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Abstract: Groundwater contamination source recognition is an important prerequisite for subsequent
remediation efforts. To overcome the limitations of single inversion methods, this study proposed
a two-stage inversion framework by integrating two primary inversion approaches—simulation-
optimization and simulation-data assimilation—thereby enhancing inversion accuracy. In the first
stage, the ensemble smoother with multiple data assimilation method (a type of simulation-data
assimilation) conducted a global broad search to provide better initial values and ranges for the
second stage. In the subsequent stage, a collective decision optimization algorithm (a type of
simulation-optimization) was used for a refined deep search, further enhancing the final inversion
accuracy. Additionally, a deep learning method, the multilayer perceptron, was utilized to establish
a surrogate of the simulation model, reducing computational costs. These theories and methods
were applied and validated in a hypothetical scenario for the synchronous identification of the
contamination source and boundary conditions. The results demonstrated that the proposed two-
stage inversion framework significantly improved search accuracy compared to single inversion
methods, with a mean relative error and mean absolute error of just 4.95% and 0.1756, respectively.
Moreover, the multilayer perceptron surrogate model offered greater approximation accuracy to the
simulation model than the traditional shallow learning surrogate model. Specifically, the coefficient
of determination, mean relative error, mean absolute error, and root mean square error were 0.9860,
9.72%, 0.1727, and 0.47, respectively, highlighting its significant advantages. The findings of this study
can provide more reliable technical support for practical case applications and improve subsequent
remediation efficiency.

Keywords: groundwater contamination; source recognition; multilayer perceptron; ensemble smoother
with multiple data assimilation; collective decision optimization algorithm

1. Introduction

Groundwater contamination, unlike surface water contamination, is often difficult to
detect and, if untreated, poses significant risks to the environment and human health [1–3].
Therefore, designing an effective and efficient remediation strategy is critical. Groundwater
contamination source recognition (GCSR) is essential for obtaining reliable contamination
source information, which is a prerequisite for remediation efforts.

GCSR involves the inversion and solution of the groundwater contamination nu-
merical simulation model based on actual water level and contaminant concentration
monitoring data, along with auxiliary information such as site investigations and profes-
sional expertise. This process makes groundwater contamination visible by determining
relevant contamination source information. Currently, the inversion approaches for GCSR
are categorized into three types [4]: simulation-Bayesian inference (S-BI), simulation-data
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assimilation (S-DA), and simulation-optimization (S-O). The S-BI is a probabilistic method
known for its ability to consider the uncertainty of unknown variables. It not only provides
point estimates but also offers comprehensive interval estimates. However, the search
efficiency of S-BI methods may decrease when dealing with high-dimensional complex
problems. S-DA methods, such as the ensemble Kalman filter, ensemble smoother (ES), and
their variants, have recently gained popularity in GCSR due to their fast calculation speed
and efficiency [5]. Among them, the ensemble smoother with multiple data assimilation
(ES-MDA) is an iterative variant of the ES [6,7]. Its core idea is to use the covariance matrix
representing unknown variables and system outputs to perform multiple data assimilation
with monitoring data, thereby realizing iterative updates of unknown variables. Compared
to the ES, the ES-MDA improves the approximation accuracy of nonlinear systems by
performing multiple iterations. Studies have demonstrated the advantages of ES-MDA
in parameter estimation [8–11]. However, this method has certain limitations, as it is
based on linear estimation theory and the Gaussian assumption. Consequently, as system
nonlinearity increases, the refined deep search capability of S-DA may diminish, and the
inversion accuracy still needs to be improved. In contrast, the S-O method has strong
search capabilities and is the most widely used in GCSR [4,12]. This method minimizes
the objective function value by establishing and solving an optimization model until a set
of unknown variable values is found [5]. The core of solving the optimization model lies
in the optimization algorithms, which are divided into heuristic and non-heuristic types.
Heuristic optimization algorithms, in particular, can avoid local optima and improve search
efficiency to some extent, making them widely applied in GCSR [13–18]. These research
results sufficiently demonstrated the potential of heuristic optimization algorithms. The
collective decision optimization algorithm (CDOA) [19] is a novel heuristic optimization
algorithm that simulates human collective decision-making behavior. The global optimal
solution is achieved through information transmission and cooperation among individuals.
The advantages of CDOA have been demonstrated in our previous study. Therefore, this
work adopted the CDOA to solve the optimization model of GCSR. However, the S-O
method has limitations, such as reliance on initial value selection. If the initial value is far
from the reference value, it may decrease search efficiency and fall into the local optima,
thereby affecting final accuracy [12,20].

Each of the aforementioned methods has its own advantages and disadvantages.
Previous studies [21–24] have usually only used one method separately, making it easy to
fall into the limitations of the methods themselves. To better capitalize on the strengths of
each method, this work proposed a two-stage inversion framework that combined the two
primary inversion techniques (S-O and S-DA), thereby enhancing recognition accuracy. In
the first stage, the ES-MDA method took advantage of its fast speed and was employed
for a global broad search to quickly obtain point and ensemble estimation results, thus
providing better initial values and intervals of each unknown variable for the subsequent
stage, effectively avoiding the limitation of the CDOA relying on initial value selection.
Based on these results, in the second stage, the CDOA was applied for GCSR based on the
optimization model, performing a refined deep search to achieve the final inversion results,
to effectively compensate for the shortcomings of the weak refined search ability of the
ES-MDA in dealing with complex nonlinear problems. To the best of our knowledge, this
research is the first to combine ES-MDA and CDOA for GCSR. This approach breaks the
constraints of previous research that relied on a single inversion method, offering a new
perspective on inversion techniques, enriching the theoretical foundation of GCSR, and
providing more reliable technical support for practical applications, thereby significantly
improving subsequent remediation efficiency.

Additionally, whether employing the S-DA or S-O method for GCSR, a substantial
number of iterations of the numerical simulation model are required, incurring high
costs. To mitigate this, many scholars favor using surrogate models with lower costs
to replace numerical simulation models for calculations [25–28]. Surrogate models are
black box models that learn input–output mapping through large datasets. With the
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rise of artificial intelligence, the modeling methods of surrogate models in GCSR have
shifted from traditional shallow learning (SL) methods [18,29–31] to deep learning (DL)
methods [32–35]. DL has demonstrated significant advantages in fitting complex nonlinear
relationships. Among them, the multilayer perceptron (MLP) has gained a strong reputation
in groundwater studies [36,37]. Therefore, this work utilized MLP to establish a surrogate
of the simulation model, and the results were compared with those of the traditional SL
surrogate model.

In summary, the contamination source information and boundary conditions were
treated as unknown variables and were identified using the theories and methods men-
tioned above in this work. Their effectiveness was tested through a hypothetical case.
The main contributions of this work can be summarized as follows: (1) For the first time,
combining the ES-MDA and CDOA for GCSR, overcoming the limitations of using a single
method and further improving the inversion accuracy. (2) Use the deep learning model in
the two-stage inversion framework, effectively improving the approximation accuracy to
the simulation model.

The following sections are structured as follows: Section 2 describes the principles of
the methods used in this work. Section 3 presents the application and validation of these
methods in a hypothetical scenario. Section 4 provides an in-depth discussion on this work.
Finally, Section 5 summarizes the related conclusions.

2. Methodology
2.1. Simulation Model

The establishment of a reliable simulation model is fundamental for GCSR, encom-
passing both groundwater flow and solute transport simulation models. In a 2D steady-
state-flow confined aquifer, the partial differential equations governing these models can
be expressed as follows:

∂

∂(xi)

(
Tij

∂h
∂xj

)
= W i, j = 1, 2; (1)

∂(θC)
∂t

=
∂

∂xi

(
θDij

∂C
∂xj

)
− ∂

∂xj
(θCui) +

CsW
e

i, j = 1, 2. (2)

Equations (1) and (2) are linked by Equation (3):

ui = −
Kij

θ

∂h
∂xj

i, j = 1, 2 (3)

where xi and xj are the coordinates; ui is the actual average flow velocity; t is the time; h
is the hydraulic head; e is the aquifer thickness; θ is the porosity; W is the volumetric flux
per unit area (positive sign for inflow and negative sign for outflow); C is the contaminant
concentration; Cs is the contaminant concentration in the sources or sinks; and Kij, Tij,
and Dij are the hydraulic conductivity tensor, transmissivity tensor, and hydrodynamic
dispersion tensor, respectively.

The above partial differential equations, along with specific initial and boundary
conditions (Equation (22)), constituted the groundwater flow and solute transport simula-
tion models.
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2.2. Low-Cost Surrogate Models
2.2.1. The KELM

The extreme learning machine (ELM), proposed by Huang et al. [38], is a single-
hidden-layer feedforward neural network. When the input sample xj is given, the ELM
output can be calculated as follows:

L

∑
i=1

βi·p(ωixj + bi) = f (xj) = yj j = 1, 2, . . . , m (4)

where L represents the number of hidden layer neurons, βi represents the connection weight
between the i-th hidden layer neuron and the output layer neuron, p(·) is the activation
function, p(ωixj + bi) represents the i-th hidden layer neuron output, ωi represents the
connection weight between the input layer neuron and the i-th hidden layer neuron, xj
represents the j-th input sample, and bi represents the bias of the i-th hidden layer neuron.
Equation (4) can also be expressed as follows:

Y = Qβ; (5)

β = Q+T (6)

where β = [β1, β2, . . . , βL]
T , Y = [y1, y2, . . . , ym]

T , Q is the output matrix of the hidden
layer, Q+ is the Moore–Penrose generalized inverse of Q, and T = [t1, t2, . . . , tm]

T is the
target data when the ELM can perform unbiased learning of training samples.

However, the ELM suffers from stability issues. Consequently, Huang [39] introduced
a kernel function into the training process, replacing traditional random maps with kernel
maps, and, thus, proposed the KELM. Compared to the ELM, the KELM produces more
stable output results, as expressed below:

f (x) = h(x)QT(QQT +
I

Re
)
−1

T =


Ke(x, x1)
Ke(x, x2)

...
Ke(x, xm)


T

(ΩELM +
I

Re
)
−1

T, (7)

ΩELM = QQT , (8)

ΩELM(i,j) = h(xi)·h(xj) = Ke(xi, xj) (9)

where Re is the regularization coefficient, I is the identity matrix, h(x) is the feature mapping
function, ΩELM is the kernel matrix, and Ke(u,v) is the kernel function.

In this study, the Gaussian RBF kernel function was selected, and the number of
hidden layer neurons was set to 200.

2.2.2. The MLP

The MLP is a type of feedforward artificial neural network. Its structure (Figure 1)
consists of an input layer, multiple hidden layers, and an output layer, providing strong
nonlinear fitting capabilities [37]. The training process of the MLP involves two main stages:
forward propagation and backward propagation. During forward propagation, data are
inputted into the input layer and processed sequentially through each hidden layer. The
prediction result is finally obtained at the output layer. The output of the m-th neuron in
the l-th layer yl

m can be calculated as follows: xl
m = bl

m +
k
∑

i=1
ωl−1

im yl−1
i

yl
m = f (xl

m)

(10)
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where xl
m is the corresponding input, bl

m is the bias, ωl−1
im is the connection weight between

the m-th neuron in l-th layer and the i-th neuron in (l − 1)-th layer, and f (·) is the activation
function.

Figure 1. The general structure of the MLP.

Then, in the backward propagation stage, the error between the network’s prediction
result and the target result is calculated. The network parameters (ω and b) are continuously
adjusted until the error is minimized. The update equations for the network parameters
are shown as follows:  ω̃l−1

im = ωl−1
im − η ∂E

∂ωl−1
im

b̃l
m = bl

m − η ∂E
∂bl

m

(11)

where η is the learning rate and E is the loss function.
In this study, the MLP model was structured with one input layer, three hidden layers,

and one output layer. The hidden layers contained 16, 64, and 128 neurons, respectively,
and all used the Logistic Sigmoid activation function. The output layer employed the
Purelin activation function. During the training process, the learning rate was set to 0.0025.

2.3. Inversion Framework
2.3.1. The ES-MDA

To enhance robustness in addressing nonlinear problems, the ES-MDA method was
proposed. Unlike the ES method, the ES-MDA method performs multiple iterations. The
core update equations are as follows:

X̃ j
i = X j

i + CXY
i (CYY

i + αi M)
−1

(Zobs +
√

αiε
j − Y j

i ), (12)

CXY
i =

1
Ne − 1

Ne

∑
j=1

(X j
i − Xi)(Y

j
i − Yi)

T
, (13)

CYY
i =

1
Ne − 1

Ne

∑
j=1

(Y j
i − Yi)(Y

j
i − Yi)

T
(14)
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where X j
i , X̃ j

i , Y j
i are the j-th realization at the i-th iteration in the prior ensemble, posterior

ensemble, and predicted ensemble, respectively; εj is the monitoring error, following the
Gaussian distribution (the mean value is 0 and covariance matrix is M); Zobs is the actual
monitoring data; CXY

i and CYY
i are the cross-covariance matrix and auto-covariance matrix,

respectively; Xi, Yi are the mean values of Xi, Yi, respectively; Ne is the ensemble capacity;
and αi is the inflation factor. More extensive descriptions are provided by Emerick and
Reynolds [40], Evensen [41], and Wang et al. [42].

In this work, when we used the ES-MDA for GCSR, the Ne and the number of iterations
were set to 800 and 8, respectively.

2.3.2. The CDOA

The CDOA [19] is a population-based intelligent heuristic optimization algorithm, with
its specific principles detailed in our previous work. In CDOA, for each individual, multiple
candidate positions are generated through information transmission and cooperation
within the population (Equations (15)–(21)). These candidate positions are then compared
with the corresponding initial positions to select the best positions in the current iteration
and update the corresponding population. This process is repeated until the iteration
termination condition is satisfied, i.e., the maximum number of iterations T is reached.
Finally, the iteration process is terminated, and the optimal solution is output.

1. Experience-based phase{
newXj0 = Xj(i) + a0·step(i)·d0
d0 = φp − Xj(i)

(15)

2. Others-based phase{
newXj1 = newXj0 + a1·step(i)·d1
d1 = r1·d0 + r2·(Xo(i)− Xj(i))

(16)

3. Group-thinking-based phase
newXj2 = newXj1 + a2·step(i)·d2
d2 = r3·d1 + r4·(XG − Xj(i))

XG = 1
N

N
∑

k=1
Xk(i)

(17)

4. Leader-based phase{
newXj3 = newXj2 + a3·step(i)·d3
d3 = r5·d2 + r6·(XL − Xj(i))

(18)

Additionally, a random walk strategy was used to change the position of XL
(Equation (19)), and the new XL can be obtained by Equation (20).

newXq = XL + Wq q = 1, 2, 3, 4, 5 (19)

XL = newXk k = min_ObjFun(newXq) (20)

5. Innovation-based phase{
newXj4 = newXj3
r7 ≤ MF xp

j4 = LBp + r8·(UBp − LBp)
(21)

where Xj(i) = [x1
j (i), x2

j (i), . . . , xd
j (i)] (j = 1, . . . , N) is the position of the j-th individual in

the population N at the i-th iteration; d is the dimension; a0, a1, a2, a3, and Wq are the random
vectors in (0, 1), respectively; step(i) = 2 − 1.7·( i−1

T−1 ) is the step size at the i-th iteration; d0,
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d1, d2, and d3 are the directions of movement, respectively; φp, Xo(i), XG, and XL are the
best position of the individual, the position of a randomly selected superior individual,
geometric center position of all individuals, and the position of the best individual in the
population, respectively; r1, r3, and r5 are the random numbers in (−1, 1), respectively; r2,
r4, and r6 are the random numbers in (0, 2), respectively; r7 and r8 are the random numbers
in (0, 1), respectively; MF is the innovation factor, p is randomly generated in the range
[1, d]; and UB and LB are the upper and lower bounds, respectively. In CDOA, the objective
function was used to evaluate the quality of individuals, and min_ObjFun is an indicator
of the minimum objective function value.

When the CDOA was used for GCSR, an individual represented a set of the unknown
variables in the inverse problem, and the position of the individual can be seen as the
solution of the unknown variable. The process of finding the optimal position was the
process of obtaining the optimal solution, i.e., the process of solving the inverse problem. In
GCSR, the sum of squared errors between the surrogate model output data and the actual
monitoring data was adopted as the objective function (Equation (29)). The smaller the
objective function value, the closer the solution is to the reference value. In this work, the
key parameters N and T were set to 75 and 900, respectively.

2.3.3. Two-Stage Inversion Framework

In this study, the ES-MDA and CDOA were combined to construct a two-stage inver-
sion framework, improving inversion accuracy. The main steps are as follows:

Step 1. The first-stage inversion process: based on the specific principles provided in
Section 2.3.1, the ES-MDA algorithm was employed for a global broad search to quickly
obtain point estimation and ensemble estimation results, which served as the initial values
and intervals for the next stage.

Step 2. The second-stage inversion process: based on the results of the first-stage
inversion process, the S-O method was then applied for GCSR using the optimization
model and CDOA, conducting a refined deep search to obtain the final results.

The main parameter settings of the two-stage inversion framework proposed in this
study are shown in Sections 2.3.1 and 2.3.2, and the flowchart is depicted in Figure 2.

Figure 2. The two-stage inversion framework.
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3. Site Overview
3.1. Case Description

In this study, a hypothetical numerical case was utilized to verify the effectiveness
of the proposed methods and theories. This case was modified from Zhang et al. [43]. As
depicted in Figure 3, the simulation area was a 2D confined aquifer with a size of 20 × 10 [L],
featuring stable water flow from left to right. In the solute transport model, the left and
right boundaries were seen as specified concentration boundaries, with the concentration
at the left boundary being unknown. The expressions of initial and boundary conditions
are shown in Equation (22). Additionally, to better characterize the uncertainty of hydroge-
ological parameters, the hydraulic conductivity field K was considered heterogeneous. The
logarithmic form Y = ln K was used to represent the field K. The covariance function for
any two points (xa, ya) and (xb, yb) is shown in Equation (23). In this work, we adopted the
Karhunen–Loève (KL) expansion [44] to describe the reference Y field (Figure 4), as shown
in Equation (24). 

C(x, y)|t=0 = C0(x, y) (x, y) ∈ Ω
h(x, y)|Γ2,Γ4

= ϕ(x, y, t) (x, y) ∈ Γ2, Γ4, t ≥ 0
∂h
∂
→
n

∣∣∣
Γ1,Γ3

= 0 (x, y) ∈ Γ1, Γ3, t ≥ 0

C(x, y)|Γ2,Γ4
= φ(x, y, t) (x, y) ∈ Γ2, Γ4, t ≥ 0(

C
→
u − DgradC

)
·→n
∣∣∣
Γ1,Γ3

= 0 (x, y) ∈ Γ1, Γ3, t ≥ 0

(22)

where Ω is the simulation area, ϕ(x, y, t), φ(x, y, t) are the known functions,
→
n is the normal

of the outer boundary, and C0(x, y) is the known function of the initial concentration.

CY(xa, ya; xb, yb) = σ2
Y exp

(
−|xa − xb|

lx
− |ya − yb|

ly

)
, (23)

Y(x, y) ≈ Y(x, y) +
NKL

∑
i=1

√
τisi(x, y)ζi (24)

where NKL is the number of KL items, σ2
Y, Y(x, y) are the variance and mean function,

respectively, lx, ly are the correlation lengths in different directions, τi, si(x, y) are the
eigenvalues and eigenfunctions, respectively, and ζi is a random variable that follows
a Gaussian distribution with a mean of 0 and a standard deviation of 1. In this work,
NKL, σ2

Y, Y(x, y) were set to 20, 0.4, and 2, respectively, and lx and ly were set to 10 and 5,
respectively.

In the simulation area, one unknown contamination source and 15 known monitoring
wells were present, with the total simulation duration set to 16 [T]. The contamination
source continuously released a conservative contaminant throughout the simulation period.
The release intensity, which varied over time (t = i: i + 1 [T], for i = 1,. . .,6), was unknown.
There were nine unknown variables in total, including the horizontal coordinate Sx and lon-
gitudinal coordinate Sy of the contamination source location, the release intensity RI1~RI6
for six time periods, and the left boundary concentration (BC). Their reference values are
presented in Table 1. These reference values were input into the simulation model for
forward calculation, yielding monitoring data for water levels and contaminant concentra-
tions at the 15 monitoring wells. These data were considered the actual monitoring data in
the hypothetical case, comprising a total of 90 dimensions: 15 dimensions for water level
monitoring and 75 dimensions for concentration monitoring at five different times (t = 6, 8,
10, 12, and 14 [T]).
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Figure 3. The schematic diagram of the simulation area.

Figure 4. The reference Y field.

Table 1. Reference details of unknown variables.

Unknown
Variable

Reference
Value

Initial
Range

Only the First-Stage
Inversion Process Result

Only the Second-Stage
Inversion Process Result

The Two-Stage Inversion
Framework Result

Sx [L] 3.99 U [3, 5] 3.95 3.95 3.96
Sy [L] 4.71 U [4, 6] 4.72 4.72 4.71

RI1 [MT−1] 4.90 U [0, 8] 4.75 4.72 4.98
RI2 [MT−1] 3.65 U [0, 8] 3.72 3.99 3.46
RI3 [MT−1] 2.36 U [0, 8] 3.16 2.66 2.67
RI4 [MT−1] 6.70 U [0, 8] 5.00 5.46 6.38
RI5 [MT−1] 2.78 U [0, 8] 4.73 4.38 3.15
RI6 [MT−1] 7.76 U [0, 8] 6.41 6.68 7.50
BC [ML−3] 0.84 U [0.6, 1.2] 0.88 0.90 0.86
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3.2. Application of the Low-Cost Surrogate Model

In this section, we adopted the DL and SL methods, respectively, to establish the
low-cost surrogate models of the simulation model. The accuracy of these two surrogate
models was then compared to evaluate their respective advantages and applicability.

Step 1. Based on the initial distribution of each unknown variable (Table 1), sampling
was conducted within the feasible domain of each variable, resulting in 550 sets of input
samples. These samples were inputted into the simulation model for forward calculations,
yielding 550 sets of output samples.

Step 2. The first 500 sets of input–output samples were designated as training samples,
used to train the KELM and MLP surrogate models, respectively. The parameter settings
are shown in Sections 2.2.1 and 2.2.2.

Step 3. The remaining 50 sets of input–output samples were used as testing samples to
evaluate the approximation accuracy of the two surrogate models. Four accuracy indicators
were selected for verification in this work: the coefficient of determination (R2), mean
relative error (MRE), mean absolute error (MAE), and root mean square error (RMSE):

R2 = 1 −

l
∑

k=1

s
∑

i=1
(yk,i − ŷk,i)

2

l
∑

k=1

s
∑

i=1
(yk,i − y)2

, (25)

MRE =

l
∑

k=1

s
∑

i=1

∣∣yk,i − ŷk,i
∣∣/yk,i

l·s , (26)

MAE =

l
∑

k=1

s
∑

i=1

∣∣yk,i − ŷk,i
∣∣

l·s , (27)

RMSE =

√√√√√ l
∑

k=1

s
∑

i=1
(yk,i − ŷk,i)

2

l·s (28)

where l is the output dimension, s is the number of samples, yk,i, ŷk,i are the k-th dimension
in the i-th sample of the simulation model and the low-cost surrogate model, respectively,
and y is the average value of the simulation model output.

The final results of the two surrogate models are presented in Table 2. To illustrate
the effectiveness more intuitively, fitting diagrams of the different surrogate models to the
simulation model and relative error box plots were drawn, as shown in Figures 5 and 6. In
Figure 5, the data points obtained by the MLP surrogate model were closer to the y = x line,
indicating a more concentrated and better fit to the simulation model. In Figure 6, data
points within the 1.5 IQR range were considered normal, with 25% and 75% representing
the lower and upper quartiles, respectively. Compared to the relative error results of the
KELM surrogate model, the upper whisker, upper quartile, median line, and mean line of
the MLP surrogate model were lower, demonstrating that the MLP surrogate model had
higher prediction accuracy. Additionally, as shown in Table 2, each indicator result of the
MLP surrogate model was superior to that of the KELM surrogate model. Thus, in this case,
the DL surrogate model established by the MLP method exhibited advantages and overall
better prediction performance. Therefore, the MLP surrogate model was used for GCSR.
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Table 2. The performance of the different surrogate models.

Indicator KELM Surrogate Model MLP Surrogate Model

R2 0.9577 0.9860
MRE (%) 13.07 9.72

MAE [ML−3] 0.2379 0.1727
RMSE [ML−3] 0.82 0.47

Figure 5. The fitting diagrams of the different surrogate models. (A) The KELM surrogate model and
(B) The MLP surrogate model.

Figure 6. The relative error box plots of the different surrogate models.

3.3. Application of the Two-Stage Inversion Framework

Based on the MLP surrogate model, a two-stage inversion framework was employed.
In the first stage, the fast ES-MDA method was utilized for a global broad search. The point
estimation results from the first-stage inversion process are presented in Table 1, while the
ensemble estimation results are depicted in Figure 7. It is evident that the variable distribu-
tion obtained by the ES-MDA method was generally concentrated and nearly encompassed
the reference values. However, a few variables (e.g., RI4~RI6) exhibited a maximum poste-
rior probability distribution that significantly deviated from the corresponding reference
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values, indicating a need for improved inversion accuracy. Furthermore, based on the
obtained ensemble estimation results, the upper and lower limits of each unknown variable
were redefined to form a new search interval (i.e., optimized interval) for the second-stage
inversion process. As shown in Figure 7, compared to the initial interval in Table 1, the
optimized interval obtained from the first-stage inversion process was narrower, potentially
providing strong support for the subsequent inversion stage.

Figure 7. Cont.
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Figure 7. The ensemble distribution obtained in the first-stage inversion process. (A) Sx, (B) Sy,
(C) RI1, (D) RI2, (E) RI3, (F) RI4, (G) RI5, (H) RI6, and (I) BC. The red line represents the corresponding
reference value of each variable.

In the second-stage inversion process, the S-O method based on the CDOA was
employed for a refined deep search. During this process, the inversion information from
the first stage was fully utilized. Specifically, the values of each unknown variable were
re-constrained within the optimized interval as inequality constraints, while the MLP
surrogate model served as an equality constraint. The sum of squared errors between the
surrogate model output data and the actual monitoring data was used as the objective
function, establishing the optimization model (Equation (29)). Subsequently, we adopted
the CDOA to solve the optimization model. Notably, the initial population was generated
based on the optimized interval obtained from the first-stage inversion process, and the
worst individual in the initial population was replaced by the point estimation results from
the first stage. This provided better initial values and intervals, thereby accelerating the
search efficiency and improving the inversion accuracy.

min
[

5
∑

t=1

15
∑

k=1

(
Ck,t − C̃k,t

)2
+

15
∑

k=1

(
hk − h̃k

)2
]

s.t.



(hk, Ck,t) = g(Sx, Sy, RI1, RI2, RI3, RI4, RI5, RI6, BC)
SxLB ≤ Sx ≤ SxUB

SyLB ≤ Sy ≤ SyUB

RILB
1 ≤ RI1 ≤ RIUB

1
RILB

2 ≤ RI2 ≤ RIUB
2

RILB
3 ≤ RI3 ≤ RIUB

3
RILB

4 ≤ RI4 ≤ RIUB
4

RILB
5 ≤ RI5 ≤ RIUB

5
RILB

6 ≤ RI6 ≤ RIUB
6

BCLB ≤ BC ≤ BCUB

(29)
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where hk represents the water level of the k-th monitoring well obtained by the MLP
surrogate model, Ck,t represents the contaminant concentration of the k-th monitoring well
at the t-th time obtained by the MLP surrogate model, and h̃k, C̃k,t represent the actual
water level and contaminant concentration, respectively.

Finally, the identification results obtained through the two-stage inversion framework
are presented in Table 1. We employed the MRE and MAE to evaluate the performance.
Compared to the first-stage inversion results, the identification results from the two-stage
inversion framework were generally closer to the reference values. Further calculations
indicated that the MRE and MAE of the inversion results from the first stage were 17.53%
and 0.6789, respectively. However, upon completion of the two-stage inversion framework,
the MRE and MAE decreased to 4.95% and 0.1756, respectively. This demonstrated that
the introduction of the second stage for a refined deep search significantly enhanced the
inversion accuracy. Additionally, a comparison was made between the final estimated
results and those obtained using the second-stage inversion process alone. The convergence
curves of the CDOA search process under these two scenarios are plotted in Figure 8, where
a logarithmic scale was used for the vertical axis for better visualization. It is evident that
the initial value of the CDOA based on the two-stage inversion framework was significantly
better than that using CDOA alone, attributable to the first-stage inversion process. More-
over, the CDOA based on the two-stage inversion framework had a significantly smaller
final objective function value compared to CDOA alone. This indicated that the two-stage
inversion framework improved the search efficiency of the optimization algorithm and
enhanced its ability to avoid local optima to some extent. For inversion accuracy, the
degree of approximation of the identification results to the reference values under different
inversion scenarios is plotted in Figure 9. From Table 1 and Figure 9, it can be seen that the
introduction of the first-stage inversion process reduced the MRE from 13.78% to 4.95%,
and the MAE was also reduced from 0.5389 to 0.1756. Compared to using the second-stage
inversion process alone, the preliminary global broad search of the first stage proved to
be beneficial and effective. The first-stage inversion process provided better initial values
and optimized intervals for each unknown variable, thereby enhancing the accuracy of the
subsequent inversion stage.

Figure 8. The convergence curves of the different inversion situations.
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Figure 9. The performance of the different inversion situations. The red dotted line indicates that the
identification value is 100% close to the reference value.

In summary, the two-stage inversion framework proposed in this study significantly
improved inversion accuracy compared to the single-stage inversion process, proving to be
both effective and feasible.

4. Discussion

Several new insights were gained during the research process. First, it was demon-
strated that, compared to the traditional SL surrogate model, the DL surrogate model
significantly enhances the approximation accuracy of the simulation model. The result
was consistent with that of previous research [45,46]. However, deep neural networks
often require the setting of more hyperparameters (such as neurons and network layers),
which greatly influence prediction accuracy. In this study, these hyperparameters were
manually adjusted, a process that is both time-consuming and labor-intensive. Some ex-
isting studies [4,32] have shown that using the hyperparameter optimization strategy can
effectively replace previous manual tuning and improve efficiency. While this was not the
focus of the current study, it represents a valuable research avenue for future exploration.
Furthermore, although the DL method has advantages over the SL method, it entails longer
and more complex training processes. If the model input dimensions are not excessively
high and the mapping relationship between input and output is not overly complex, the SL
surrogate model may suffice. Therefore, an optimal choice between DL and SL surrogate
models should be made based on the specific research needs and actual conditions, to better
balance training time and approximation accuracy.

For the inversion method, we adopted a two-stage inversion framework for GCSR.
The research results indicated that this combination strategy achieved higher inversion
accuracy compared to a single method. Therefore, the combination inversion strategy has
certain development potential. However, it is important to note that combining different
methods may require more time than using a single method. In this study, for example,
under equivalent parameter settings on a 2.60 GHz dual-core E5 CPU and 96 GB RAM
PC platform, the two-stage inversion framework required approximately 8740s, whereas
the CDOA alone required about 8681 s. Although the former takes slightly more time, the
difference is not significant. We believe that sacrificing a small amount of time for improved
inversion accuracy is acceptable. In practical groundwater contamination scenarios, if
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the two-stage inversion framework proposed in this work can enhance accuracy, more
precise contamination source information can be obtained, allowing for swift remediation
and treatment measures. Consequently, the improvement in inversion accuracy plays a
crucial role in subsequent groundwater contamination remediation plans, risk assessment,
and the accurate determination of contamination responsibilities, thereby significantly
enhancing the efficiency of subsequent efforts. This is of great significance for real-world
environmental management and remediation efforts.

Additionally, several limitations and uncertainties are present in this study. First, a
hypothetical case modified from previous research [43] was adopted. The model assumed
the actual monitoring data quality was perfect. However, in real-world scenarios, data
quality may be imperfect and contain some errors. Although our previous study [4]
demonstrated that the ES-MDA in the two-stage inversion framework has strong noise
resistance, it is hypothesized that the two-stage inversion framework may inherit this
advantage and have a certain degree of noise resistance. However, this hypothesis was not
tested in this study, as robustness testing with monitoring data of varying noise levels was
not conducted. The impact of noise on the accuracy of the proposed inversion framework
remains uncertain and should be addressed in future research. Secondly, in our case, the K
field was known, while the contamination source information and boundary conditions
were treated as unknown variables. In practical applications, many variables (such as the K
field) cannot be reliably estimated in advance, potentially requiring more variables to be
considered unknown. Moreover, actual case simulation models are more complex, posing
greater challenges for inversion techniques. Therefore, future work will focus on applying
this framework to high-dimensional and complex practical cases to further test its efficacy
in addressing real-world problems.

5. Conclusions

In this study, a two-stage inversion framework was proposed to synchronously identify
groundwater contamination source information and boundary conditions. The results were
compared with those obtained from single methods. To reduce computational costs, an
MLP surrogate model was constructed to replace the simulation model in completing the
above inversion task. The effectiveness of the MLP surrogate model was further compared
and analyzed against that of the KELM surrogate model. These theories and methods were
tested using a hypothetical site, leading to the following conclusions:

(1) In the two-stage inversion framework, the global broad search in the first-stage
inversion process effectively provided better initial values and optimized intervals for
the subsequent stage, accelerating search efficiency and improving identification accuracy.
The introduction of the second-stage inversion process for a refined deep search further
enhanced the inversion effect. Therefore, compared to using the first and second stages
separately, the proposed two-stage inversion framework significantly improved inversion
accuracy and effectiveness.

(2) Compared to the KELM surrogate model, the R2, MRE, MAE, and RMSE met-
rics of the MLP surrogate model were significantly better, demonstrating the improved
approximation accuracy of the simulation model and proving its advantages.
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