Cadmium Removal by Adsorption on Biochars Derived from Wood Industry and Craft Beer Production Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Characterization
2.2. Chemicals and Reagents
2.3. Batch Adsorption Experiments
2.3.1. Adsorption of Cd(II) and Other Heavy Metals
2.3.2. Effect of Initial Cd(II) Concentration in Single- and Multi-Metal Systems
2.3.3. Adsorption Isotherms
2.4. Clean Disposal of Spent Biochars
3. Results and Discussions
3.1. Biochar Characterization
- Sample moisture loss (endothermic peak at 50 °C, SB). This event marks the first stage in losing weight of 7% (up to 115 °C) in SB and BB.
- Decomposition of cellulose and, primarily, lignin into CO2, H2O, and ash (exothermic peak at 430 °C and 488 °C SB and BB, respectively), indicated by a second stage of weight loss of 50% and 79% SB and BB, respectively (up to 470 °C SB and up to 550 °C).
- A small final weight loss of 5% and 3% that might be related to CO2 evolution (carbonate decomposition).
3.2. Batch Adsorption Experiments
3.3. Clean Disposal of Spent Biochars
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saraeian, A.; Hadi, A.; Raji, F.; Ghassemi, A.; Johnson, M. Cadmium Removal from Aqueous Solution by Low-Cost Native and Surface Modified Sorghum × Drummondii (Sudangrass). J. Environ. Chem. Eng. 2018, 6, 3322–3331. [Google Scholar] [CrossRef]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in Soils and Groundwater: A Review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Reynolds, M. Cadmium Exposure in Living Organisms: A Short Review. Sci. Total Environ. 2019, 678, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Othmani, A.; Magdouli, S.; Senthil Kumar, P.; Kapoor, A.; Chellam, P.V.; Gökkuş, Ö. Agricultural Waste Materials for Adsorptive Removal of Phenols, Chromium (VI) and Cadmium (II) from Wastewater: A Review. Environ. Res. 2022, 204, 111916. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Subrahmanyam, G.; Mondal, R.; Cabral-Pinto, M.M.S.; Shabnam, A.A.; Jigyasu, D.K.; Malyan, S.K.; Fagodiya, R.K.; Khan, S.A.; Yu, Z.G. Bio-Remediation Approaches for Alleviation of Cadmium Contamination in Natural Resources. Chemosphere 2021, 268, 128855. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (USEPA). National Primary Drinking Water Regulations; USEPA: Washington, DC, USA, 2019.
- Código Alimentario Argentino (CAA) Capítulo XII: Bebidas Analcohólicas. Bebidas Hídricas, Agua y Agua Gasificada. Agua Potable. Argentinian Law (18284), Regulated by Decreto 2126/1971, Art 982. 2012. Available online: https://alimentosargentinos.magyp.gob.ar/contenido/marco/CAA/capitulospdf/Capitulo_XII.pdf (accessed on 27 June 2024).
- Kwikima, M.M.; Mateso, S.; Chebude, Y. Potentials of Agricultural Wastes as the Ultimate Alternative Adsorbent for Cadmium Removal from Wastewater. A Rev. Sci. Afr. 2021, 13, e00934. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A Review on Heavy Metal Pollution, Toxicity and Remedial Measures: Current Trends and Future Perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Sahu, S.; Pandey, M.; Sharma, S. A Review on Low-Cost Adsorbents for Cadmium Pollutant Removal from Industrial Effluents. Adv. Mater. Lett. 2021, 5, 21051627. [Google Scholar] [CrossRef]
- Pyrzynska, K. Removal of Cadmium from Wastewaters with Low-Cost Adsorbents. J. Environ. Chem. Eng. 2019, 7, 102795. [Google Scholar] [CrossRef]
- Acharya, J.; Kumar, U.; Rafi, P.M. Removal of Heavy Metal Ions from Wastewater by Chemically Modified Agricultural Waste Material as Potential Adsorbent—A Review. Int. J. Curr. Eng. Technol. 2018, 8, 526–530. [Google Scholar] [CrossRef]
- Yousef, R.; Qiblawey, H.; El-Naas, M.H. Adsorption as a Process for Produced Water Treatment: A Review. Processes 2020, 8, 1657. [Google Scholar] [CrossRef]
- Deshmukh, P.D.; Khadse, G.K.; Shinde, V.M.; Labhasetwar, P. Cadmium Removal from Queous Solutions Using Dried Banana Peels as an Adsorbent: Kinetics and Equilibrium Modeling. J. Bioremediat. Biodegrad. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Basu, M.; Guha, A.K.; Ray, L. Adsorption Behavior of Cadmium on Husk of Lentil. Process Saf. Environ. Prot. 2017, 106, 11–22. [Google Scholar] [CrossRef]
- Abatan, O.G.; Alaba, P.A.; Oni, B.A.; Akpojevwe, K.; Efeovbokhan, V.; Abnisa, F. Performance of Eggshells Powder as an Adsorbent for Adsorption of Hexavalent Chromium and Cadmium from Wastewater. SN Appl. Sci. 2020, 2, 1996. [Google Scholar] [CrossRef]
- Santos, V.H.; do Nascimento, G.E.; Sales, D.C.S.; dos Santos, J.H.L.; Rodríguez-Díaz, J.M.; Duarte, M.M.M.B. Preparation of Adsorbents from Agro-Industrial Wastes and Their Application in the Removal of Cd2+ and Pb2+ Ions from a Binary Mixture: Evaluation of Ionic Competition. Chem. Eng. Res. Des. 2022, 184, 152–164. [Google Scholar] [CrossRef]
- Torres, E. Biosorption: A Review of the Latest Advances. Processes 2020, 8, 1584. [Google Scholar] [CrossRef]
- Mallarino-Miranda, L.; Venner-Gonzalez, J.; Tejeda-Benitez, L. Heavy Metal Adsorption Using Biocarbón from Agricultural and Agro-Industrial Waste for Decontamination of Soils and Water Sources: A Review. Chem. Eng. Trans. 2022, 92, 709–714. [Google Scholar] [CrossRef]
- Abdel-Fattah, T.M.; Mahmoud, M.E.; Ahmed, S.B.; Huff, M.D.; Lee, J.W.; Kumar, S. Biochar from Woody Biomass for Removing Metal Contaminants and Carbon Sequestration. J. Ind. Eng. Chem. 2015, 22, 103–109. [Google Scholar] [CrossRef]
- Liu, T.; Lawluvy, Y.; Shi, Y.; Ighalo, J.O.; He, Y.; Zhang, Y.; Yap, P.S. Adsorption of Cadmium and Lead from Aqueous Solution Using Modified Biochar: A Review. J. Environ. Chem. Eng. 2022, 10, 106502. [Google Scholar] [CrossRef]
- López, J.E.; Builes, S.; Heredia Salgado, M.A.; Tarelho, L.A.C.; Arroyave, C.; Aristizábal, A.; Chavez, E. Adsorption of Cadmium Using Biochars Produced from Agro-Residues. J. Phys. Chem. C 2020, 124, 14592–14602. [Google Scholar] [CrossRef]
- Ahmad, M.; Upamali Rajapaksha, A.; Eun Lim, J.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Soo Lee, S.; Sik Ok, Y. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Boada, R.; Cibin, G.; Palet, C. Enhancement of Selective Adsorption of Cr Species via Modification of Pine Biomass. Sci. Total Environ. 2020, 756, 143816. [Google Scholar] [CrossRef] [PubMed]
- Clauser, N.M.; Gutiérrez, M.S.; Felissia, F.E.; Area, M.C.; Vallejos, M.E. Sensitivity Assessment of Value-Added Products and Pellet Production in Alternatives for Softwood Sawdust Valorization. Biomass Convers. Biorefin. 2024, 14, 6659–6669. [Google Scholar] [CrossRef]
- Belmartino, A.; Liseras, N. The Craft Beer Market in Argentina: An Exploratory Study of Local Brewers’ and Consumers’ Perceptions in Mar Del Plata. Pap. Appl. Geogr. 2020, 6, 190–203. [Google Scholar] [CrossRef]
- Hamdaoui, O. Adsorption of Cu(II) from Aqueous Phase by Cedar Bark. J. Dispers. Sci. Technol. 2016, 38, 1087–1091. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistakes and Inconsistencies Regarding Adsorption of Contaminants from Aqueous Solutions: A Critical Review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef] [PubMed]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and Its Removal from Aqueous Solution by Adsorption: A Review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R.; Asthana, A.; Singh, A.K.; Jain, B.; Susan, A.B.H. Adsorption of Heavy Metal Ions by Various Low-Cost Adsorbents: A Review. Int. J. Environ. Anal. Chem. 2020, 102, 342–379. [Google Scholar] [CrossRef]
- Nawaz Bhatti, H.; Zaman, Q.; Kausar, A.; Noreen, S.; Iqbal, M.; Bhatti, H.N.; Zaman, Q.; Kausar, A.; Noreen, S.; Iqbal, M.; et al. Efficient Remediation of Zr(IV) Using Citrus Peel Waste Biomass: Kinetic, Equilibrium and Thermodynamic Studies. Ecol. Eng. 2016, 95, 216–228. [Google Scholar] [CrossRef]
- Simón, D.; Gass, S.; Palet, C.; Cristóbal, A. Disposal of Wooden Wastes Used as Heavy Metal Adsorbents as Components of Buildings Bricks. J. Build. Eng. 2021, 40, 102371. [Google Scholar] [CrossRef]
- Simón, D.; Gass, S.; Quaranta, N.; Cristóbal, A. Production of fired clay bricks as a safe removal method for spent adsorbents from sunflower and corn residues. J. Clean. Prod. 2023, 426, 139138. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). SW-846 Test Method 1311 Toxicity Characteristic Leaching Procedure; USEPA: Washington, DC, USA, 1992.
- Yilmaz, O.; Ünlü, K.; Cokca, E. Solidification/Stabilization of Hazardous Wastes Containing Metals and Organic Contaminants. J. Environ. Eng. 2003, 129, 366–376. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, Y.; Xing, B.; Qin, X.; Zhang, C.; Xia, H. Lead and Cadmium Clean Removal from Wastewater by Sustainable Biochar Derived from Poplar Saw Dust. J. Clean. Prod. 2021, 314, 128074. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.; Chen, L.; Chen, Y.; Lehmann, J.; McBride, M.B.; Hay, A.G. Adsorption of Copper and Zinc by Biochars Produced from Pyrolysis of Hardwood and Corn Straw in Aqueous Solution. Bioresour. Technol. 2011, 102, 8877–8884. [Google Scholar] [CrossRef] [PubMed]
- Elgarahy, A.M.; Elwakeel, K.Z.; Mohammad, S.H.; Elshoubaky, G.A. A Critical Review of Biosorption of Dyes, Heavy Metals and Metalloids from Wastewater as an Efficient and Green Process. Clean. Eng. Technol. 2021, 4, 100209. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Tran, H.N.; Vu, H.A.; Trinh, M.V.; Nguyen, T.V.; Loganathan, P.; Vigneswaran, S.; Nguyen, T.M.; Trinh, V.T.; Vu, D.L.; et al. Laterite as a Low-Cost Adsorbent in a Sustainable Decentralized Filtration System to Remove Arsenic from Groundwater in Vietnam. Sci. Total Environ. 2020, 699, 134267. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.J.; Shen, X.J.; Domene, X.; Alcañiz, J.M.; Liao, X.; Palet, C. Comparison of Biochars Derived from Different Types of Feedstocks and Their Potential for Heavy Metal Removal in Multiple-Metal Solutions. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Inyang, M.I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y.S.; Cao, X. A Review of Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal. Crit. Rev. Environ. Sci. Technol. 2015, 46, 406–433. [Google Scholar] [CrossRef]
- Otieno, A.O.; Home, P.G.; Raude, J.M.; Murunga, S.I.; Ngumba, E.; Ojwang, D.O.; Tuhkanen, T. Pineapple Peel Biochar and Lateritic Soil as Adsorbents for Recovery of Ammonium Nitrogen from Human Urine. J. Environ. Manag. 2021, 293, 112794. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, N.; Caligaris, M.; Pelozo, G.; Unsen, M.; Cristóbal, A. The Characterization of Brewing Waste and Feasibility of Its Use for the Production of Porous Ceramics. WIT Trans. Ecol. Environ. 2016, 202, 299–310. [Google Scholar] [CrossRef]
- Afroze, S.; Sen, T.K. A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents. Water Air Soil Pollut. 2018, 229, 1–50. [Google Scholar] [CrossRef]
- Elhassan, M.; Kooh, M.R.R.; Chou Chau, Y.F.; Abdullah, R. Hydrochar from Shorea spp.: A dual-purpose approach for sustainable biofuel and efficient methylene blue adsorbent. Biomass Conv. Bioref. 2024, 2190–6823. [Google Scholar] [CrossRef]
- Amen, R.; Yaseen, M.; Mukhtar, A.; Klemeš, J.J.; Saqib, S.; Ullah, S.; Al-Sehemi, A.G.; Rafiq, S.; Babar, M.; Fatt, C.L.; et al. Lead and Cadmium Removal from Wastewater Using Eco-Friendly Biochar Adsorbent Derived from Rice Husk, Wheat Straw, and Corncob. Clean. Eng. Technol. 2020, 1, 100006. [Google Scholar] [CrossRef]
- Shan, R.; Shi, Y.; Gu, J.; Wang, Y.; Yuan, H. Single and Competitive Adsorption Affinity of Heavy Metals toward Peanut Shell-Derived Biochar and Its Mechanisms in Aqueous Systems. Chinese J. Chem. Eng. 2020, 28, 1375–1383. [Google Scholar] [CrossRef]
- Wang, S.; Kwak, J.H.; Islam, M.S.; Naeth, M.A.; Gamal El-Din, M.; Chang, S.X. Biochar Surface Complexation and Ni(II), Cu(II), and Cd(II) Adsorption in Aqueous Solutions Depend on Feedstock Type. Sci. Total Environ. 2020, 712, 136538. [Google Scholar] [CrossRef] [PubMed]
- Petrella, A.; Spasiano, D.; Acquafredda, P.; De Vietro, N.; Ranieri, E.; Cosma, P.; Rizzi, V.; Petruzzelli, V.; Petruzzelli, D. Heavy Metals Retention (Pb(II), Cd(II), Ni(II)) from Single and Multimetal Solutions by Natural Biosorbents from the Olive Oil Milling Operations. Process Saf. Environ. Prot. 2018, 114, 79–90. [Google Scholar] [CrossRef]
- Romano, M.S.; Corne, V.; Azario, R.R.; García, M.C. Aprovechamiento de Residuos Lignocelulósicos Regionales Para La Remoción de Cadmio En Solución. Av. En Cienc. E Ing. 2020, 11, 11–22. [Google Scholar]
- Sobhanardakani, S.; Parvizimosaed, H.; Olyaie, E. Heavy Metals Removal from Wastewaters Using Organic Solid Waste-Rice Husk. Environ. Sci. Pollut. Res. 2013, 20, 5265–5271. [Google Scholar] [CrossRef] [PubMed]
- Hamzenejad Taghlidabad, R.; Sepehr, E.; Khodaverdiloo, H.; Samadi, A.; Rasouli-Sadaghiani, M.H. Characterization of Cadmium Adsorption on Two Cost-Effective Biochars for Water Treatment. Arab. J. Geosci. 2020, 13, 448. [Google Scholar] [CrossRef]
- Semerjian, L. Removal of Heavy Metals (Cu, Pb) from Aqueous Solutions Using Pine (Pinus Halepensis) Sawdust: Equilibrium, Kinetic, and Thermodynamic Studies. Environ. Technol. Innov. 2018, 12, 91–103. [Google Scholar] [CrossRef]
- Njoku, V.O. Biosorption Potential of Cocoa Pod Husk for the Removal of Zn(II) from Aqueous Phase. J. Environ. Chem. Eng. 2014, 2, 881–887. [Google Scholar] [CrossRef]
- Liu, X.; Li, G.; Chen, C.; Zhang, X.; Zhou, K.; Long, X. Banana Stem and Leaf Biochar as an Effective Adsorbent for Cadmium and Lead in Aqueous Solution. Sci. Rep. 2022, 12, 1–14. [Google Scholar] [CrossRef]
- Deng, Y.; Huang, S.; Dong, C.; Meng, Z.; Wang, X. Competitive Adsorption Behaviour and Mechanisms of Cadmium, Nickel and Ammonium from Aqueous Solution by Fresh and Ageing Rice Straw Biochars. Bioresour. Technol. 2020, 303, 122853. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Wang, J.J.; Kim, S.H.; Kang, S.W.; Jeong, C.Y.; Jeon, J.R.; Park, K.H.; Cho, J.S.; Delaune, R.D.; Seo, D.C. Cadmium Adsorption Characteristics of Biochars Derived Using Various Pine Tree Residues and Pyrolysis Temperatures. J. Colloid Interface Sci. 2019, 553, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Goh, C.L.; Sethupathi, S.; Bashir, M.J.; Ahmed, W. Adsorptive Behaviour of Palm Oil Mill Sludge Biochar Pyrolyzed at Low Temperature for Copper and Cadmium Removal. J. Environ. Manag. 2019, 237, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Decreto 2020/2007 Reglamentación Ley 2214. Residuos Peligrosos de La Ciudad de Buenos Aires. Concepto. Generación. Regulación. Manipulación. Transporte. Disposición Final. Publication in 13/12/2007. 2007. Available online: https://boletinoficial.buenosaires.gob.ar/normativaba/norma/111841 (accessed on 27 June 2024).
- Kurmus, H.; Mohajerani, A. Leachate Analysis of Heavy Metals in Cigarette Butts and Bricks Incorporated with Cigarette Butts. Materials 2020, 13, 2843. [Google Scholar] [CrossRef] [PubMed]
- Yaras, A.; Sutcu, M.; Erdogmus, E.; Gencel, O. Recycling and Immobilization of Zinc Extraction Residue in Clay-Based Brick Manufacturing. J. Build. Eng. 2021, 41, 102421. [Google Scholar] [CrossRef]
- Simón, D.; Palet, C.; Costas, A.; Cristóbal, A. Agro-Industrial Waste as Potential Heavy Metal Adsorbents and Subsequent Safe Disposal of Spent Adsorbents. Water 2022, 14, 3298. [Google Scholar] [CrossRef]
Biochar | BET Surface (m²/g) | PZC | pH | Conductivity (µs/cm) |
---|---|---|---|---|
SB | 320 | 10.3 | 10.02 ± 0.02 | 1606 ± 20 |
BB | 66 | 7.2 | 6.80 ± 0.01 | 361 ± 11 |
Element | Weight (%) | |||
---|---|---|---|---|
SB before | SB after | BB before | BB after | |
C | 72.3 | 76.1 | 72.3 | 62.6 |
O | 23.1 | 19.8 | 24.4 | 29.5 |
Ca | 2.1 | 1.7 | 0.5 | 0.9 |
K | 1.1 | 0.5 | 0.2 | 0.3 |
Mg | 0.4 | 0.4 | 0.7 | 0.9 |
Si | 0.3 | 0.1 | 0.1 | 3.7 |
Cl | 0.2 | - | - | - |
S | 0.2 | - | 0.1 | - |
Al | 0.1 | - | - | - |
P | 0.1 | - | 1.4 | 1.9 |
Na | - | - | 0.5 | - |
Mn | - | 0.8 | - | - |
Cd | - | 0.7 | - | 0.3 |
Adsorbent | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
R2 | qm (mmol/g) | KL (L/mmol) | R2 | n | KF (mmol1−(1/n) L1/n g−1) | |
SB | 0.914 | 0.23 ± 0.02 | 26 ± 12 | 0.981 | 3.6 ± 0.30 | 0.25 ± 0.010 |
BB | 0.910 | 0.30 ± 0.10 | 0.50 ± 0.30 | 0.956 | 1.9 ± 0.30 | 0.11 ± 0.0060 |
Adsorbent | Test Conditions | qm (mg/g) | Ref. |
---|---|---|---|
Sawdust biochar (SB) | Adsorbent weight: 0.1 g, solution volume: 10 mL, Cd(II) initial concentration: 6–450 mg/L, pH: 4–5, stirring speed: 40 rpm, time: 24 h, temperature: room temperature | 25.8 | This paper |
Barley biochar (BB) | 33.6 | ||
Poplar sawdust biochar | Adsorbent weight: 0.1 g, solution volume: 100 mL, Cd(II) initial concentration: 180–350 mg/L, pH: 5, stirring speed: 300 rpm, time: 24 h, temperature: room temperature | 49.3 | [37] |
Willow wood biochar | Adsorbent weight: 0.05 g, solution volume: 20 mL, Cd(II) initial concentration: 0.05–160 mg/L, time: 24 h, temperature: room temperature | 35.2 | [49] |
Cattle manure biochar | 31.3 | ||
Pine residue biochar | Adsorbent weight: 0.05 g, solution volume: 25 mL, Cd(II) initial concentration: 2.5–360 mg/L, pH: 6, stirring speed: 4000 rpm, time: 24 h, temperature: room temperature | 85.5 | [58] |
Banana biochar | Adsorbent weight: 0.4 g, solution volume: 50 mL, Cd(II) initial concentration: 10–200 mg/L, pH: 5.5, stirring speed: 180 rpm, time: 8 h, temperature: room temperature | 32.0 | [56] |
Grape pruning biochar | Adsorbent weight: 0.05 g, solution volume: 25 mL, Cd(II) initial concentration: 10–200 mg/L, pH: 5, stirring speed: 60 rpm, time: 2 h, temperature: room temperature | 57.0 | [53] |
Apple pruning biochar | 49.0 | ||
Palm oil mill sludge biochar | Adsorbent weight: 0.02 g, solution volume: 100 mL, Cd(II) initial concentration: 10–200 mg/L pH: 10, stirring speed: 150 rpm, time: 240 min, temperature: room temperature | 46.2 | [59] |
Clay Bricks | Retention Efficiency (%) | ||
---|---|---|---|
Ni(II) | Zn(II) | Cd(II) | |
SB multimetal | >97.3 | >99.2 | >98.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simón, D.; Palet, C.; Cristóbal, A. Cadmium Removal by Adsorption on Biochars Derived from Wood Industry and Craft Beer Production Wastes. Water 2024, 16, 1905. https://doi.org/10.3390/w16131905
Simón D, Palet C, Cristóbal A. Cadmium Removal by Adsorption on Biochars Derived from Wood Industry and Craft Beer Production Wastes. Water. 2024; 16(13):1905. https://doi.org/10.3390/w16131905
Chicago/Turabian StyleSimón, Daiana, Cristina Palet, and Adrián Cristóbal. 2024. "Cadmium Removal by Adsorption on Biochars Derived from Wood Industry and Craft Beer Production Wastes" Water 16, no. 13: 1905. https://doi.org/10.3390/w16131905
APA StyleSimón, D., Palet, C., & Cristóbal, A. (2024). Cadmium Removal by Adsorption on Biochars Derived from Wood Industry and Craft Beer Production Wastes. Water, 16(13), 1905. https://doi.org/10.3390/w16131905