Enhanced Spatio-Temporal Modeling for Rainfall Forecasting: A High-Resolution Grid Analysis
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. Data Description
3.2. Spatio-Temporal Data
3.3. ARIMA Model
3.4. STARMA Model
- z(t) is a N × 1 vector of observations at time t (t = 1, …, T);
- p is the autoregressive order (AR), and q is the MA order;
- λk represents the spatial order of the kth AR term, and mk represents the spatial order of the kth MA term;
- ϕkl is the AR parameter at temporal lag k and spatial lag l (scalar), and θkl is the MA parameter at temporal lag k and spatial lag l (scalar);
- W(l) is the N × N matrix of weights for spatial order l;
- ϵ(t) is normally distributed random error at time t with
3.5. Model Evaluation Criterion
4. Results and Discussion
4.1. ARIMA Fitting
4.2. STARMA Fitting
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pandey, D. Agricultural Sustainability and Climate Change Nexus. In Contemporary Environmental Issues and Challenges in Era of Climate Change; Springer: Singapore, 2020; pp. 77–97. [Google Scholar]
- Rao, C.S.; Lal, R.; Prasad, J.V.; Gopinath, K.A.; Singh, R.; Jakkula, V.S.; Sahrawat, K.L.; Venkateswarlu, B.; Sikka, A.K.; Virmani, S.M. Potential and challenges of rainfed farming in India. Adv. Agron. 2015, 133, 113–181. [Google Scholar]
- Maharana, P.; Dimri, A.P. The Indian Monsoon: Past, present and future. Proc. Indian Natl. Sci. Acad. 2019, 85, 403–420. [Google Scholar]
- Singh, R.B. Environmental consequences of agricultural development: A case study from the Green Revolution state of Haryana, India. Agric. Ecosyst. Environ. 2000, 82, 97–103. [Google Scholar] [CrossRef]
- Haile, M. Weather patterns, food security and humanitarian response in sub-Saharan Africa. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2169–2182. [Google Scholar] [CrossRef] [PubMed]
- Portela, M.M.; Espinosa, L.A.; Zelenakova, M. Long-term rainfall trends and their variability in mainland Portugal in the last 106 years. Climate 2020, 8, 146. [Google Scholar] [CrossRef]
- Turner, A.G.; Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2012, 2, 587–595. [Google Scholar] [CrossRef]
- Mondini, A.C.; Guzzetti, F.; Melillo, M. Deep learning forecast of rainfall-induced shallow landslides. Nat. Commun. 2023, 14, 2466. [Google Scholar] [CrossRef]
- Dotse, S.Q.; Larbi, I.; Limantol, A.M.; DeSilva, L.C. A review of the application of hybrid machine learning models to improve rainfall prediction. Model. Earth Syst. Environ. 2024, 10, 19–44. [Google Scholar] [CrossRef]
- Allawi, M.F.; Abdulhameed, U.H.; Adham, A.; Sayl, K.N.; Sulaiman, S.O.; Ramal, M.M.; Sherif, M.; El-Shafie, A. Monthly rainfall forecasting modelling based on advanced machine learning methods: Tropical region as case study. Eng. Appl. Comput. Fluid Mech. 2023, 17, 2243090. [Google Scholar] [CrossRef]
- Palanisami, K.; Meinzen-Dick, R.; Giordano, M. Climate change and water supplies: Options for sustaining tank irrigation potential in India. Econ. Political Wkly. 2010, 45, 183–190. [Google Scholar]
- Sahu, R.T.; Verma, M.K.; Ahmad, I. Impact of long-distance interaction indicator (monsoon indices) on spatio-temporal variability of precipitation over the Mahanadi River basin. Water Resour. Res. 2023, 59, e2022WR033805. [Google Scholar] [CrossRef]
- Tariq, A.; Qin, S. Spatio-temporal variation in surface water in Punjab, Pakistan from 1985 to 2020 using machine-learning methods with time-series remote sensing data and driving factors. Agric. Water Manag. 2023, 30, 108228. [Google Scholar] [CrossRef]
- De Gooijer, J.G.; Hyndman, R.J. 25 years of time series forecasting. Int. J. Forecast. 2006, 22, 443–473. [Google Scholar] [CrossRef]
- Chodakowska, E.; Nazarko, J.; Nazarko, Ł.; Rabayah, H.S.; Abendeh, R.M.; Alawneh, R. Arima models in solar radiation forecasting in different geographic locations. Energies 2023, 16, 5029. [Google Scholar] [CrossRef]
- Al-Selwi, H.F.; Abas, F.S.; Ahmad, K.A.; Noor, N.M.; Abdul, R.S.F. Attention Based Spatial-Temporal GCN with Kalman filter for Traffic Flow Prediction. Int. J. Technol. 2023, 14, 1299. [Google Scholar] [CrossRef]
- Kontopoulou, V.I.; Panagopoulos, A.D.; Kakkos, I.; Matsopoulos, G.K. A review of ARIMA vs. Machine learning approaches for time series forecasting in data driven networks. Future Internet 2023, 15, 255. [Google Scholar] [CrossRef]
- Zhang, G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50, 159–175. [Google Scholar] [CrossRef]
- Kim, J.; Kim, T.; Ryu, J.G.; Kim, J. Spatiotemporal graph neural network for multivariate multi-step ahead time-series forecasting of sea temperature. Eng. Appl. Artif. Intell. 2023, 126, 106854. [Google Scholar] [CrossRef]
- Iung, A.M.; Cyrino, O.F.L.; Marcato, A.L. A review on modeling variable renewable energy: Complementarity and spatial–temporal dependence. Energies 2023, 16, 1013. [Google Scholar] [CrossRef]
- Daviran, M.; Shamekhi, M.; Ghezelbash, R.; Maghsoudi, A. Landslide susceptibility prediction using artificial neural networks, svms and random forest: Hyperparameters tuning by genetic optimization algorithm. Int. J. Environ. Sci. Technol. 2023, 20, 259–276. [Google Scholar] [CrossRef]
- Masini, R.P.; Medeiros, M.C.; Mendes, E.F. Machine learning advances for time series forecasting. J. Econ. Surv. 2023, 37, 76–111. [Google Scholar] [CrossRef]
- Ifaei, P.; Nazari-Heris, M.; Charmchi, A.S.; Asadi, S.; Yoo, C. Sustainable energies and machine learning: An organized review of recent applications and challenges. Energy 2023, 1, 126432. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, F.; Gong, G.; Yang, H.; Han, D. Intelligent technologies for construction machinery using data-driven methods. Autom. Constr. 2023, 1, 104711. [Google Scholar] [CrossRef]
- Baig, F.; Ali, L.; Faiz, M.A.; Chen, H.; Sherif, M. How accurate are the machine learning models in improving monthly rainfall prediction in hyper arid environment? J. Hydrol. 2024, 1, 131040. [Google Scholar] [CrossRef]
- Pirone, D.; Cimorelli, L.; Del, G.G.; Pianese, D. Short-term rainfall forecasting using cumulative precipitation fields from station data: A probabilistic machine learning approach. J. Hydrol. 2023, 1, 128949. [Google Scholar] [CrossRef]
- Nocentini, N.; Rosi, A.; Segoni, S.; Fanti, R. Towards landslide space-time forecasting through machine learning: The influence of rainfall parameters and model setting. Front. Earth Sci. 2023, 13, 1152130. [Google Scholar] [CrossRef]
- Saha, A.; Singh, K.N.; Ray, M.; Rathod, S.; Dhyani, M. Fuzzy rule–based weighted space–time autoregressive moving average models for temperature forecasting. Theor. Appl. Climatol. 2022, 150, 1321–1335. [Google Scholar] [CrossRef]
- Rathod, S.; Saha, A.; Patil, R.; Ondrasek, G.; Gireesh, C.; Anantha, M.S.; Rao, D.V.; Bandumula, N.; Senguttuvel, P.; Swarnaraj, A.K.; et al. Two-stage spatiotemporal time series modelling approach for rice yield prediction & advanced agroecosystem management. Agronomy 2021, 11, 2502. [Google Scholar] [CrossRef]
- Basha, S.J.; Prasad, G.L.; Vivek, K.; Kumar, E.S.; Ammannamma, T. Leveraging Ensemble Time-series Forecasting Model to Predict the amount of Rainfall in Andhra Pradesh. In Proceedings of the 2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP), Vijayawada, India, 12–14 February 2022; pp. 1–7. [Google Scholar]
- Garai, S.; Paul, R.K.; Yeasin, M.; Roy, H.S.; Paul, A.K. Machine learning algorithms for predicting rainfall in India. Curr. Sci. 2024, 126, 360. [Google Scholar]
- Sekhar, P.H.; Kesavulu, P.K.; Bhupathi, M. Modelling and prediction of coastal Andhra rainfall using ARIMA and ANN models. Int. J. Stat. Appl. Math. 2020, 5, 104–110. [Google Scholar]
- Bommala, H.; Kumar, G.B.; Babu, B.S.; Sivajyothi, M.; Kumar, M.V.; Basha, S.J. A Review on Ensemble Model-Based Rainfall Prediction Techniques. In Proceedings of the 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT), Bengaluru, India, 4–6 January 2024; pp. 1474–1478. [Google Scholar]
- Pérez-Alarcón, A.; Garcia-Cortes, D.; Fernández-Alvarez, J.C.; Martínez-González, Y. Improving monthly rainfall forecast in a watershed by combining neural networks and autoregressive models. Environ. Process. 2022, 9, 53. [Google Scholar] [CrossRef]
- Kaur, J.; Parmar, K.S.; Singh, S. Autoregressive models in environmental forecasting time series: A theoretical and application review. Environ. Sci. Pollut. Res. 2023, 30, 19617–19641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, H.; Cui, H.; Chen, Q. Comparison of the ability of ARIMA, WNN and SVM models for drought forecasting in the Sanjiang Plain, China. Nat. Resour. Res. 2020, 29, 1447–1464. [Google Scholar] [CrossRef]
- Barrera-Animas, A.Y.; Oyedele, L.O.; Bilal, M.; Akinosho, T.D.; Delgado, J.M.; Akanbi, L.A. Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting. Mach. Learn. Appl. 2022, 15, 100204. [Google Scholar] [CrossRef]
- Ridwan, W.M.; Sapitang, M.; Aziz, A.; Kushiar, K.F.; Ahmed, A.N.; El-Shafie, A. Rainfall forecasting model using machine learning methods: Case study Terengganu, Malaysia. Ain Shams Eng. J. 2021, 12, 1651–1663. [Google Scholar] [CrossRef]
- Praveen, B.; Talukdar, S.; Shahfahad, M.S.; Mondal, J.; Sharma, P.; Islam, A.R.; Rahman, A. Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Sci. Rep. 2020, 10, 10342. [Google Scholar] [CrossRef]
- Pfeifer, P.E.; Deutrch, S.J. A three-stage iterative procedure for space-time modeling phillip. Technometrics 1980, 22, 35–47. [Google Scholar] [CrossRef]
- Pfeifer, P.E.; Deutsch, S.J. Seasonal space-time ARIMA modeling. Geogr. Anal. 1981, 13, 117–133. [Google Scholar] [CrossRef]
- Pfeifer, P.E.; Deutrch, S.J. Identification and interpretation of first order space-time ARMA models. Technometrics 1980, 22, 397–408. [Google Scholar] [CrossRef]
- Pfeifer, P.E.; Bodily, S.E. A test of space-time arma modelling and forecasting of hotel data. J. Forecast. 1990, 3, 255–272. [Google Scholar] [CrossRef]
- Subba, R.T.; Costa, A.A.M. Spatio-temporal modelling of temperature time series: A comparative study. In Time Series Analysis and Applications to Geophysical Systems: Part I; Springer New York: New York, NY, USA, 2004; pp. 123–150. [Google Scholar]
- Zhou, M.; Buongiorno, J. Space-time modeling of timber prices. J. Agric. Resour. Econ. 2006, 1, 40–56. [Google Scholar]
- Saha, A.; Singh, K.N.; Ray, M.; Rathod, S. A hybrid spatio-temporal modelling: An application to space-time rainfall forecasting. Theor. Appl. Climatol. 2020, 142, 1271–1282. [Google Scholar] [CrossRef]
- Kumar, R.R.; Sarkar, K.A.; Dhakre, D.S.; Bhattacharya, D. A Hybrid Space–Time Modelling Approach for Forecasting Monthly Temperature. Environ. Model. Assess. 2023, 28, 317–330. [Google Scholar] [CrossRef]
- Rathod, S.; Gurung, B.; Singh, K.N.; Ray, M. An improved space-time autoregressive moving average (STARMA) model for modelling and forecasting of spatio-temporal time-series data. J. Indian Soc. Agric. Stat. 2018, 72, 239–253. [Google Scholar]
- Piantari, E.; Rabbani, I.M.; Megasari, R. Seasonal space-time based model for infectious disease prediction. In Proceedings of the AIP Conference Proceedings, Copenhagen, Denmark, 30 September 2023; AIP Publishing: Long Island, NY, USA, 2023. [Google Scholar]
- Pai, D.S.; Rajeevan, M.; Sreejith, O.P.; Mukhopadhyay, B.; Satbha, N.S. Development of a new high spatial resolution (0.25 × 0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 2014, 65, 1–8. [Google Scholar] [CrossRef]
- Shankar, S.V.; Chandel, A.; Gupta, R.K.; Sharma, S.; Chand, H.; Kumar, R.; Mishra, N.; Ananthakrishnan, S.; Aravinthkumar, A.; Kumaraperumal, R.; et al. Exploring the dynamics of arrivals and prices volatility in onion (Allium cepa) using advanced time series techniques. Front. Sustain. Food Syst. 2023, 31, 1208898. [Google Scholar]
- Alam, N.M.; Sarkar, S.K.; Jana, C.; Raizada, A.; Mandal, D.; Kaushal, R.; Sharma, N.K.; Mishra, P.K.; Sharma, G.C. Forecasting meteorological drought for a typical drought affected area in India using stochastic models. J. Indian Soc. Agric. Stat. 2016, 70, 71–81. [Google Scholar]
- Shankar, S.V.; Ajaykumar, R.; Ananthakrishnan, S.; Aravinthkumar, A.; Harishankar, K.; Sakthiselvi, T.; Navinkumar, C. Modeling and forecasting of milk production in the western zone of Tamil Nadu. Asian J. Dairy Food Res. 2023, 42, 427–432. [Google Scholar] [CrossRef]
- Alam, N.M.; Mishra, P.K.; Jana, C.; Adhikary, P.P. Stochastic model for drought forecasting for Bundelkhand region in Central India. Indian J. Agric. Sci. 2014, 82, 79–84. [Google Scholar] [CrossRef]
Locations | Model | Locations | Model | Locations | Model | Locations | Model | Locations | Model |
---|---|---|---|---|---|---|---|---|---|
WB1 | ARIMA(0,1,1) | WB26 | ARIMA(0,1,2) | WB51 | ARIMA(0,1,1) | WB76 | ARIMA(1,2,0) | WB101 | ARIMA(1,1,0) |
WB2 | ARIMA(1,1,0) | WB27 | ARIMA(0,1,2) | WB52 | ARIMA(0,1,1) | WB77 | ARIMA(1,3,2) | WB102 | ARIMA(0,1,1) |
WB3 | ARIMA(1,1,1) | WB28 | ARIMA(0,1,2) | WB53 | ARIMA(0,1,1) | WB78 | ARIMA(1,2,0) | WB103 | ARIMA(2,1,0) |
WB4 | ARIMA(3,2,1) | WB29 | ARIMA(1,1,2) | WB54 | ARIMA(1,1,0) | WB79 | ARIMA(1,0,0) | WB104 | ARIMA(1,1,0) |
WB5 | ARIMA(0,1,1) | WB30 | ARIMA(1,1,0) | WB55 | ARIMA(1,3,2) | WB80 | ARIMA(0,1,1) | WB105 | ARIMA(0,1,1) |
WB6 | ARIMA(0,1,1) | WB31 | ARIMA(2,1,0) | WB56 | ARIMA(2,2,2) | WB81 | ARIMA(2,2,0) | WB106 | ARIMA(1,3,2) |
WB7 | ARIMA(2,1,0) | WB32 | ARIMA(0,1,1) | WB57 | ARIMA(2,2,0) | WB82 | ARIMA(1,2,0) | WB107 | ARIMA(4,2,0) |
WB8 | ARIMA(1,1,1) | WB33 | ARIMA(0,1,1) | WB58 | ARIMA(2,2,2) | WB83 | ARIMA(1,1,0) | WB108 | ARIMA(2,2,0) |
WB9 | ARIMA(1,1,1) | WB34 | ARIMA(0,1,1) | WB59 | ARIMA(2,2,0) | WB84 | ARIMA(0,1,1) | WB109 | ARIMA(0,1,1) |
WB10 | ARIMA(3,2,0) | WB35 | ARIMA(3,2,1) | WB60 | ARIMA(2,2,0) | WB85 | ARIMA(0,1,1) | WB110 | ARIMA(0,1,1) |
WB11 | ARIMA(0,1,2) | WB36 | ARIMA(3,2,2) | WB61 | ARIMA(0,1,2) | WB86 | ARIMA(0,1,1) | WB111 | ARIMA(1,1,0) |
WB12 | ARIMA(1,1,0) | WB37 | ARIMA(0,1,1) | WB62 | ARIMA(0,1,2) | WB87 | ARIMA(2,2,0) | WB112 | ARIMA(2,2,0) |
WB13 | ARIMA(1,1,0) | WB38 | ARIMA(0,1,1) | WB63 | ARIMA(1,1,0) | WB88 | ARIMA(2,2,0) | WB113 | ARIMA(1,3,2) |
WB14 | ARIMA(1,1,1) | WB39 | ARIMA(1,1,0) | WB64 | ARIMA(1,3,2) | WB89 | ARIMA(2,2,2) | WB114 | ARIMA(1,3,2) |
WB15 | ARIMA(2,1,0) | WB40 | ARIMA(1,1,1) | WB65 | ARIMA(0,1,1) | WB90 | ARIMA(3,2,0) | WB115 | ARIMA(1,3,2) |
WB16 | ARIMA(1,1,1) | WB41 | ARIMA(1,1,0) | WB66 | ARIMA(2,2,0) | WB91 | ARIMA(1,2,0) | WB116 | ARIMA(0,1,1) |
WB17 | ARIMA(3,2,0) | WB42 | ARIMA(1,1,0) | WB67 | ARIMA(2,2,0) | WB92 | ARIMA(1,3,2) | WB117 | ARIMA(2,2,0) |
WB18 | ARIMA(3,2,1) | WB43 | ARIMA(1,2,0) | WB68 | ARIMA(2,2,0) | WB93 | ARIMA(1,2,0) | WB118 | ARIMA(0,1,1) |
WB19 | ARIMA(3,2,1) | WB44 | ARIMA(0,1,1) | WB69 | ARIMA(2,2,0) | WB94 | ARIMA(1,2,0) | WB119 | ARIMA(2,3,0) |
WB20 | ARIMA(3,2,1) | WB45 | ARIMA(0,1,1) | WB70 | ARIMA(4,2,0) | WB95 | ARIMA(1,2,0) | ||
WB21 | ARIMA(3,1,0) | WB46 | ARIMA(2,2,0) | WB71 | ARIMA(2,2,2) | WB96 | ARIMA(1,2,0) | ||
WB22 | ARIMA(1,1,0) | WB47 | ARIMA(2,2,0) | WB72 | ARIMA(1,1,0) | WB97 | ARIMA(1,2,0) | ||
WB23 | ARIMA(1,1,0) | WB48 | ARIMA(2,2,0) | WB73 | ARIMA(1,0,0) | WB98 | ARIMA(2,2,0) | ||
WB24 | ARIMA(1,1,0) | WB49 | ARIMA(2,2,0) | WB74 | ARIMA(3,2,0) | WB99 | ARIMA(1,2,0) | ||
WB25 | ARIMA(0,1,1) | WB50 | ARIMA(0,1,1) | WB75 | ARIMA(2,2,0) | WB100 | ARIMA(0,1,1) |
Spatial Lag | Slag 0 | Slag 1 | ||
---|---|---|---|---|
Model | AR | MA | AR | MA |
φ10 | θ10 | φ11 | θ11 | |
Estimate | 0.87 | −0.48 | 0.13 | −0.23 |
Standard error | 0.04 | 0.06 | 0.05 | 0.06 |
t-value | 19.47 | −8.33 | 2.83 | −3.71 |
p-value | <0.01 | <0.01 | <0.01 | <0.01 |
Multivariate Box–Pierce Non-Correlation Test | 69,668.64(<0.01) |
Model | ARIMA | STARMA | ||||
---|---|---|---|---|---|---|
Locations | RMSE | MAPE | MAE | RMSE | MAPE | MAE |
WB1 | 110.73 | 5.24 | 85.21 | 0.14 | 0.01 | 0.12 |
WB2 | 452.04 | 25.92 | 446.37 | 0.13 | 0.01 | 0.10 |
WB3 | 156.62 | 8.56 | 147.48 | 0.20 | 0.01 | 0.17 |
WB4 | 245.18 | 11.71 | 212.98 | 0.26 | 0.01 | 0.25 |
WB5 | 182.00 | 11.42 | 171.00 | 0.18 | 0.01 | 0.15 |
WB6 | 89.08 | 3.97 | 69.34 | 0.11 | 0.00 | 0.09 |
WB7 | 201.98 | 9.38 | 169.36 | 0.24 | 0.01 | 0.16 |
WB8 | 204.10 | 10.68 | 147.50 | 0.24 | 0.01 | 0.17 |
WB9 | 273.24 | 12.83 | 242.49 | 0.30 | 0.01 | 0.25 |
WB10 | 603.58 | 31.72 | 524.65 | 0.33 | 0.02 | 0.28 |
WB11 | 342.30 | 17.26 | 303.93 | 0.26 | 0.01 | 0.24 |
WB12 | 262.95 | 12.80 | 218.26 | 0.29 | 0.01 | 0.24 |
WB13 | 233.20 | 13.96 | 216.39 | 0.28 | 0.02 | 0.25 |
WB14 | 257.98 | 14.20 | 186.96 | 0.29 | 0.02 | 0.26 |
WB15 | 200.33 | 10.52 | 151.21 | 0.21 | 0.01 | 0.19 |
WB16 | 121.49 | 5.88 | 94.70 | 0.22 | 0.01 | 0.18 |
WB17 | 592.71 | 27.07 | 484.05 | 0.34 | 0.02 | 0.31 |
WB18 | 431.62 | 21.05 | 402.87 | 0.33 | 0.02 | 0.31 |
WB19 | 463.20 | 24.51 | 421.66 | 0.29 | 0.02 | 0.27 |
WB20 | 392.58 | 17.62 | 342.82 | 0.28 | 0.28 | 0.26 |
WB21 | 166.69 | 9.69 | 143.33 | 0.23 | 0.01 | 0.21 |
WB22 | 224.03 | 10.06 | 170.91 | 0.25 | 0.01 | 0.20 |
WB23 | 205.84 | 11.09 | 133.20 | 0.26 | 0.02 | 0.24 |
WB24 | 329.54 | 21.44 | 254.30 | 0.33 | 0.02 | 0.28 |
WB25 | 230.52 | 11.81 | 211.36 | 0.27 | 0.01 | 0.25 |
WB26 | 607.10 | 28.76 | 483.53 | 0.66 | 0.04 | 0.58 |
WB27 | 419.00 | 21.52 | 358.86 | 0.29 | 0.02 | 0.26 |
WB28 | 445.18 | 22.80 | 382.42 | 0.29 | 0.02 | 0.27 |
WB29 | 274.34 | 16.77 | 205.86 | 0.19 | 0.01 | 0.15 |
WB30 | 260.13 | 14.53 | 186.70 | 0.15 | 0.01 | 0.11 |
WB31 | 148.10 | 9.66 | 142.89 | 0.15 | 0.01 | 0.13 |
WB32 | 202.41 | 11.09 | 172.93 | 0.26 | 0.01 | 0.23 |
WB33 | 199.19 | 12.74 | 167.20 | 0.26 | 0.02 | 0.21 |
WB34 | 127.60 | 8.10 | 117.35 | 0.18 | 0.01 | 0.16 |
WB35 | 446.59 | 25.55 | 417.08 | 0.21 | 0.01 | 0.17 |
WB36 | 639.31 | 33.70 | 591.39 | 0.37 | 0.02 | 0.29 |
WB37 | 274.62 | 16.49 | 259.48 | 0.30 | 0.02 | 0.28 |
WB38 | 281.15 | 16.31 | 260.49 | 0.29 | 0.02 | 0.27 |
WB39 | 236.82 | 18.96 | 198.95 | 0.27 | 0.02 | 0.21 |
WB40 | 301.88 | 22.74 | 252.60 | 0.22 | 0.02 | 0.20 |
WB41 | 425.80 | 22.53 | 351.54 | 0.48 | 0.02 | 0.34 |
WB42 | 201.45 | 11.72 | 174.05 | 0.19 | 0.01 | 0.14 |
WB43 | 838.06 | 63.28 | 808.37 | 0.21 | 0.01 | 0.19 |
WB44 | 326.47 | 20.50 | 282.52 | 0.41 | 0.03 | 0.33 |
WB45 | 199.56 | 11.23 | 152.79 | 0.23 | 0.01 | 0.16 |
WB46 | 988.25 | 69.62 | 851.29 | 0.30 | 0.02 | 0.25 |
WB47 | 998.14 | 68.86 | 860.95 | 0.32 | 0.02 | 0.25 |
WB48 | 809.57 | 49.31 | 665.16 | 0.34 | 0.02 | 0.30 |
WB49 | 995.17 | 61.59 | 860.78 | 0.31 | 0.02 | 0.29 |
WB50 | 247.30 | 14.34 | 198.49 | 0.21 | 0.01 | 0.19 |
WB51 | 231.13 | 13.49 | 163.22 | 0.25 | 0.02 | 0.23 |
WB52 | 295.40 | 17.60 | 232.51 | 0.37 | 0.02 | 0.31 |
WB53 | 685.51 | 23.57 | 486.69 | 0.80 | 0.03 | 0.59 |
WB54 | 282.14 | 12.45 | 201.75 | 0.29 | 0.01 | 0.20 |
WB55 | 314.43 | 19.94 | 268.14 | 0.27 | 0.02 | 0.25 |
WB56 | 379.05 | 19.22 | 307.62 | 0.42 | 0.03 | 0.37 |
WB57 | 621.46 | 53.50 | 529.94 | 0.45 | 0.03 | 0.32 |
WB58 | 295.81 | 18.20 | 250.27 | 0.41 | 0.02 | 0.30 |
WB59 | 861.01 | 55.38 | 726.71 | 0.31 | 0.02 | 0.30 |
WB60 | 836.47 | 52.33 | 695.29 | 0.32 | 0.02 | 0.28 |
WB61 | 277.35 | 20.11 | 226.56 | 0.24 | 0.02 | 0.20 |
WB62 | 286.11 | 15.59 | 235.35 | 0.31 | 0.02 | 0.25 |
WB63 | 343.69 | 16.12 | 248.14 | 0.43 | 0.02 | 0.33 |
WB64 | 431.27 | 18.49 | 304.67 | 0.48 | 0.04 | 0.42 |
WB65 | 374.59 | 26.64 | 334.10 | 0.46 | 0.03 | 0.38 |
WB66 | 1120.06 | 116.75 | 986.04 | 0.47 | 0.04 | 0.37 |
WB67 | 1011.03 | 85.23 | 894.89 | 0.35 | 0.02 | 0.28 |
WB68 | 499.40 | 35.72 | 455.68 | 0.26 | 0.01 | 0.16 |
WB69 | 789.89 | 53.21 | 639.64 | 0.31 | 0.02 | 0.25 |
WB70 | 258.82 | 15.18 | 222.45 | 0.25 | 0.02 | 0.23 |
WB71 | 334.03 | 15.48 | 245.82 | 0.23 | 0.02 | 0.27 |
WB72 | 434.99 | 37.31 | 390.53 | 0.46 | 0.03 | 0.36 |
WB73 | 445.33 | 42.24 | 395.77 | 0.48 | 0.04 | 0.39 |
WB74 | 890.25 | 93.81 | 828.40 | 0.49 | 0.04 | 0.37 |
WB75 | 982.28 | 82.60 | 867.87 | 0.35 | 0.02 | 0.26 |
WB76 | 1192.55 | 94.77 | 1045.35 | 0.32 | 0.02 | 0.22 |
WB77 | 374.38 | 23.03 | 338.14 | 0.28 | 0.02 | 0.23 |
WB78 | 412.41 | 30.12 | 364.46 | 0.31 | 0.02 | 0.23 |
WB79 | 489.57 | 48.92 | 469.72 | 0.49 | 0.04 | 0.43 |
WB80 | 330.71 | 22.40 | 240.09 | 0.41 | 0.03 | 0.36 |
WB81 | 1206.94 | 114.07 | 1043.41 | 0.40 | 0.03 | 0.33 |
WB82 | 1358.38 | 120.81 | 1198.15 | 0.35 | 0.02 | 0.28 |
WB83 | 273.13 | 18.18 | 209.61 | 0.36 | 0.02 | 0.27 |
WB84 | 320.81 | 20.10 | 257.39 | 0.38 | 0.02 | 0.27 |
WB85 | 312.06 | 23.19 | 256.50 | 0.39 | 0.03 | 0.32 |
WB86 | 326.07 | 22.03 | 244.67 | 0.40 | 0.03 | 0.32 |
WB87 | 1135.30 | 108.46 | 984.01 | 0.40 | 0.03 | 0.32 |
WB88 | 640.17 | 58.30 | 559.74 | 0.39 | 0.03 | 0.31 |
WB89 | 226.79 | 17.38 | 197.19 | 0.24 | 0.02 | 0.20 |
WB90 | 455.38 | 33.49 | 393.61 | 0.18 | 0.01 | 0.16 |
WB91 | 1425.33 | 162.05 | 1323.24 | 0.33 | 0.03 | 0.26 |
WB92 | 211.71 | 14.69 | 155.16 | 0.23 | 0.02 | 0.18 |
WB93 | 1477.81 | 170.73 | 1366.80 | 0.36 | 0.04 | 0.30 |
WB94 | 1591.61 | 232.69 | 1501.94 | 0.45 | 0.06 | 0.38 |
WB95 | 746.77 | 84.91 | 665.01 | 0.40 | 0.04 | 0.35 |
WB96 | 792.67 | 79.47 | 694.53 | 0.39 | 0.04 | 0.33 |
WB97 | 402.56 | 40.17 | 348.08 | 0.45 | 0.04 | 0.37 |
WB98 | 395.73 | 18.60 | 310.42 | 0.27 | 0.01 | 0.23 |
WB99 | 1282.43 | 92.15 | 1184.96 | 0.39 | 0.03 | 0.35 |
WB100 | 495.02 | 28.93 | 478.99 | 0.31 | 0.02 | 0.27 |
WB101 | 132.29 | 3.37 | 99.33 | 0.18 | 0.00 | 0.13 |
WB102 | 196.47 | 5.25 | 149.01 | 0.30 | 0.01 | 0.22 |
WB103 | 409.13 | 9.19 | 274.92 | 0.48 | 0.01 | 0.40 |
WB104 | 436.67 | 10.94 | 385.79 | 0.50 | 0.01 | 0.38 |
WB105 | 314.99 | 9.11 | 264.53 | 0.28 | 0.01 | 0.27 |
WB106 | 1641.20 | 52.22 | 1578.99 | 0.47 | 0.01 | 0.38 |
WB107 | 516.44 | 13.49 | 449.97 | 0.18 | 0.00 | 0.16 |
WB108 | 1104.70 | 23.48 | 981.12 | 0.66 | 0.01 | 0.58 |
WB109 | 412.80 | 8.69 | 354.59 | 0.39 | 0.01 | 0.33 |
WB110 | 463.29 | 10.46 | 413.25 | 0.53 | 0.01 | 0.52 |
WB111 | 493.46 | 8.04 | 324.20 | 0.46 | 0.01 | 0.35 |
WB112 | 1491.95 | 39.28 | 1445.75 | 0.56 | 0.01 | 0.52 |
WB113 | 487.46 | 12.53 | 443.59 | 0.39 | 0.01 | 0.33 |
WB114 | 346.72 | 8.46 | 323.85 | 0.25 | 0.01 | 0.22 |
WB115 | 1067.61 | 26.13 | 1045.75 | 0.33 | 0.01 | 0.29 |
WB116 | 363.95 | 6.87 | 286.08 | 0.57 | 0.01 | 0.49 |
WB117 | 2285.05 | 60.29 | 2100.02 | 0.73 | 0.02 | 0.64 |
WB118 | 521.00 | 11.49 | 473.18 | 0.66 | 0.01 | 0.59 |
WB119 | 1887.67 | 38.06 | 1385.06 | 0.47 | 0.01 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, N.M.; Mitra, S.; Pandey, S.K.; Jana, C.; Ray, M.; Ghosh, S.; Paul Mazumdar, S.; Shankar, S.V.; Saha, R.; Kar, G. Enhanced Spatio-Temporal Modeling for Rainfall Forecasting: A High-Resolution Grid Analysis. Water 2024, 16, 1891. https://doi.org/10.3390/w16131891
Alam NM, Mitra S, Pandey SK, Jana C, Ray M, Ghosh S, Paul Mazumdar S, Shankar SV, Saha R, Kar G. Enhanced Spatio-Temporal Modeling for Rainfall Forecasting: A High-Resolution Grid Analysis. Water. 2024; 16(13):1891. https://doi.org/10.3390/w16131891
Chicago/Turabian StyleAlam, Nurnabi Meherul, Sabyasachi Mitra, Surendra Kumar Pandey, Chayna Jana, Mrinmoy Ray, Sourav Ghosh, Sonali Paul Mazumdar, S. Vishnu Shankar, Ritesh Saha, and Gouranga Kar. 2024. "Enhanced Spatio-Temporal Modeling for Rainfall Forecasting: A High-Resolution Grid Analysis" Water 16, no. 13: 1891. https://doi.org/10.3390/w16131891
APA StyleAlam, N. M., Mitra, S., Pandey, S. K., Jana, C., Ray, M., Ghosh, S., Paul Mazumdar, S., Shankar, S. V., Saha, R., & Kar, G. (2024). Enhanced Spatio-Temporal Modeling for Rainfall Forecasting: A High-Resolution Grid Analysis. Water, 16(13), 1891. https://doi.org/10.3390/w16131891