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Abstract: In the face of climate change and human activities, Central Asia’s (CA) terminal lake basins
(TLBs) are shrinking, leading to deteriorating natural environments and serious soil wind erosion
(SWE), which threatens regional socio-economic development, human health, and safety. Limited
research on SWE and population exposure risk (PER) in these areas prompted this study, which
applied the RWEQ and a PER model to assess the spatiotemporal changes in SWE and PER in TLBs
in CA, including the Ili River Basin (IRB), Tarim River Basin (TRB), Syr Darya River Basin (SRB), and
Amu Darya River Basin (ARB), from 2000 to 2020. We analyzed the driving factors of SWE and used
the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to simulate dust event
trajectories. The findings from 2000 to 2020 show a spatial reduction trend in SWE and PER, with
primary SWE areas in the Taklamakan Desert, Aral Sea Basin, and Lake Balkhash. Significant PER
was observed along the Tarim River, near Lake Balkhash, and in the middle and lower reaches of the
ARB and SRB. Over the past 21 years, temporal trends in SWE have occurred across basins, decreasing
in the IRB, but increasing in the TRB, SRB, and ARB. Dust movement trajectories indicate that dust
from the lower reaches of the SRB and ARB could affect Europe, while dust from the TRB could
impact northern China and Japan. Correlations between SWE, NDVI, temperature, and precipitation
revealed a negative correlation between precipitation and NDVI, suggesting an inhibitory impact of
precipitation and vegetation cover on SWE. SWE also varied significantly under different LUCCs,
with increases in cropland, forestland, and desert land, and decreases in grassland and wetland.
These insights are vital for understanding SWE and PER in TLBs and offer theoretical support for
emergency mitigation in arid regions.

Keywords: soil wind erosion; risk assessment; population exposure risk; dust movement; terminal
lake basins

1. Introduction

Soil wind erosion (SWE) is the process of detachment and displacement of surface
soil particles by wind [1]. SWE is a worldwide environmental problem that affects land
degradation and air quality [2], which reduces agricultural productivity, jeopardizes human
health and, more seriously, leads to land desertification [3]. The SWE migration process
leads to the loss of the most fertile topsoil layer [4], thus increasing land degradation [5,6].
Land degradation due to SWE accounts for about 28% of global land degradation [7]. A
study indicated that land degradation, including SWE, resulted in a 4.8-fold reduction in
net profits during the agricultural growing season in Central Asia (CA) [8]. In addition,
SWE produces dusty weather [9], which leads to human respiratory and infectious dis-
eases [10]. Specifically, PM2.5 particles produced by sand and dust can penetrate human
bronchial tubes and cause lung cancer [11]. Therefore, the implementation of effective
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SWE prevention is crucial for ecological environment improvement, sustainable regional
economic development, and human health and safety.

SWE has been assessed using various methods, such as direct field measurements of
SWE [12], wind tunnel experiments [13], and isotope tracing techniques [14]. However,
the applications of SWE monitoring equipment or wind tunnel simulation experiments
have certain limitations, which can be challenging to quantitatively evaluate SWE at larger
scales [15]. The aforementioned methods are unsuitable for conducting extensive quantita-
tive spatial analyses. Owing to the continuous development and advancement of remote
sensing technology, researchers have designed various SWE models, including the Wind
Erosion Equation (WEQ) [16], the Revised Wind Erosion Equation (RWEQ) [17], the Wind
Erosion Prediction System (WEPS) [18], the Texas Erosion Analysis Model (TEAM) [19],
and the Wind Erosion Stochastic Simulator (WESS) [20]. The RWEQ model is one of the
most commonly used methods among the abovementioned models. It is characterized by
high computational efficiency, a large spatial and temporal span, easy access to data, simple
model operation, etc., and has been widely used in the study of SWE in arid zones [3,21].
Additionally, a meta-analysis on global soil erosion conducted by Ma et al. [22] revealed that
the RWEQ exhibited higher evaluation accuracy than other common wind erosion models.

CA, at the heart of the Eurasian continent, is one of the global arid regions [23].
Terminal lake basins (TLBs), also known as endorheic lakes, represent a significant category
of lakes in this region [24,25]. These lakes constitute a vital component of the natural system
in arid regions and are highly sensitive to both natural changes and human activities [26,27].
However, owing to the rapid expansion of oasis agriculture and the effects of climate
change, TLBs in this area are experiencing severe shrinkage, contributing to a continuous
deterioration of the surrounding ecological environment [26,28,29]. It is noteworthy that
the shrinkage of TLBs can lead to large expanses of the lakebed drying up and the surface
being exposed, making them susceptible to SWE and resulting in the formation of dust
storms [30]. The Aral Sea in CA is a prime example. The gradual shrinkage of the Aral
Sea has led to the formation of a new desert on the exposed lake bed, the Aral Sea Desert,
which is subjected to frequent SWE, and has become a major source area of sand and dust
in CA [31,32]. Reports have indicated that this disaster in the Aral Sea region has severely
impacted human health in the area [33]. The occurrence of dust storms not only presents
significant health risks to local residents and areas through which they pass, but also poses
substantial environmental hazards downwind [34]. Population exposure risk (PER) refers
to the potential adverse impacts or harm that individuals or groups may experience in their
environments [35]. The PER model is used to assess the degree of risk to which a population
is exposed to adverse environmental conditions [36], and the model is widely applicable
and easy to operate, making it extensively used for evaluating various types of pollution
and natural disasters [37,38]. The TLBs in CA are facing severe SWE problems. Formulating
reasonable sand control measures is of significant importance for improving the ecological
environment, agricultural productivity, and human health in this area. However, previous
studies have mainly focused on the characterization of temporal and spatial changes in
SWE and the analysis of drivers. The impact of human activities on SWE has been mainly
explored, while the impact of SWE on humans has been neglected.

In view of this, a quantitative assessment of SWE and PER was conducted using the
RWEQ model and a PER model in the TLBs in CA. Additionally, the Hybrid Single-Particle
Lagrangian Integrated Trajectory (HYSPLIT) model was utilized in this study to simulate
the trajectories of dust movement within the region. The objectives of this study were:
(1) to quantitatively analyze the spatiotemporal changes in SWE in the TLBs in CA, (2) to
examine the changes in the PER’s spatial pattern in regard to SWE in these basins, and
(3) to investigate the primary factors driving SWE in these regions. The results from this
study can address the lack of research related to the PER of SWE, and provide theoretical
support for reducing the risk of a sudden SWE disaster in the arid lands of CA.
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2. Materials and Methods
2.1. Study Area

CA is part of the arid regions in the world, covering 50 E to 95 E longitude and
35◦ N to 55◦ N latitude [39]. The topography of CA is characterized by mountains and
basins, with a gradient of distribution that escalates in the east and tapers off in the west
(Figure 1). CA is classified as a temperate continental climate [40]. There is considerable
variation in the annual average precipitation levels across diverse regions, with typical
annual rainfall ranging between 200 and 300 mm [41]. In desert regions, the annual
precipitation is typically lower than 100 mm [42], whereas in mountainous areas, it can
reach 1000 mm [43]. The vegetation in CA is predominantly composed of forestlands,
grasslands, and croplands. Grasslands are the most extensive and cover a relatively large
area, accounting for approximately 50% of CA’s overall area [44].
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Figure 1. Overview map of the TLBs in CA. IRB represents the Ili River Basin, TRB represents the
Tarim River Basin, SRB represents the Syr Darya River Basin, and ARB represents the Amu Darya
River Basin.

The TLBs in CA comprise four major river basins: the IRB, TRB, SRB, and ARB. Notably,
Lake Balkhash and Lake Taitima are the TLB for the Ili and Tarim rivers, respectively [45,46],
whereas the Aral Sea serves as the common TLB for both the Syr Darya and Amu Darya
rivers [47]. These basins are mainly developed for irrigated agriculture [48–51], which is an
important economic pillar of the CA region [52]. Climate change and increased water use
for agricultural irrigation in CA have led to a steady reduction in the size of the terminal
lakes in these basins [53], and exposed lake beds are vulnerable to the threat of SWE [54].

2.2. Data Resources
2.2.1. Meteorological Data

In this study, the meteorological data used to quantify the wind erosion modulus
(WEM) based on the RWEQ model include temperature, precipitation, wind speed, and
snowfall flux data from the ERA5-Land reanalysis dataset provided by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF), which have a finer spatial–temporal
resolution and, therefore, perform well in CA and have also been widely used in global
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climate change studies [55,56]. In addition, Global Data Assimilation System (GDAS) mete-
orological data were utilized, which were used to simulate the dust movement trajectories
of typical dust events in the study area based on the HYSPLIT model. These data were
provided by the Air Resources Laboratory (ARL) of the National Oceanic and Atmospheric
Administration (NOAA) of the United States. The specific data formats were used to drive
the dust module of the HYSPLIT model [57,58].

2.2.2. Population Grid Data

The population grid data used in this study to calculate the PER, namely LandScan
data, were sourced from the U.S. Department of Energy’s Oak Ridge National Labora-
tory (ORNL). These data are highly accurate and emphasize dynamic changes in popu-
lation distribution [59,60]. Additionally, these data are widely used in studies related to
PER [37,61,62].

2.2.3. Vegetation Data

The Normalized Difference Vegetation Index (NDVI) data utilized in this study were
derived from the MOD13A2 V6 product, which can mitigate the impact of clouds and
aerosols [63]. This dataset has been extensively utilized in studies investigating vegetation
dynamics in arid regions [64,65].

2.2.4. Soil Data

The soil data provided for the RWEQ model included soil content types such as clay,
silt, sand, gravel, organic matter, and calcium carbonate, and came from the Harmonized
World Soil Database (HWSD). This database is jointly provided by the Food and Agriculture
Organization (FAO) of the United Nations and the International Institute for Applied
Systems Analysis (IIASA) in Vienna.

2.2.5. Land-Use and Land-Cover (LULC) Data

The LULC data employed in this study were obtained from the European Space
Agency (ESA). This dataset consists of 6 primary classifications and 22 secondary classi-
fications. Using this classification system, the LULC data within the study region were
divided into categories such as forestland, wetland, desert land, construction land, cropland,
grassland, and others.

2.2.6. Other Data

The Digital Elevation Model (DEM) data used in this study were obtained from
the Central Asia Ecology and Environment Data Center. These data were used for the
terrain visualization of the study area and for the calculation of the soil roughness factor
in the RWEQ model. The PM2.5 data were integrated from the AOD retrieval data from
MODIS, the Multi-angle Imaging SpectroRadiometer (MISR), and the Sea-viewing Wide
Field-of-view Sensor (SeaWiFS).

Finally, all of the above data include the TLBs in CA and are counted as annual data
using the maximum synthesis method [66], covering the period from 2000 to 2020, with
a spatial resolution uniformly resampled to 1 km using bilinear interpolation [67]. The
specific parameters of the data used in this study include spatial and temporal resolution,
period, and links (Table 1).

Table 1. Data used in this study.

Name Resolution Period Link

Wind speed

Daily, 0.1◦ × 0.1◦ 1982–2020
(https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5 (accessed on 14 April 2023))Temperature

Precipitation
Snowfall flux

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
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Table 1. Cont.

Name Resolution Period Link

GDAS 6 h, 0.1◦ × 0.1◦ 2006–2020 (https://psl.noaa.gov/data (accessed on 29 April 2023))
Population

grid Annual, 1 km 2000–2020 (https://landscan.ornl.gov (accessed on 15 May 2023))

NDVI 16 d, 1 km 2000–2020 (http://ltdr.nascom.nasa.gov (accessed on 19 April 2023))
Soil N, 1 km 2013 (http://www.fao.org/soils-portal/en/ (accessed on 19 May 2023))

LULC Annual, 300 m 1992–2020 (https://www.esa-landcover-cci.org/ (accessed on 27 May 2023))
PM2.5 Monthly, 0.01◦ × 0.01◦ 2000–2020 (http://earthdata.nasa.gov (accessed on 16 June 2023))
DEM N, 30 m 2019 (https://www.rceeca.com (accessed on 28 July 2023))

Note: N stands for no time resolution.

2.3. RWEQ Model

The RWEQ model was used to determine the WEM for significant TLBs in CA. This
equation considered numerous factors such as the climatic conditions, vegetation cover, soil
erodibility, soil crust, and surface roughness. The fundamental expression for this model is
as follows [17]:

SL =
2z
S2 Qmaxe−(Z/S)2

(1)

Qmax = 109.8
(
WF·EF·SCF·K′·C

)
(2)

S = 150.71
(
WF·EF·SCF·K′·C

)−0.3711 (3)

where SL represents the calculated WEM (103 t·km−2·y−1), Qmax denotes the maximum
sand transport capacity, S indicates the length of the essential plot, Z represents the distance
to the maximum SWE downwind, generally calculated as 50 m [54], WF is the weather
factor, EF indicates the soil erodibility factor (dimensionless), SCF indicates the soil crust
factor (dimensionless), K′ represents the surface roughness factor (dimensionless), and C
indicates the vegetation factor.

2.3.1. Weather Factor (WF)

The weather factor refers to the combined effects of several meteorological elements,
including wind speed, temperature, precipitation, soil moisture, and snow cover, on SWE.
The formula for this factor is as follows [68]:

WF =
SW × SD × ∑N

i=1 u2(u2 − ut)× Nd × ρ

Ng
(4)

ρ =
1
T

(
1.013 − 0.1183EL + 0.0048EL2

)
(5)

SW =

PET − (R + I)
(

Rd/
Nd

)
PET

(6)

SD = 1 − Psnow (7)

where WF is the weather factor (kg·m−1), ρ represents the density of air (kg·m−3), g is the
gravitational acceleration (9.8 m·s−1), SW is the soil moisture factor (dimensionless), SD
represents the snow cover impact factor, U2 is the wind speed at a 2 m height (m·s−1), Ut
represents the critical wind speed at a height of 2 m (m·s−1), Nd represents the time interval
for the wind speed measurements (usually 15–16 days), N represents the frequency of
the wind speed observations (d), PET refers to the potential evapotranspiration (mm), EL
indicates the elevation obtained from the DEM data (km), T is the absolute temperature (K),
R + I refers to the combined total rainfall and irrigation (mm), Rd refers to the number of
days with rainfall and/or irrigation, and Psnow represents the probability of a snow depth
exceeding 25.4 mm during the measurement period.

https://psl.noaa.gov/data
https://landscan.ornl.gov
http://ltdr.nascom.nasa.gov
http://www.fao.org/soils-portal/en/
https://www.esa-landcover-cci.org/
http://earthdata.nasa.gov
https://www.rceeca.com


Water 2024, 16, 1911 6 of 18

2.3.2. Soil Erodibility Factor (EF)

The EF refers to the impact of the soil particle size and material composition on SWE.
The structure of the EF is:

EF =
29.09 + 0.31Sa + 0.17Si + 0.33Sa/Cl − 2.59OM − 0.95CaCO3

100
(8)

where EF is the soil erodibility factor (dimensionless), Sa is the sand content (%), Si is the
silt content (%), Cl is the clay content (%), OM is the organic matter content (%), and CaCO3
is the calcium carbonate content (%).

2.3.3. Soil Crust Factor (SCF)

Soil surfaces may develop a special hard-surface-layered structure in response to
physical or biological effects that can effectively resist external forces and mitigate the
impact of SWE [69,70]. The formula used to calculate this phenomenon is as follows:

SCF =
1

1 + 0.0066Cl2 + 0.021OM2 (9)

where CL is the clay content (%) and OM is the organic matter content (%).

2.3.4. Soil Roughness Factor (K′)

The formula of the K′ is [71]:
K′ = cos a (10)

where a represents the topographic slope and can be extracted from DEM data.

2.3.5. Vegetation Factor (C)

The specific structure of the C is expressed as follows [72]:

C = e−0.0483(SC) (11)

SC =
NDVI − NDVIsoil

NDVImax − NDVIsoil
(12)

where SC refers to the coverage of vegetation (%), NDVIsoil refers to the NDVI value of
the bare soil pixel, and NDVImax refers to the maximum NDVI value of the study area.

2.4. PER Model

The PER model was used to evaluate the potential risk faced by the inhabitants of the
principal TLBs in CA due to SWE. The specific expression of the model is [73]:

Ri = popi ×
Ci(

∑n
i=1 popi × Ci

n

) (13)

where i represents the grid number, Ri is the risk index of grid i for the population exposure
to SWE, popi is the population count of the grid, Ci is the WEM value of grid i, and n
represents the total number of grids across the entire spatial unit.

2.5. HYSPLIT Model

The HYSPLIT model is a specialized tool used for the calculation and analysis of
atmospheric pollutant transport and dispersion trajectories [74,75]. This model incorporates
simulations for the dispersion of various substances, including dust [76,77], water vapor
transport [78,79], and particulate matter [80,81]. In this research, the HYSPLIT model was
applied to simulate the trajectories of two typical dust events to examine the characteristics
of dust transport.
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2.6. Trend Analysis

The unary linear regression technique can be employed to analyze the spatial patterns
of individual pixels over a specified period [82]. Within this research, this technique was
utilized to determine the spatial trends of the WEM and the PER in the TLBs in CA between
the years 2000 and 2020. The following formula was used for the calculations:

slope =
n ∗ ∑n

i=1(i − Vi)− (∑n
i=1 i ∗ ∑n

i=1 Vi)

n ∗ ∑n
i=1 i2 − (∑n

i=1 i)2 (14)

where slope represents the slope of the trend change in the WEM or PER, n denotes the
number of years monitored (n = 21), and Vi represents the WEM or PER for the i-th year. If
slope > 0, it indicates an increasing trend; if slope < 0, it denotes a decreasing trend; and if
slope = 0, it denotes no change in the trend.

2.7. Correlation Analysis

Correlation analysis can be used to assess the degree of association between two
variables. This study employed a spatial analysis approach [83], utilizing pixel-based
techniques to investigate the correlation between WEM and PM2.5, as well as climatic
factors (precipitation and temperature), and vegetation factors (NDVI) in the TLBs in CA.
The calculation method used in this study is outlined below:

Rx,y =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1 (xi − x)2∑n
i=1(yi − y)2

(15)

where Rx,y denotes the correlation coefficient of the variables x and y; xi represents the
WEM of the i-th year; yi denotes the value of another variable in the i-th year; x and y
represent the mean values of the WEM and another variable over n years, respectively;
i = 1, 2, 3, . . ., 21; and n = 21 represents the number of monitoring years.

3. Results
3.1. Spatial Variation of SWE

The variation in SWE within the TLBs in CA is considerable. The WEM ranged from
0 to 60 (103 t·km−2·y−1). Areas with a high WEM of more than 25 (103 t·km−2·y−1) were
predominantly identified near the Taklimakan Desert in the TRB, the lower reaches of the
IRB close to Lake Balkhash, and the Aral Sea Basin downstream of the SRB and ARB. On
the other hand, low WEM areas less than 0.5 (103 t·km−2·y−1) were mainly situated in
mountainous regions close to the TLBs in CA, with the Tianshan Mountain range being the
most prominent (Figure 2). From 2000 to 2020, the WEM in the downstream areas of the SRB
and ARB initially increased and then decreased. Near Lake Balkhash in the downstream
IRB, it initially decreased and then increased. In the central and eastern regions of the TRB,
the WEM changed from being relatively stable to increasing (Figure 2a–c). In terms of the
trend in the spatial variation of the WEM, the regions that exhibited a significant increase
in the WEM were mainly located in the central part of the TRB and near the Aral Sea
Basin, close to the downstream of the SRB and ARB. The areas where the WEM exhibited a
substantial decrease were primarily situated in the vicinity of Lake Balkhash within the
IRB and the southern portion of the Kyzylkum Desert in the ARB. For the period spanning
two decades (2000–2020), the regions situated within the TLBs in CA where the WEM
demonstrated a descending trend in the spatial variation, constituted 71.6% of the entire
study area (Figure 2d).
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Figure 2. Spatial distribution and trend changes in SWE in the TLBs in CA: (a–c) represent the
spatial distribution maps of SWE in the TLBs in CA for 2000, 2010, and 2020, respectively; (d) shows
the spatial trend changes in SWE in the TLBs in CA from 2000 to 2020. WEM represents the wind
erosion modulus.

3.2. Temporal Variation of SWE

The temporal variation in the WEM in the TLBs in CA over the past 21 years (2000–2020)
was analyzed using a unary linear regression technique. Generally, the TLBs in CA exhibited a
fluctuating upward trend, with an average increase of approximately 0.0187 (103 t·km−2·y−1),
the peak value was attained in 2007 at 5.06 (103 t·km−2·y−1), followed by a rapid decline to the
lowest value in 2009 at 1.98 (103 t·km−2·y−1) (Figure 3). The TRB, SRB, and ARB demonstrated
an upward trend in the annual average WEM, the TRB had the most notable upward trend,
with an increase of about 0.0377 (103 t·km−2·y−1) (Figure 3b,c). In contrast, the IRB, overall,
showed a fluctuating downward trend, with a decrease of about 0.0128 (103 t·km−2·y−1),
the highest value was attained in 2007 at 8.42 (103 t·km−2·y−1), followed by a fluctuating
downward trend that reached its lowest value in 2018 at 0.86 (103 t·km−2·y−1) (Figure 3a).
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Basin, TRB represents the Tarim River Basin, SRB represents the Syr Darya River Basin, and ARB
represents the Amu Darya River Basin. WEM represents the wind erosion modulus.

3.3. Dust Movement Trajectories

Analysis of the movement trajectories for two typical dust events in the TLBs in CA
was conducted (Figure 4). The trajectory at 100 m demonstrated that the dust above the
SRB and ARB moved in a westerly direction, passing through regions such as the Black Sea,
Russia, Ukraine, and the Caspian Sea. Additionally, the trajectories at 500 m and 1000 m
were generally consistent with that at 100 m, reaching the Mediterranean coast (Figure 4a).
The dust movement trajectory above the TRB demonstrated a prevalent eastward direction,
encompassing extensive regions of northern China and extending as far as the Russian
Far East, North Korea, and Japan. Finally, the dust movement trajectories at 100 m and
500 m terminated over the Sea of Japan, whereas the trajectory at 1000 m traverses Japan
and ended in the Pacific region (Figure 4b).
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Figure 4. Simulation map of the forward trajectory of dust following two typical dust events in the
TLBs in CA. Specifically, (a) represents the 72 h dust movement trajectory at altitudes of 100 m (red),
500 m (blue), and 1000 m (green) above the SRB and ARB at 0:00 Coordinated Universal Time (UTC)
on 24 March 2020; (b) represents the 72 h dust movement trajectory at altitudes of 100 m (red), 500 m
(blue), and 1000 m (green) above the Tarim River Basin (TRB) at 0:00 UTC on 2 April 2018. Based on
two typical dust events, the spatial dynamic movement trajectory of the SWE in the study area can be
more clearly understood.

3.4. PER to SWE

The PER model was employed to investigate the alterations in the spatial patterns
of population exposure risk resulting from SWE in CA (Figure 5). In terms of spatial
dispersion, the main areas of PER occurred along the Tarim River, in the vicinity of Lake
Balkhash in the lower reaches of the IRB, and in the middle and lower reaches of the ARB
and SRB; the high PER areas (>9) were predominantly located in densely populated urban
centers and oasis regions (Figure 5a–c). Compared to the year 2000, the most notable
reduction in PER around Lake Balkhash in the IRB was observed in 2010, while high PER
areas (>9) in the middle reaches of the ARB expanded (Figure 5a,b). From 2010 to 2020, the
PER progressively increased in the lower reaches of the IRB and ARB, and new PERs began
to emerge in the western and southern parts of the TRB (Figure 5b,c). When comparing the
year 2000 to 2020, the PER in the lower reaches of the IRB and ARB areas decreased, while it
continuously expanded in the TRB areas (Figure 5a,c). Regarding the spatial change trend,
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the overall PER in the TLBs in CA demonstrated a decreasing trend, accounting for 55.7%
of the entire study area. However, the Aral Sea area exhibited a pronounced increasing
trend (Figure 5d).
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4. Discussion
4.1. Response of PM2.5 and SWE

PM2.5 is defined as particulate matter with an aerodynamic diameter of less than
2.5 µm [84]. SWE and PM2.5 are interconnected, as the dust generated by this process can be
a significant source of airborne particulate matter PM2.5 [85,86]. Agricultural land [87,88]
and unpaved roads [89] are potential dust sources in arid and semi-arid regions globally.
In central Argentina, SWE has been exacerbated by agricultural and human activities in
semi-arid conditions, with poor soil aggregation, high variability in precipitation, and high
wind speeds [90,91]. This study conducted spatial correlation analysis between SWE and
PM2.5. The research findings indicated that in the IRB, TRB, ARB, and SRB, the regions that
exhibited a positive correlation between SWE and PM2.5 account for 46.1%, 34.5%, 36.9%,
and 21.6% of the total basin area, respectively, and were mainly distributed in irrigated
agricultural areas and rivers (Figure 6). This is consistent with research conducted in
Ningxia, China [92], which indicates that SWE of farmland in arid and semi-arid regions
can contribute to increased regional PM2.5 concentrations. Meanwhile, a study found
that no-till soil can reduce PM2.5 emissions compared to conventionally tilled soil [93].
Therefore, proper no-tillage management practices in the TLBs in CA may reduce PM2.5
emissions in the region and contribute to emergency mitigation and human health in
the region.

Li et al. [94] found that the dried-up riverbeds in the Tarim Basin are also a significant
source of PM2.5. Concurrently, Li et al. [95] conducted isotope analyses of PM2.5 in the
urban regions of Urumqi and found that the composition of atmospheric PM2.5 was
consistent with the surface soil of the dried lake bed in the Ebinur Lake area, suggesting
that SWE in the lake bed region was the primary cause for the substantial increase in PM2.5.
Our study area was the TLBs in CA. As climate change and human activities continue to
affect the area, the TLBs have experienced continuous shrinkage. This has led to extensive
drying of the riverbed and has been one of the reasons for the significant increase in PM2.5
levels in the region.
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within each basin that showed a positive correlation.

4.2. Changes in SWE under Different Land-Use/Cover Changes (LUCCs)

Near-surface wind plays a crucial role in the SWE process, by displacing or removing
the top layer of the soil [96]. Furthermore, human activities can affect SWE by chang-
ing underlying surface conditions, such as vegetation cover. SWE is highly sensitive to
climate change and human-induced LUCCs [97–99]. Our study indicated that between
2000 and 2020, there was a significant difference in SWE under different LUCCs in the
TLBs in CA (Figure 7). Grasslands and desert lands had higher SWE rates because of the
unique topographical and climatic factors of these land-use types [100]. The climate in CA
is predominantly arid, primarily consisting of deserts and grasslands. Grasslands cover the
largest area and are widespread. Owing to the arid climate in CA, grasslands are currently
being severely degraded and are transitioning to deserts [101,102]. The variation in SWE
across LUCCs, namely the LUCCs in the study area demonstrated a significant rise in
erosion in croplands at +38.00 (103 t·km−2·y−1), forestlands at +100.61 (103 t·km−2·y−1),
and desert lands at +557.46 (103 t·km−2·y−1), between 2000 and 2020. In contrast, grass-
lands at −171.07 (103 t·km−2·y−1) and wetlands at −154.02 (103 t·km−2·y−1) experienced
a significant decline (Table 2). The substantial increase in SWE in croplands over the past
21 years (2000–2020) in the TLBs in CA may be attributed to extensive land cultivation in
the area, with a 15,718.65 km2 increase in the cropland region. Consistent with research
findings from Inner Mongolia, China, this study indicated that the large-scale expansion of
cropland increased SWE [103]. Therefore, more scientific cropland management measures
may slow the SWE of cropland in the study area. However, the escalation of SWE in sandy
areas may be due to the presence of some of the world’s most extensive mobile deserts
(the Taklamakan and Kyzylkum deserts) in the region. These deserts, affected by climate
change and human activities, have finer surface soil, leading to increased erodibility [54].
However, our study also revealed that, although some sandy lands have been converted
into grassland (Figure 7), this did not hinder the rise in SWE in sandy areas, as severe SWE
continued to occur in certain localities. According to Jiang et al. [104], the degree of aridifi-
cation in CA will remain severe in the future. Considering the continuous expansion of
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the population and urbanization in the region, this suggests a potential risk of exacerbated
SWE in CA in the near future.
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Table 2. Characteristics of WEM changes under different LUCCs in the TLBs in CA (103 t·km−2·y−1).
WEM represents the wind erosion modulus.

Year Cropland Forestland Grassland Wetland Construction Land Desert Land Others

2000 193.00 1217.47 2240.06 1019.56 1.04 7217.39 0.02
2010 350.10 2099.34 878.95 461.13 2.89 8465.06 0.07
2020 231.00 1318.08 2068.99 865.54 2.41 9022.52 0.02

2000–2010
variation +157.1 +881.87 −1361.11 −558.43 +1.85 +1247.67 +0.05

2010–2020
variation −119.1 −781,26 +1190.04 +404.41 −0.48 +680.41 −0.05

2000–2020
variation +38.00 +100.61 −171.07 −154.02 +1.37 +557.46 0.00

4.3. Relationship between SWE and Controlling Climatic and Vegetation Factors

The climate plays a significant role in the occurrence of SWE, with temperature
and precipitation having an indirect influence by affecting soil moisture and vegetation
growth [105]. An increase in temperature leads to the increased evaporation of surface wa-
ter, leading to reduced soil moisture and increased soil erodibility, which in turn increases
the likelihood of SWE. We conducted a correlation analysis between SWE and temperature
and the results indicated a positive correlation between the two variables in the TLBs in
CA (Figure 8a). Specifically, the percentage of the areas with positive correlations within
each basin were as follows: IRB (71.7%), TRB (41.9%), ARB (18.6%), and SRB (20.5%). The
findings by Ma et al. [22] and Kamali N et al. [106] in global and southwestern Iran context,
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respectively, indicated that warming led to increased SWE, which is consistent with our
results, indicating a positive correlation between rising temperatures and increased SWE.
Precipitation is closely linked to the moisture content of surface soil [107]. An increase
in soil moisture improves the cohesion between soil particles, thereby strengthening the
resistance to SWE [108,109]. Research has demonstrated that precipitation is a critical
factor for preventing SWE. Our study discovered that SWE in the TLBs in CA exhibited a
negative correlation with precipitation, with the percentage of areas displaying a negative
correlation within each basin as follows: IRB (68.7%), TRB (67.5%), ARB (49.5%), and SRB
(62.1%) (Figure 8b). These results align with those of Jiang et al. [110] in Inner Mongolia,
indicating that increased precipitation played a significant role in reducing regional SWE.
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Figure 8. Spatial correlation maps of SWE with temperature (a), precipitation (b), and NDVI (c) in
the TLBs in CA. IRB, Ili River Basin; TRB, Tarim River Basin; SRB, Syr Darya Basin; ARB, Amu
Darya Basin. The brackets indicate the percentage of the area within each basin that showed a
positive correlation.

Enhancing vegetation cover is often regarded as a crucial measure for preventing
SWE [111]. In desert ecosystems, vegetation can obstruct the flow of windblown sand
and improve soil quality. Meng et al. [112] found that vegetation cover inhibited SWE
by increasing surface roughness, indicating a negative correlation between vegetation
and SWE. Consistent with this perspective, our findings revealed that in a substantial
portion of the study area, the NDVI was negatively correlated with SWE. The percentage
of negatively correlated areas within the TLBs were as follows: IRB (55%) < ARB (62.1%) <
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TRB (65.5%) < SRB (78.4%) (Figure 8c). This variation may be attributed to the variability
in grassland distribution [113]. Li et al. [114] reported that grassland distribution was the
primary cause of spatial differences in SWE in the Xilin Gol grassland in China, as revealed
in their study on the impact of SWE. It is worth noting that one study has shown that in
arid and semi-arid areas, where water resources are scarce, the construction of windbreaks
to increase vegetation cover can effectively reduce SWE and stop land degradation and
desertification [3]. Consequently, strengthening grassland management and constructing
windbreaks is expected to mitigate SWE in the TLBs in CA.

5. Conclusions

This study used the RWEQ model and PER model to assess SWE and PER in the TLBs
in CA from 2000 to 2020. The results showed that: (1) The high SWE areas were mainly
concentrated in the Taklamakan Desert, Aral Sea Basin, and near Lake Balkhash, while the
PER was primarily located along the Tarim River, near Lake Balkhash, and in the middle and
lower reaches of the ARB and SRB. (2) Both SWE and PER show overall decreasing spatial
trends. (3) Over time, SWE showed a decreasing trend in the IRB, but an increasing trend in
the TRB, SRB, and ARB. (4) The HYSPLIT model demonstrated that dust from the TRB affect
large areas in northern China and reach Japan. Dust from the SRB and ARB, downstream
of the Aral Sea, ultimately impacts Europe. (5) The driving factors of SWE are as follows:
it generally correlates positively with temperature and negatively with precipitation and
NDVI. This suggests that increasing temperatures significantly increase SWE in the study
area, while increased precipitation and vegetation effectively reduce it. (6) Different LUCCs
showed distinct variations in SWE: notably, SWE significantly increased in croplands,
forests, and desert areas, while it decreased significantly in grasslands and wetlands.

This study revealed the distribution and variability of SWE and PER in the TLBs in
CA, addressing a gap in the research on the relationship between SWE and PER. It also
provides theoretical support for emergency mitigation of SWE in arid regions. Enhancing
the monitoring of the impact of human activities on SWE and improving the accuracy of
the RWEQ model are the future research directions of this study.
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