrence, removal and risk assessment of pharmaceutical and personal care products (PPCPs) in an advanced drinking water treatment plant (ADWTP) around Taihu Lake in China. Chemosphere 2016, 152, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Velten, S.; Boller, M.; Köster, O.; Helbing, J.; Weilenmann, H.-U.; Hammes, F. Development of biomass in a drinking water granular active carbon (GAC) filter. Water Res. 2011, 45, 6347–6354. [Google Scholar] [CrossRef]
- Bai, L.; Liu, X.; Wu, Y.; Wang, C.; Wang, C.; Chen, W.; Jiang, H. Varying removal of emerging organic contaminants in drinking water treatment residue-based biofilter systems: Influence of hydraulic loading rates on microbiology. Chem. Eng. J. 2024, 491, 152169. [Google Scholar] [CrossRef]
- Kajitvichyanukul, P.; Shammas, N.K.; Hung, Y.-T.; Wang, L.K.; Ananpattarachai, J. Potable Water Biotechnology, Membrane Filtration and Biofiltration. In Membrane and Desalination Technologies; Wang, L.K., Chen, J.P., Hung, Y.-T., Shammas, N.K., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 477–523. [Google Scholar]
Groups | Representative Compounds | |
---|---|---|
Pharmaceuticals | Antibiotics | Clarithromycin, erythromycin, sulfamethoxazole, sulfadimethoxine, ciprofloxacin, norfloxacin, and chloramphenicol |
Hormones | Estrone (E1), estradiol (E2), and ethinylestradiol (EE2) | |
Analgesics and anti-inflammatory drugs | Diclofenac, ibuprofen, acetaminophen, and acetylsalicylic acid | |
Antiepileptic drugs | Carbamazepine and primidone | |
Blood lipid regulators | Clofibrate and gemfibrozil | |
β-Blockers | Metoprolol and propanolol | |
Contrast media | Diatrizoate and iopromide | |
Cytostatic drugs | Ifosfamide and cyclophosphamide | |
Personal care products | Antimicrobial agents/disinfectants | Triclosan and triclocarban |
Synthetic musks/fragrances | Galaxolide (HHCB) and toxalide (AHTN) | |
Insect repellants | N,N-Diethyl-m-toluamide (DEET) | |
Preservatives | Parabens (alkyl-p-hydroxybenzoates) | |
Sunscreen UV filters | 2-Ethyl-hexyl-4-trimethoxycinnamate (EHMC) and 4-methyl-benzilidine-camphor (4MBC) |
Compound | Category | Highest Concentration (ng L−1) | Source (River/Lake) | References |
---|---|---|---|---|
Oxytetracycline (OTC) | Antibiotics | 2796.6 | Honghu Lake, China | [34] |
Erythromycin (ERY) | Antibiotics | 2834.4 | Liaoning section of Liao River, China Beiyun River, China Central and lower Yangtze River, China Taihu Lake, China | [35,36,37] |
Roxithromycin (ROX) | Antibiotics | 741.0 | Beijing urban surface water, China Baiyangdian Lake, China Taihu Lake, China | [35,36] |
Ciprofloxacin (CIP) | Antibiotics | 414.0 | The urban area of Beijing and the Liaoning section of Liao Rivers, China | [35,38] |
Difloxacin (DIF) | Antibiotics | 250.2 | Honghu Lake, China | [34] |
Amoxicillin | Antibiotics | 622.0 | River Taff/Ely, UK River Warta, Poland Wascana Creek, Canada | [39,40] |
Azithromycin (AZM) | Antibiotics | 24.0 | Iberian River, Spain | [41] |
Sulfamethazine | Antibiotics | 1920.0 | Llobregat River, Spain | [42] |
Ofloxacin | Antibiotocs | 990.0 | The urban area of Beijing and the Liaoning section of Liao Rivers, China | [35,38] |
Ibuprofen | Anti-inflammatory drug | 11.0 | Msunduzi River, South Africa | [43] |
Keroprofen | Anti-inflammatory drug | 57.0 | Msunduzi River, South Africa | [43] |
Clofibric acid | Blood lipid regulator | 9.0 | Freshwater Swiss lakes, Switzerland | [44] |
Caffeine (CAF) | Central nervous system stimulant | 9785.0 | Beiyun River, China Jiulong River, China Liuxi River, China | [45,46,47,48] |
Amphetamine | Illicit drugs | 50.0 | Llobregat River, Spain Olona River, Spain | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, P.; Liao, Z.; Wu, G.; Yang, L.; Fu, J.; Luo, Y. Recent Advances in Biofiltration for PPCP Removal from Water. Water 2024, 16, 1888. https://doi.org/10.3390/w16131888
Lin P, Liao Z, Wu G, Yang L, Fu J, Luo Y. Recent Advances in Biofiltration for PPCP Removal from Water. Water. 2024; 16(13):1888. https://doi.org/10.3390/w16131888
Chicago/Turabian StyleLin, Pinyi, Zhuwei Liao, Gequan Wu, Liwei Yang, Jie Fu, and Yin Luo. 2024. "Recent Advances in Biofiltration for PPCP Removal from Water" Water 16, no. 13: 1888. https://doi.org/10.3390/w16131888
APA StyleLin, P., Liao, Z., Wu, G., Yang, L., Fu, J., & Luo, Y. (2024). Recent Advances in Biofiltration for PPCP Removal from Water. Water, 16(13), 1888. https://doi.org/10.3390/w16131888